Failures of Gradient-Based Deep Learning

Shai Shalev-Shwartz, Shaked Shammah, Ohad Shamir

The Hebrew University and Mobileye

Representation Learning Workshop Simons Institute, Berkeley, 2017

 \leftarrow

Shai Shalev-Shwartz (huji,ME) [Failures of Gradient-Based DL](#page-0-0) Berkeley'17 2 / 38

4 D F

4 D F

×

 \Box

INTEL IS BUYING MOBILEYE FOR \$15.3 BILLION IN BIGGEST ISRAELI HI-TECH DEAL EVER

 \leftarrow

Simple problems where standard deep learning either

- **Does not work well**
	- Requires prior knowledge for better architectural/algorithmic choices
	- Requires other than gradient update rule
	- Requiers to decompose the problem and add more supervision
- **o** Does not work at all
	- No "local-search" algorithm can work
	- Even for "nice" distributions and well-specified models
	- Even with over-parameterization (a.k.a. improper learning)

Mix of theory and experiments

つひひ

1 [Piece-wise Linear Curves](#page-8-0)

[Flat Activations](#page-20-0)

3 [End-to-end Training](#page-28-0)

4 [Learning Many Orthogonal Functions](#page-34-0)

4 0 8

 QQ

Piecewise-linear Curves: Motivation

Shai Shalev-Shwartz (huji, ME) [Failures of Gradient-Based DL](#page-0-0) Berkeley'17 9 / 38

Piecewise-linear Curves

Problem: Train a piecewise-linear curve detector

Input: $f = (f(0), f(1), \ldots, f(n-1))$ where

$$
f(x) = \sum_{r=1}^{k} a_r [x - \theta_r]_+ , \quad \theta_r \in \{0, \dots, n-1\}
$$

 $\overline{\textsf{Output}}$: Curve parameters $\{a_r, \theta_r\}_{r=1}^k$

4 D F

First try: Deep AutoEncoder

- $\mathsf{Encoding}\ \mathsf{network},\ E_{w_1}\!\!: \ \mathsf{Dense}(500,\mathsf{relu})\text{-}\mathsf{Dense}(100,\mathsf{relu})\text{-}\mathsf{Dense}(2k)$
- $\mathsf{Decoding}$ network, $D_{w_2}\!\!$: $\;$ Dense(100,relu)-Dense(100,relu)-Dense(n)
- Squared Loss: $(D_{w_2}(E_{w_1}({\bf f}))-{\bf f})^2$

4 0 8

First try: Deep AutoEncoder

- $\mathsf{Encoding}\ \mathsf{network},\ E_{w_1}\mathsf{:}\ \ \mathsf{Dense}(500,\mathsf{relu})\text{-}\mathsf{Dense}(100,\mathsf{relu})\text{-}\mathsf{Dense}(2k)$
- $\mathsf{Decoding}$ network, $D_{w_2}\!\!$: $\;$ Dense(100,relu)-Dense(100,relu)-Dense(n)
- Squared Loss: $(D_{w_2}(E_{w_1}({\bf f}))-{\bf f})^2$
- **O** Doesn't work well ...

Problem: Train a piecewise-linear curve detector

<u>Input:</u> $\mathbf{f} \in \mathbb{R}^n$ where $f(x) = \sum_{r=1}^k a_r [x - \theta_r]_+$ $\overline{\textsf{Output}}$: Curve parameters $\{a_r,\theta_r\}_{r=1}^k$

Convex Formulation

- Let $\mathbf{p} \in \mathbb{R}^{n,n}$ be a k -sparse vector whose k max/argmax elements are $\{a_r, \theta_r\}_{r=1}^k$
- Observe: $\mathbf{f} = W\mathbf{p}$ where $W \in \mathbb{R}^{n,n}$ is s.t. $W_{i,j} = [i-j+1]_+$
- Learning approach linear regression: Train a one-layer fully connected network on (f, p) examples:

$$
\min_{U} \mathbb{E}\left[(U\mathbf{f} - \mathbf{p})^2 \right] = \mathbb{E}\left[(U\mathbf{f} - W^{-1}\mathbf{f})^2 \right]
$$

Second try: Pose as a Convex Objective

$$
\min_{U} \mathbb{E}\left[(U\mathbf{f} - \mathbf{p})^2 \right] = \mathbb{E}\left[(U\mathbf{f} - W^{-1}\mathbf{f})^2 \right]
$$

Convex; Realizable; but still doesn't work well ...

