Failures of Gradient-Based Deep Learning

Shai Shalev-Shwartz, Shaked Shammah, Ohad Shamir

The Hebrew University and Mobileye

Representation Learning Workshop Simons Institute, Berkeley, 2017

Shai Shalev-Shwartz (huji,ME)

Failures of Gradient-Based DL

Berkeley'17 2 / 38

æ

INTEL IS BUYING MOBILEYE FOR \$15.3 BILLION IN BIGGEST ISRAELI HI-TECH DEAL EVER

Simple problems where standard deep learning either

- Does not work well
 - Requires prior knowledge for better architectural/algorithmic choices
 - Requires other than gradient update rule
 - Requiers to decompose the problem and add more supervision
- Does not work at all
 - No "local-search" algorithm can work
 - Even for "nice" distributions and well-specified models
 - Even with over-parameterization (a.k.a. improper learning)

Mix of theory and experiments

Piece-wise Linear Curves

Piecewise-linear Curves: Motivation

Shai Shalev-Shwartz (huji,ME)

Berkeley'17 9 / 38

Piecewise-linear Curves

Problem: Train a piecewise-linear curve detector

Input: $\mathbf{f} = (f(0), f(1), \dots, f(n-1))$ where

$$f(x) = \sum_{r=1}^{k} a_r [x - \theta_r]_+ \quad , \quad \theta_r \in \{0, \dots, n-1\}$$

Output: Curve parameters $\{a_r, \theta_r\}_{r=1}^k$

A D > A A P >

First try: Deep AutoEncoder

- Encoding network, E_{w_1} : Dense(500, relu)-Dense(100, relu)-Dense(2k)
- Decoding network, D_{w_2} : Dense(100,relu)-Dense(100,relu)-Dense(n)
- Squared Loss: $(D_{w_2}(E_{w_1}(\mathbf{f})) \mathbf{f})^2$

First try: Deep AutoEncoder

- Encoding network, E_{w_1} : Dense(500, relu)-Dense(100, relu)-Dense(2k)
- Decoding network, D_{w_2} : Dense(100,relu)-Dense(100,relu)-Dense(n)
- Squared Loss: $(D_{w_2}(E_{w_1}(\mathbf{f})) \mathbf{f})^2$
- Doesn't work well ...

Problem: Train a piecewise-linear curve detector

Input: $\mathbf{f} \in \mathbb{R}^n$ where $f(x) = \sum_{r=1}^k a_r [x - \theta_r]_+$ Output: Curve parameters $\{a_r, \theta_r\}_{r=1}^k$

Convex Formulation

- Let $\mathbf{p}\in\mathbb{R}^{n,n}$ be a k-sparse vector whose k max/argmax elements are $\{a_r,\theta_r\}_{r=1}^k$
- Observe: $\mathbf{f} = W\mathbf{p}$ where $W \in \mathbb{R}^{n,n}$ is s.t. $W_{i,j} = [i j + 1]_+$
- Learning approach linear regression: Train a one-layer fully connected network on (f, p) examples:

$$\min_{U} \mathbb{E}\left[(U\mathbf{f} - \mathbf{p})^2 \right] = \mathbb{E}\left[(U\mathbf{f} - W^{-1}\mathbf{f})^2 \right]$$

Second try: Pose as a Convex Objective

$$\min_{U} \mathbb{E}\left[(U\mathbf{f} - \mathbf{p})^2 \right] = \mathbb{E}\left[(U\mathbf{f} - W^{-1}\mathbf{f})^2 \right]$$

• Convex; Realizable; but still doesn't work well ...

Shai Shalev-Shwartz (huji,ME)

Failures of Gradient-Based DL

Berkeley'17 13 / 38

Theorem

The convergence of SGD is governed by the condition number of $W^{\top}W$, which is large:

$$\frac{\lambda_{\max}(W^{\top}W)}{\lambda_{\min}(W^{\top}W)} = \Omega(n^{3.5})$$

 \Rightarrow SGD requires $\Omega(n^{3.5})$ iterations to reach U s.t. $\|\mathbb{E}[U] - W^{-1}\| < 1/2$

• Note: Adagrad/Adam doesn't work because they perform diagonal conditioning

- $\mathbf{p} = W^{-1}\mathbf{f}$
- Observation:

$$W^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ -2 & 1 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 & \cdots \\ 0 & 0 & 1 & -2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

W⁻¹f is 1D convolution of f with "2nd derivative" filter (1, -2, 1)
Can train a one-layer convnet to learn filter (problem in ℝ³!)

