
Representations for Language:
From Word Embeddings to

Sentence Meanings

Christopher Manning
Stanford University

@chrmanning�@stanfordnlp
Simons Institute 2017

What’s special about human language?
Most important distinctive human characteristic
The only hope for “explainable” intelligence
Communication was
central to human
development and
dominance
Language forms
come with meanings
A social system

What’s special about human language?

Constructed to convey speaker/writer’s meaning
Not just an environmental signal; a deliberate communication

Using an encoding which little kids learn (amazingly!) quickly

A discrete/symbolic/categorical signaling system
“rocket” = !; “violin” = "

Very minor exceptions for expressive signaling – “I loooove it”

Presumably because of greater signaling reliability

Symbols are not just an invention of logic / classical AI!

What’s special about human language?

Language symbols are encoded as a continuous
communication signal in several ways:
• Sound
• Gesture
• Writing (Images/Trajectories)

Symbol is invariant across different encodings!

CC BY 2.0 David Fulmer 2008 National Library of NZ, no known restrictions

What’s special about human language?
• Traditionally, people have extended the symbolic system of

language into the brain: “The language of thought”
• But a brain encoding appears to be a continuous pattern of

activation, just like the signal used to transmit language
• Deep Learning is exploring a continuous encoding of thought
• CogSci question: Whether to assume symbolic representations

in the brain or to directly model using continuous substrate

lab

Talk outline
1. What’s special about human language
2. From symbolic to distributed word representations
3. The BiLSTM (with attention) hegemony
4. Choices for multi-word language representations
5. Using tree-structured models: Sentiment detection

6

2. From symbolic to distributed word
representations

The vast majority of (rule-based and statistical) natural
language processing and information retrieval (NLP/IR) work
regarded words as atomic symbols: hotel, conference
In machine learning vector space terms, this is a vector with
one 1 and a lot of zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
Deep learning people call this a “one-hot” representation

It is a localist representation

Sec. 9.2.2

From symbolic to distributed word
representations

Its problem, e.g., for web search:
• If	user	searches	for	[Dell	notebook	battery	size],	we	would	
like	to	match	documents	with	“Dell	laptop	battery	capacity”

But
size [0 0 0 0 0 0 0 0 0 1 0 0 0 0]T
capacity [0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0

Our	query	and	document	vectors	are	orthogonal
There	is	no	natural	notion	of	similarity	in	a	set	of	
one-hot	vectors

Sec. 9.2.2

Capturing similarity
There are many things you can do to capture similarity:

Query expansion with synonym dictionaries

Separately learning word similarities from large corpora

But a word representation that encodes similarity wins:
Less parameters to learn (per word, not per pair)

More sharing of statistics

More opportunities for multi-task learning

A solution via distributional
similarity-based representations

You can get a lot of value by representing a word
by means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern NLP
government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These words will represent banking ì

Basic idea of learning neural network
word embeddings (Predict!)

We define a model that predicts between a center word
wt and context words in terms of word vectors, e.g.,

p(context|wt) = …

which has a loss function, e.g.,

J = 1 − p(w−t |wt)

We look at many positions t in a big language corpus

We keep adjusting the vector representations of words
to minimize this loss

Word2vec skip-gram prediction

For we choose:

where o is the outside (or output) word index, c is the
center word index, vc and uo are the “center” and
“outside” vectors for word indices c and o

Softmax using word c to obtain probability of word o

Co-occurring words are driven to have similar vectors

Details of Word2Vec
training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

Word meaning as a vector
The result is a dense vector for each word type, chosen so that
it is good at predicting other words appearing in its context
… those other words also being represented by vectors

0.286
0.792
−0.177
−0.107

0.109
−0.542

0.349
0.271

currency =

Comparisons	to	older	work:	LSA	Count!	models
• Factorize	a	(maybe	weighted,	often	log-
scaled)	term-document	(Deerwester et	al.	
1990)	or	word-context	matrix	(Schütze	1992)	
into	UΣVT

• Retain	only	k	singular	values,	in	order	to	
generalize

Latent Semantic Analysis (LSA) vs.
“neural” models

k

Sec. 18.3

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

PCA dimension 1

PCA dimension 2

SVD: Intuition of Dimensionality
reduction

word2vec encodes semantic components
as linear vector differences

COALS model (count-modified LSA)
[Rohde, Gonnerman & Plaut, ms., 2005]