Theorem

The convergence of SGD is governed by the condition number of W^TW , which is large:

$$
\frac{\lambda_{\max}(W^{\top}W)}{\lambda_{\min}(W^{\top}W)} = \Omega(n^{3.5})
$$

 \Rightarrow SGD requires $\Omega(n^{3.5})$ iterations to reach U s.t. $\left\| {\mathbb{E}}[U] - W^{-1} \right\| < 1/2$

Note: Adagrad/Adam doesn't work because they perform diagonal conditioning

- $p = W^{-1}f$
- **Observation:**

$$
W^{-1} = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & \cdots \\ -2 & 1 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 & \cdots \\ 0 & 0 & 1 & -2 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{array}\right)
$$

 W^{-1} f is 1D convolution of f with "2nd derivative" filter $(1,-2,1)$ Can train a one-layer convnet to learn filter (problem in \mathbb{R}^3 !)

Better, but still doesn't work well ...

500 iterations 10,000 iterations 50,000 iterations

- Theorem: Condition number reduced to $\Theta(n^3)$. Convolutions aid geometry!
- But, $\Theta(n^3)$ $\Theta(n^3)$ $\Theta(n^3)$ is very disappointing for a prob[lem](#page-15-0) [i](#page-17-0)n \mathbb{R}^3 [.](#page-19-0).. 4 0 1

- <code>ConvNet</code> is equivalent to solving $\min_\mathbf{x} \mathbb{E}\left[(F\mathbf{x} \mathbf{p})^2\right]$ where F is $n \times 3$ matrix with $(f(i-1), f(i), f(i+1))$ at row i
- Observation: Problem is now low-dimensional, so can easily precondition
	- Compute empirical approximation C of $\mathbb{E}[F^\top F]$
	- Solve $\min_\mathbf{x} \mathbb{E}[(FC^{-1/2}\mathbf{x} \mathbf{p})^2]$
	- Return $C^{1/2}\mathbf{x}$
- Condition number of $FC^{-1/2}$ is close to 1

Finally, it works ...

500 iterations 10,000 iterations 50,000 iterations

Remark:

- Use of convnet allows for efficient preconditioning
- Estimati[n](#page-19-0)g and [m](#page-8-0)[a](#page-20-0)n[i](#page-8-0)pulating 3×3 3×3 3×3 rather t[ha](#page-17-0)n $n \times n$ ma[tr](#page-7-0)i[c](#page-19-0)es[.](#page-0-0)

Shai Shalev-Shwartz (huji, ME) [Failures of Gradient-Based DL](#page-0-0) Berkeley'17 18 / 38

 QQ

- SGD might be extremely slow
- Prior knowledge allows us to:
	- Choose a better architecture (not for expressivity, but for a better geometry)
	- Choose a better algorithm (preconditioned SGD)

 \leftarrow

[Piece-wise Linear Curves](#page-8-0)

2 [Flat Activations](#page-20-0)

3 [End-to-end Training](#page-28-0)

[Learning Many Orthogonal Functions](#page-34-0)

4 0 8

э \rightarrow QQ

Vanishing gradients due to saturating activations (e.g. in RNN's)

4 0 8

Problem: Learning $\mathbf{x} \mapsto u(\langle \mathbf{w}^*, \mathbf{x} \rangle)$ where u is a fixed step function

Optimization problem:

$$
\min_{\mathbf{w}} \mathbb{E}[(u(N_{\mathbf{w}}(\mathbf{x})) - u(\mathbf{w}^{*T}\mathbf{x}))^2]
$$

 $u'(z)=0$ almost everywhere \rightarrow can't apply gradient-based methods

Smooth approximation: replace u with \tilde{u} (similar to using sigmoids as gates in LSTM's)

Sometimes works, but slow and only approximate result. Often completely fails

Approach: End-to-end

$$
\min_{\mathbf{w}} \mathop{\mathbb{E}}_{\mathbf{x}}[(N_{\mathbf{w}}(\mathbf{x}) - u(\mathbf{w}^{*T}\mathbf{x}))^2]
$$

 $(3$ ReLU + 1 linear layers; 10000 iterations)

Slow train+test time; curve not captured well

つひひ

Approach: Multiclass

$$
\min_{\mathbf{w}} \mathbb{E}[\ell(N_{\mathbf{w}}(\mathbf{x}), y(\mathbf{x}))]
$$

 $N_{\text{w}}(\textbf{x})$: to which step does x belong

Problem capturing boundaries

 \leftarrow

Different approach (Kalai & Sastry 2009, Kakade, Kalai, Kanade, Shamir 2011): Gradient descent, but replace gradient with something else

• **Objective:**
$$
\min_{\mathbf{w}} \mathbb{E}\left[\frac{1}{2}\left((u(\mathbf{w}^{\top}\mathbf{x})) - u(\mathbf{w}^{*\top}\mathbf{x})\right)^{2}\right]
$$

$$
\bullet\ \ \mathsf{Gradient}\colon\ \nabla=\mathop{\mathbb{E}}_{\mathbf{x}}\left[\left(u(\mathbf{w}^{\top}\mathbf{x})-u(\mathbf{w}^{\star\top}\mathbf{x})\right)\cdot u'(\mathbf{w}^{\top}\mathbf{x})\cdot \mathbf{x}\right]
$$