Better, but still doesn't work well ...

500 iterations

10,000 iterations 50,000 iterations

- Theorem: Condition number reduced to $\Theta(n^3)$. Convolutions aid geometry!
- But, $\Theta(n^3)$ is very disappointing for a problem in \mathbb{R}^3 ...

Shai Shalev-Shwartz (huji,ME)

Failures of Gradient-Based DL

- ConvNet is equivalent to solving $\min_{\mathbf{x}} \mathbb{E}\left[(F\mathbf{x} \mathbf{p})^2\right]$ where F is $n \times 3$ matrix with (f(i-1), f(i), f(i+1)) at row i
- Observation: Problem is now low-dimensional, so can easily precondition
 - Compute empirical approximation C of $\mathbb{E}[F^{\top}F]$
 - Solve $\min_{\mathbf{x}} \mathbb{E}[(FC^{-1/2}\mathbf{x} \mathbf{p})^2]$
 - Return $C^{1/2}\mathbf{x}$
- Condition number of $FC^{-1/2}$ is close to 1

Finally, it works ...

500 iterations

10,000 iterations 50,000

50,000 iterations

Remark:

- Use of convnet allows for efficient preconditioning
- Estimating and manipulating 3×3 rather than $n\times n$ matrices.

Shai Shalev-Shwartz (huji,ME)

Failures of Gradient-Based DL

- SGD might be extremely slow
- Prior knowledge allows us to:
 - Choose a better architecture (not for expressivity, but for a better geometry)
 - Choose a better algorithm (preconditioned SGD)

Piece-wise Linear Curves

2 Flat Activations

3 End-to-end Training

4 Learning Many Orthogonal Functions

Vanishing gradients due to saturating activations (e.g. in RNN's)

Problem: Learning $\mathbf{x} \mapsto u(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle)$ where u is a fixed step function

Optimization problem:

$$\min_{\mathbf{w}} \mathbb{E}[(u(N_{\mathbf{w}}(\mathbf{x})) - u(\mathbf{w}^{\star \top} \mathbf{x}))^2]$$

u'(z) = 0 almost everywhere \rightarrow can't apply gradient-based methods

Smooth approximation: replace u with \tilde{u} (similar to using sigmoids as gates in LSTM's)

Sometimes works, but slow and only approximate result. Often completely fails

Flat Activations: Perhaps I should use a deeper network ...

Approach: End-to-end

$$\min_{\mathbf{w}} \mathbb{E}[(N_{\mathbf{w}}(\mathbf{x}) - u(\mathbf{w}^{\star \top} \mathbf{x}))^2]$$

(3 ReLU + 1 linear layers; 10000 iterations)

Slow train+test time; curve not captured well

Approach: Multiclass

$$\min_{\mathbf{w}} \mathbb{E}[\ell(N_{\mathbf{w}}(\mathbf{x}), y(\mathbf{x}))]$$

 $N_{\mathbf{w}}(\mathbf{x})$: to which step does \mathbf{x} belong

Problem capturing boundaries

Different approach (Kalai & Sastry 2009, Kakade, Kalai, Kanade, Shamir 2011): Gradient descent, but replace gradient with something else

• Objective:
$$\min_{\mathbf{w}} \mathbb{E}_{\mathbf{x}} \left[\frac{1}{2} \left((u(\mathbf{w}^{\top} \mathbf{x})) - u(\mathbf{w}^{\star \top} \mathbf{x}) \right)^2 \right]$$

• Gradient:
$$\nabla = \mathbb{E}_{\mathbf{x}} \left[\left(u(\mathbf{w}^{\top} \mathbf{x}) - u(\mathbf{w}^{\star \top} \mathbf{x}) \right) \cdot u'(\mathbf{w}^{\top} \mathbf{x}) \cdot \mathbf{x} \right]$$

• Non-gradient direction:
$$\tilde{\nabla} = \mathop{\mathbb{E}}_{\mathbf{x}} \left[(u(\mathbf{w}^{\top}\mathbf{x}) - u(\mathbf{w}^{\star \top}\mathbf{x}))\mathbf{x} \right]$$

• Interpretation: "Forward only" backpropagation

(linear; 5000 iterations)

- Best results, and smallest train+test time
- Analysis (KS09, KKKS11): Needs $\mathcal{O}(L^2/\epsilon^2)$ iterations if u is L-Lipschitz
- Lesson learned: Local search works, but not with the gradient ...