Ratios of co-occurrence probabilities can encode
meaning components

Crucial insight:

x = solid x = water

large

x = gas

small

x = random

smalllarge

small large large small

~1 ~1large small

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

Ratios of co-occurrence probabilities can encode
meaning components

Crucial insight:

x = solid x = water

1.9 x 10-4

x = gas x = fashion

2.2 x 10-5

1.36 0.96

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

8.9

7.8 x 10-4 2.2 x 10-3

3.0 x 10-3 1.7 x 10-5

1.8 x 10-5

6.6 x 10-5

8.5 x 10-2

A: Log-bilinear model:

with vector differences

Encoding meaning in vector differences
Q: How can we capture ratios of co-occurrence probabilities as
meaning components in a word vector space?

Nearest words to frog:

1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

Glove Word similarities
[Pennington et al., EMNLP 2014]

litoria leptodactylidae

rana eleutherodactylus
http://nlp.stanford.edu/projects/glove/

Glove Visualizations: Gender pairs

http://nlp.stanford.edu/projects/glove/

Glove Visualizations: Company - CEO

Named Entity Recognition Performance
(finding person, organization names in text)

Model on
CoNLL

CoNLL ’03
dev

CoNLL ’03
test

Categorical CRF 91.0 85.4
SVD (log tf) 90.5 84.8
HPCA 92.6 88.7
C&W 92.2 87.4
CBOW 93.1 88.2
GloVe 93.2 88.3

F1 score of CRF trained on CoNLL 2003 English with 50 dim word vectors

Named Entity Recognition Performance
(finding person, organization names in text)

Model on
CoNLL

CoNLL ’03
dev

CoNLL ’03
test

ACE 2 MUC 7

Categorical CRF 91.0 85.4 77.4 73.4
SVD (log tf) 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
C&W 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

F1 score of CRF trained on CoNLL 2003 English with 50 dim word vectors

Word embeddings: Conclusion

Glove shows the connection between Count!
work and Predict! work – an appropriate scaling
and objective gives Count! models the
properties and performance of Predict! models

Lots of other important recent work in this area:
[Levy & Goldberg, 2014]
[Arora, Li, Liang, Ma & Risteski, 2016]
[Hashimoto, Alvarez-Melis & Jaakkola, 2016]

3. The BiLSTM Hegemony

To a first approximation,
the de facto consensus in NLP in 2017 is

that no matter what the task,
you throw a BiLSTM at it, with

attention if you need information flow

28

I am a student <EOS> Je suis étudiant

Je suis étudiant <EOS>

An RNN encoder-decoder network

-0.1
0.3

-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1
-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6
-0.1
-0.7
0.1

Encoder Decoder

ht = tanh(W[xt] + Uht–1 + b)

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

Gated Recurrent Units ≈ “LSTMs”

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

h

t

= o

t

� tanh(c
t

)

c

t

= f

t

� c

t�1 + i

t

� c̃

t

c̃

t

= tanh(W
c

[x
t

] + U

c

h

t�1 + b

c

)

o

t

= �(W
o

[x
t

] + U

o

h

t�1 + b

o

)

i

t

= �(W
i

[x
t

] + U

i

h

t�1 + b

i

)

f

t

= �(W
f

[x
t

] + U

f

h

t�1 + b

f

)

Equations of the two most widely used gated recurrent units

Basic update to memory cell

(GRU h = LSTM c) is via a

standard neural net layer

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

Gated Recurrent Units ≈ “LSTMs”

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

h

t

= o

t

� tanh(c
t

)

c

t

= f

t

� c

t�1 + i

t

� c̃

t

c̃

t

= tanh(W
c

[x
t

] + U

c

h

t�1 + b

c

)

o

t

= �(W
o

[x
t

] + U

o

h

t�1 + b

o

)

i

t

= �(W
i

[x
t

] + U

i

h

t�1 + b

i

)

f

t

= �(W
f

[x
t

] + U

f

h

t�1 + b

f

)

Equations of the two most widely used gated recurrent units

Bernoulli variable “gates”

control how much history is

kept & input is attended to

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

Gated Recurrent Units ≈ “LSTMs”