- Non-gradient direction: $\tilde{\nabla} = \mathbb{E}$ $\left[(u(\mathbf{w}^\top \mathbf{x}) - u(\mathbf{w}^{*\top} \mathbf{x})) \mathbf{x} \right]$
- **•** Interpretation: "Forward only" backpropagation

(linear; 5000 iterations)

- \bullet Best results, and smallest train+test time
- Analysis (KS09, KKKS11): Needs $\mathcal{O}(L^2/\epsilon^2)$ iterations if u is L-Lipschitz
- Lesson learned: Local search works, but not with the gradient ...

[Piece-wise Linear Curves](#page-8-0)

[Flat Activations](#page-20-0)

3 [End-to-end Training](#page-28-0)

[Learning Many Orthogonal Functions](#page-34-0)

4 0 8

- Input x: k-tuple of images of random lines
- $f_1(\mathbf{x})$: For each image, whether slope is negative/positive
- $f_2(\mathbf{x})$: return parity of slope signs
- Goal: Learn $f_2(f_1(\mathbf{x}))$

つひひ

- Architecture: Concatenation of Lenet and 2-layer ReLU, linked by sigmoid
- End-to-end approach: Train overall network on primary objective
- Decomposition approach: Augment objective with loss specific to first net, using per-image labels

- Architecture: Concatenation of Lenet and 2-layer ReLU, linked by sigmoid
- End-to-end approach: Train overall network on primary objective
- Decomposition approach: Augment objective with loss specific to first net, using per-image labels

- Why end-to-end training doesn't work?
	- Similar experiment by Gulcehre and Bengio, 2016
	- They suggest "local minima" problems
	- We show that the problem is different

 \leftarrow

- Why end-to-end training doesn't work?
	- Similar experiment by Gulcehre and Bengio, 2016
	- They suggest "local minima" problems
	- We show that the problem is different
- Signal-to-Noise Ratio (SNR) for random initialization:
	- End-to-end (red) vs. decomposition (blue), as a function of k
	- SNR of end-to-end for $k > 3$ is below the precision of float32

つひひ

- [Piece-wise Linear Curves](#page-8-0)
- **[Flat Activations](#page-20-0)**
- 3 [End-to-end Training](#page-28-0)
- 4 [Learning Many Orthogonal Functions](#page-34-0)

4 0 8

• Let H be a hypothesis class of orthonormal functions: $\forall h, h' \in \mathcal{H}$, $\mathbb{E}[h(\mathbf{x})h'(\mathbf{x})] = 0$

4 0 8

- Let H be a hypothesis class of orthonormal functions: $\forall h, h' \in \mathcal{H}$, $\mathbb{E}[h(\mathbf{x})h'(\mathbf{x})] = 0$
- (Improper) learning of H using gradient-based deep learning:
	- Learn the parameter vector, w, of some architecture, $p_{\mathbf{w}} : X \to \mathbb{R}$
	- For every target $h \in \mathcal{H}$, the learning task is to solve:

$$
\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x})]
$$

• Start with a random w and update the weights based on $\nabla F_h(\mathbf{w})$

- Let H be a hypothesis class of orthonormal functions: $\forall h, h' \in \mathcal{H}$, $\mathbb{E}[h(\mathbf{x})h'(\mathbf{x})] = 0$
- (Improper) learning of H using gradient-based deep learning:
	- Learn the parameter vector, w, of some architecture, $p_{\mathbf{w}} : X \to \mathbb{R}$
	- For every target $h \in \mathcal{H}$, the learning task is to solve:

$$
\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x})]
$$

- Start with a random w and update the weights based on $\nabla F_h(\mathbf{w})$
- Analysis tool: How much $\nabla F_h(\mathbf{w})$ tells us about the identity of h?

つひい

Analysis: how much information in the gradient?

$$
\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x})]
$$

• Theorem: For every w, there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while

$$
\|\nabla F_h(\mathbf{w}) - \nabla F_{h'}(\mathbf{w})\|^2 = O\left(\frac{1}{|\mathcal{H}|}\right)
$$

 \leftarrow \Box

Analysis: how much information in the gradient?

$$
\min_{\mathbf{w}} F_h(\mathbf{w}) := \mathop{\mathbb{E}}_{\mathbf{x}} [\ell(p_{\mathbf{w}}(\mathbf{x}), h(\mathbf{x})]
$$

• Theorem: For every w, there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while

$$
\|\nabla F_h(\mathbf{w}) - \nabla F_{h'}(\mathbf{w})\|^2 = O\left(\frac{1}{|\mathcal{H}|}\right)
$$