Piece-wise Linear Curves

2 Flat Activations

3 End-to-end Training

4 Learning Many Orthogonal Functions

- \bullet Input $\mathbf{x}:$ k-tuple of images of random lines
- $f_1(\mathbf{x})$: For each image, whether slope is negative/positive
- $f_2(\mathbf{x})$: return parity of slope signs
- Goal: Learn $f_2(f_1(\mathbf{x}))$

Failures of Gradient-Based DL

Berkeley'17 29 / 38

- Architecture: Concatenation of Lenet and 2-layer ReLU, linked by sigmoid
- End-to-end approach: Train overall network on primary objective
- Decomposition approach: Augment objective with loss specific to first net, using per-image labels

- Architecture: Concatenation of Lenet and 2-layer ReLU, linked by sigmoid
- End-to-end approach: Train overall network on primary objective
- Decomposition approach: Augment objective with loss specific to first net, using per-image labels

- Why end-to-end training doesn't work ?
 - Similar experiment by Gulcehre and Bengio, 2016
 - They suggest "local minima" problems
 - We show that the problem is different

- Why end-to-end training doesn't work ?
 - Similar experiment by Gulcehre and Bengio, 2016
 - They suggest "local minima" problems
 - We show that the problem is different
- Signal-to-Noise Ratio (SNR) for random initialization:
 - End-to-end (red) vs. decomposition (blue), as a function of k
 - SNR of end-to-end for $k\geq 3$ is below the precision of float32

- Piece-wise Linear Curves
- 2 Flat Activations
- 3 End-to-end Training
- 4 Learning Many Orthogonal Functions

• Let \mathcal{H} be a hypothesis class of orthonormal functions: $\forall h, h' \in \mathcal{H}, \ \mathbb{E}[h(\mathbf{x})h'(\mathbf{x})] = 0$

- Let \mathcal{H} be a hypothesis class of orthonormal functions: $\forall h, h' \in \mathcal{H}, \mathbb{E}[h(\mathbf{x})h'(\mathbf{x})] = 0$
- (Improper) learning of $\mathcal H$ using gradient-based deep learning:
 - Learn the parameter vector, $\mathbf{w},$ of some architecture, $p_{\mathbf{w}}:X\rightarrow\mathbb{R}$
 - For every target $h \in \mathcal{H}$, the learning task is to solve:

$$\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x}))]$$

• Start with a random ${f w}$ and update the weights based on $abla F_h({f w})$

- Let \mathcal{H} be a hypothesis class of orthonormal functions: $\forall h, h' \in \mathcal{H}, \mathbb{E}[h(\mathbf{x})h'(\mathbf{x})] = 0$
- (Improper) learning of $\mathcal H$ using gradient-based deep learning:
 - Learn the parameter vector, $\mathbf{w},$ of some architecture, $p_{\mathbf{w}}:X\rightarrow\mathbb{R}$
 - For every target $h \in \mathcal{H}$, the learning task is to solve:

$$\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x})]$$

- Start with a random ${\bf w}$ and update the weights based on $\nabla F_h({\bf w})$
- Analysis tool: How much $\nabla F_h(\mathbf{w})$ tells us about the identity of h ?

Analysis: how much information in the gradient?

$$\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x}))]$$

• Theorem: For every w, there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while

$$\|\nabla F_h(\mathbf{w}) - \nabla F_{h'}(\mathbf{w})\|^2 = O\left(\frac{1}{|\mathcal{H}|}\right)$$

Analysis: how much information in the gradient?

$$\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x}))]$$

• Theorem: For every w, there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while

$$\|\nabla F_h(\mathbf{w}) - \nabla F_{h'}(\mathbf{w})\|^2 = O\left(\frac{1}{|\mathcal{H}|}\right)$$

 \bullet Proof idea: show that if the functions in ${\cal H}$ are orthonormal then, for every ${\bf w},$

$$\operatorname{Var}(\mathcal{H}, F, \mathbf{w}) := \mathbb{E}_{h} \left\| \nabla F_{h}(\mathbf{w}) - \mathbb{E}_{h'} \nabla F_{h'}(\mathbf{w}) \right\|^{2} = O\left(\frac{1}{|\mathcal{H}|}\right)$$