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

h

t

= o

t

� tanh(c
t

)

c

t

= f

t

� c

t�1 + i

t

� c̃

t

c̃

t

= tanh(W
c

[x
t

] + U

c

h

t�1 + b

c

)

o

t

= �(W
o

[x
t

] + U

o

h

t�1 + b

o

)

i

t

= �(W
i

[x
t

] + U

i

h

t�1 + b

i

)

f

t

= �(W
f

[x
t

] + U

f

h

t�1 + b

f

)

Equations of the two most widely used gated recurrent units

Summing previous & new

candidate hidden states

gives direct gradient flow

& more effective memory

Gated Recurrent Unit
[Cho et al., EMNLP2014;
Chung, Gulcehre, Cho, Bengio, DLUFL2014]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999;
Gers, Thesis2001]

Gated Recurrent Units ≈ “LSTMs”

ht = ut � h̃t + (1� ut)� ht�1

h̃ = tanh(W [xt] + U(rt � ht�1) + b)

ut = �(Wu [xt] + Uuht�1 + bu)

rt = �(Wr [xt] + Urht�1 + br)

h

t

= o

t

� tanh(c
t

)

c

t

= f

t

� c

t�1 + i

t

� c̃

t

c̃

t

= tanh(W
c

[x
t

] + U

c

h

t�1 + b

c

)

o

t

= �(W
o

[x
t

] + U

o

h

t�1 + b

o

)

i

t

= �(W
i

[x
t

] + U

i

h

t�1 + b

i

)

f

t

= �(W
f

[x
t

] + U

f

h

t�1 + b

f

)

Equations of the two most widely used gated recurrent units

Note that recurrent

state mixes control and

memory. Good? (Freedom to

represent.) Or bad? (Mush.)

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6

-0.1
-0.7
0.1

0.4
-0.6
0.2

-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1

-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.1
0.3

-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5

-0.5
0.4
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6

-0.1
-0.7
0.1

0.1
0.3

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
0.3
0.1

-0.1
0.6

-0.1
0.3
0.1

0.2
0.4

-0.1
0.2
0.1

0.3
0.6

-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1

-0.4
0.2

0.2
0.6

-0.1
-0.7
0.1

0.4
0.4
0.3

-0.2
-0.3

0.5
0.5
0.9

-0.3
-0.2

0.2
0.6

-0.1
-0.5
0.1

-0.1
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.3
0.6

-0.1
-0.7
0.1

0.4
0.4

-0.1
-0.7
0.1

-0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

-0.3
0.5

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

An LSTM encoder-decoder network
[Sutskever et al. 2014]

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in
last word

Decoder

Bottleneck

I am a student <EOS> Je suis étudiant

Je suis étudiant <EOS>

A BiLSTM encoder and
LSTM-with-attention decoder

-0.1
0.3

-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1
-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6
-0.1
-0.7
0.1

Encoder Decoder

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Four big wins of Neural MT
1. End-to-end training

All parameters are simultaneously optimized to minimize
a loss function on the network’s output

2. Distributed representations share strength
Better exploitation of word and phrase similarities

3. Better exploitation of context
NMT can use a much bigger context – both source and
partial target text – to translate more accurately

4. More fluent text generation
Deep learning text generation is much higher quality

37

BiLSTMs(+Attn) not just for neural MT

Part of speech tagging

Named entity recognition

Syntactic parsing (constituency & dependency)

Reading comprehension

Question answering

Text summarization

…

Reading Comprehension on the DeepMind
CNN & Daily Mail datasets [Hermann et al, 2015]

39

40

End-to-end Neural Network
[Chen, Bolton, & Manning, ACL 2016]

characters in " @placeholder " movies
have gradually become more diverse

Q

… ……P

entity6A

Bidirectional RNNs

Attention

Lots of complex models; lots of results
Nothing does much better than LSTM+Attn

CNN Daily Mail
Dev Test Dev Test

(Hermann et al, 2015) NIPS’15 61.8 63.8 69.0 68.0
(Hill et al, 2016) ICLR’16 63.4 66.8 N/A N/A

(Kobayashi et al, 2016) NAACL’16 71.3 72.9 N/A N/A
(Kadlec et al, 2016) ACL’16 68.6 69.5 75.0 73.9
(Dhingra et al, 2016) 2016/6/5 73.0 73.8 76.7 75.7
(Sodorni et al, 2016) 2016/6/7 72.6 73.3 N/A N/A
(Trischler et al, 2016) 2016/6/7 73.4 74.0 N/A N/A
(Weissenborn, 2016) 2016/7/12 N/A 73.6 N/A 77.2

(Cui et al, 2016) 2016/7/15 73.1 74.4 N/A N/A
Ours: neural net ACL’16 73.8 73.6 77.6 76.6

Ours: neural net (ensemble) ACL’16 77.2 77.6 80.2 79.2

The Standard Theory of
Natural Language Interpretation

Model of:
• most linguistic and philosophical work (till the present)
• most computational linguistic work (till 1990)
• modern “semantic parsing” (Liang, Zettlemoyer, etc.)