• Proof idea: show that if the functions in H are orthonormal then, for every w,

$$
\text{Var}(\mathcal{H}, F, \mathbf{w}) := \mathbb{E}_{h} \left\| \nabla F_{h}(\mathbf{w}) - \mathbb{E}_{h'} \nabla F_{h'}(\mathbf{w}) \right\|^{2} = O\left(\frac{1}{|\mathcal{H}|}\right)
$$

• To do so, express every coordinate of $\nabla p_{\mathbf{w}}(\mathbf{x})$ using the orthonormal functions in H Ω

Proof idea

Assume the squared loss, then

$$
\nabla F_h(\mathbf{w}) = \mathbb{E}[(p_{\mathbf{w}}(\mathbf{x}) - h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]
$$

=
$$
\underbrace{\mathbb{E}[p_{\mathbf{w}}(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})] - \mathbb{E}[h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]}_{\text{independent of } h}
$$

 \sim 40

K ロ ⊁ K 伊 ⊁ K ミ ⊁

Proof idea

Assume the squared loss, then

$$
\nabla F_h(\mathbf{w}) = \mathbb{E}[(p_{\mathbf{w}}(\mathbf{x}) - h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]
$$

=
$$
\underbrace{\mathbb{E}[p_{\mathbf{w}}(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})] - \mathbb{E}[h(\mathbf{x}) \nabla p_{\mathbf{w}}(\mathbf{x})]}_{\text{independent of } h}
$$

- Fix some j and denote $g(\mathbf{x}) = \nabla_j p_{\mathbf{w}}(\mathbf{x})$
- Can expand $g = \sum_{i=1}^{|\mathcal{H}|} \langle h_i, g \rangle h_i + \text{orthogonal component}$
- Therefore, $\mathbb{E}_h\left(\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})\,g(\mathbf{x})]\right)^2\leq \frac{\mathbb{E}_{\mathbf{x}}[g(\mathbf{x})^2]}{|\mathcal{H}|}$ $|\mathcal{H}|$
- It follows that

$$
\operatorname{Var}(\mathcal{H}, F, \mathbf{w}) \ \leq \ \frac{\mathbb{E}_{\mathbf{x}}[\|\nabla p_{\mathbf{w}}(\mathbf{x})\|^2]}{|\mathcal{H}|}
$$

4 0 8

- ${\mathcal H}$ is the class of parity functions over $\{0,1\}^d$ and ${\bf x}$ is uniformly distributed
- There are 2^d orthonormal functions, hence there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while $\|\nabla F_h(\mathbf{w}) - \nabla F_{h'}(\mathbf{w})\|^2 = O(2^{-d})$

- ${\mathcal H}$ is the class of parity functions over $\{0,1\}^d$ and ${\bf x}$ is uniformly distributed
- There are 2^d orthonormal functions, hence there are many pairs $h, h' \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathbf{x}}[h(\mathbf{x})h'(\mathbf{x})] = 0$ while $\|\nabla F_h(\mathbf{w}) - \nabla F_{h'}(\mathbf{w})\|^2 = O(2^{-d})$

Remark:

- **•** Similar hardness result can be shown by combining existing results:
	- Parities on uniform distribution over $\{0,1\}^d$ is difficult for statistical query algorithms (Kearns, 1999)
	- Gradient descent with approximate gradients can be implemented with statistical queries (Feldman, Guzman, Vempala 2015)

Visual Illustration: Linear-Periodic Functions

 $F_h(\mathbf{w}) = \mathbb{E}_{\mathbf{x}}[(\cos(\mathbf{w}^\top \mathbf{x}) - h(\mathbf{x}))^2]$ for $h(\mathbf{x}) = \cos([2, 2]^\top \mathbf{x})$, in 2 dimensions, $\mathbf{x} \sim \mathcal{N}(0, I)$:

- No local minima/saddle points
- However, extremely flat unless very close to optimum
	- \Rightarrow difficult for gradient methods, especially stochastic
- In fact, [d](#page-43-0)ifficult for any local-search method

Shai Shalev-Shwartz (huji, ME) [Failures of Gradient-Based DL](#page-0-0) Berkeley'17 37

- Cause of failures: optimization can be difficult for geometric reasons other than local minima / saddle points
	- **Condition number, flatness**
	- Using bigger/deeper networks doesn't always help
- Remedies: prior knowledge can still be important
	- Convolution can improve geometry (and not just sample complexity)
	- "Other than gradient" update rule
	- Decomposing the problem and adding supervision can improve geometry
- Understanding the limitations: While deep learning is great, understanding the limitations may lead to better algorithms and/or better theoretical guarantees
- **•** For more information:
	- "Failures of Deep Learning": arxiv 1703.07950
	- github.com/shakedshammah/failures_of_DL