• To do so, express every coordinate of $\nabla p_{\mathbf{w}}(\mathbf{x})$ using the orthonormal functions in $\mathcal H$

Proof idea

Assume the squared loss, then

$$\nabla F_h(\mathbf{w}) = \underset{\mathbf{x}}{\mathbb{E}}[(p_{\mathbf{w}}(\mathbf{x}) - h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]$$
$$= \underbrace{\mathbb{E}}[p_{\mathbf{w}}(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})] - \underset{\mathbf{x}}{\mathbb{E}}[h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]$$

independent of h

Image: A math a math

Proof idea

Assume the squared loss, then

$$\nabla F_h(\mathbf{w}) = \underset{\mathbf{x}}{\mathbb{E}}[(p_{\mathbf{w}}(\mathbf{x}) - h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]$$
$$= \underbrace{\mathbb{E}}[p_{\mathbf{w}}(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})] - \underset{\mathbf{x}}{\mathbb{E}}[h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]$$

- Fix some j and denote $g(\mathbf{x}) = \nabla_j p_{\mathbf{w}}(\mathbf{x})$
- Can expand $g = \sum_{i=1}^{|\mathcal{H}|} \langle h_i, g \rangle h_i$ + orthogonal component
- Therefore, $\mathbb{E}_h \left(\mathbb{E}_{\mathbf{x}}[h(\mathbf{x}) \, g(\mathbf{x})] \right)^2 \leq \frac{\mathbb{E}_{\mathbf{x}}[g(\mathbf{x})^2]}{|\mathcal{H}|}$
- It follows that

$$\operatorname{Var}(\mathcal{H}, F, \mathbf{w}) \leq \frac{\mathbb{E}_{\mathbf{x}}[\|\nabla p_{\mathbf{w}}(\mathbf{x})\|^2]}{|\mathcal{H}|}$$

- ${\mathcal H}$ is the class of parity functions over $\{0,1\}^d$ and ${\mathbf x}$ is uniformly distributed
- There are 2^d orthonormal functions, hence there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while $\|\nabla F_h(\mathbf{w}) \nabla F_{h'}(\mathbf{w})\|^2 = O(2^{-d})$

- ${\cal H}$ is the class of parity functions over $\{0,1\}^d$ and ${\bf x}$ is uniformly distributed
- There are 2^d orthonormal functions, hence there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while $\|\nabla F_h(\mathbf{w}) \nabla F_{h'}(\mathbf{w})\|^2 = O(2^{-d})$

Remark:

- Similar hardness result can be shown by combining existing results:
 - Parities on uniform distribution over $\{0,1\}^d$ is difficult for statistical query algorithms (Kearns, 1999)
 - Gradient descent with approximate gradients can be implemented with statistical queries (Feldman, Guzman, Vempala 2015)

Visual Illustration: Linear-Periodic Functions

 $F_h(\mathbf{w}) = \mathbb{E}_{\mathbf{x}}[(\cos(\mathbf{w}^{\top}\mathbf{x}) - h(\mathbf{x}))^2]$ for $h(\mathbf{x}) = \cos([2, 2]^{\top}\mathbf{x})$, in 2 dimensions, $\mathbf{x} \sim \mathcal{N}(0, I)$:

- No local minima/saddle points
- However, extremely flat unless very close to optimum
 - \Rightarrow difficult for gradient methods, especially stochastic
- In fact, difficult for any local-search method

Shai Shalev-Shwartz (huji,ME)

Failures of Gradient-Based DL

- Cause of failures: optimization can be difficult for geometric reasons other than local minima / saddle points
 - Condition number, flatness
 - Using bigger/deeper networks doesn't always help
- Remedies: prior knowledge can still be important
 - Convolution can improve geometry (and not just sample complexity)
 - "Other than gradient" update rule
 - Decomposing the problem and adding supervision can improve geometry
- Understanding the limitations: While deep learning is great, understanding the limitations may lead to better algorithms and/or better theoretical guarantees
- For more information:
 - "Failures of Deep Learning": arxiv 1703.07950
 - github.com/shakedshammah/failures_of_DL