Language
expressions

Syntax
trees

Logical
formulas

Models
described

deletion
map to
surface
form

semantic
interpre-
tation

semantic
deno-
tation

a cat purred a cat purred

det nsubj

�x cat(x)�purr(x)

Semantic interpretation of language
– Not just word vectors

How can we minimally know when larger
language units are similar in meaning?
• The snowboarder is leaping over a mogul

• A person on a snowboard jumps into the air

People interpret the meaning of larger text units –
entities, descriptive terms, facts, arguments, stories – by
semantic composition of smaller elements

4. Choices for multi-word language
representations

44

Neural bag-of-words models

• Simply average (or just sum) word vectors:

(+ + + +)/5 =

the country of my birth

• Can improve effectiveness by putting output
through 1+ fully connected layers (DANs)

• Surprisingly effective for many tasks L
• [Iyyer, Manjunatha, Boyd-Graber and Daumé III 2015 – DANs;

Wieting, Bansal, Gimpel and Livescu 2016 – Periphrastic]

0.4
0.3

2.1
3.3

7.0
7.0

4.0
4.5

2.3
3.6

3.0
3.7

Recurrent neural networks
• Simple recurrent neural nets do use word order but

cannot capture phrases without prefix context
• Gated LSTM/GRU units in theory could up to a certain

depth, but it seems unlikely
• Empirically, representations capture too much of last

words in final vector – focus is LM next word prediction

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

Convolutional Neural Network
• What if we compute vectors for every h-word phrase,

often for several values of h?
• Example: “the country of my birth” computes vectors for:
• the country, country of, of my, my birth, the country of, country of

my, of my birth, the country of my, country of my birth

• Not very linguistic, but you get everything!

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1 3.5 … 2.4

0
0

0
0

Convolutional Neural Network
• Word vectors:
• Concatenation of words in range:
• Convolutional filter:
• CNN layer feature:
• Get feature map:
• Max pool (better than ave.):

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1 3.5 … 2.4

0
0

0
0

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

Abstract
We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction
Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi 2 Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/

1746

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

1D Convolutional neural network
with max pooling and FC layer

• For more features, use multiple filter weights and
multiple window sizes

• Figure from [Kim 2014 “Convolutional Neural Networks
for Sentence Classification”]

Data-dependent composition

Language understanding – & Artificial

Intelligence – requires being able to

understand bigger things from

knowing about smaller parts

53

Language structure is recursive
• Recursion is natural for describing language

• [The man from [the company that you spoke with about [the
project] yesterday]]

• noun phrase containing a noun phrase with a noun phrase
• Phrases correspond to semantic units of language

Relationship between RNNs and
CNNs

CNN RNN

Relationship between RNNs and
CNNs

CNN RNN

people there speak slowly people there speak slowly

5. Using tree-structured models:
Sentiment detection

Is the tone of a piece of text positive, negative, or neutral?

• Sentiment is that sentiment is “easy”
• Detection accuracy for longer documents ~90%

… … loved … … … … … great … … … … … …
impressed … … … … … … marvelous … … … …

• BUT

Stanford Sentiment Treebank
• 215,154 phrases labeled in 11,855 sentences
• Can train and test compositions

http://nlp.stanford.edu:8080/sentiment/

Universal Dependencies Syntax
http://universaldependencies.org/

• Content words are related by dependency relations
• Function words attach to content word they modify
• Punctuation attaches to head of phrase or clause

The cat could have chased all the dogs down the street .

root

obj

punct

obl

nsubj

det aux
aux det

det det
case

The dog was chased by the cat .

root

det aux det

punct

obl

case
nsubj

Hunden jagades av katten .

NOUN VERB ADP NOUN PUNCT

Definite=Def Voice=Pass Definite=Def

root

aux

punct

obl

casensubj

He is great

aux

nsubj

nsubj

1

Dozat & Manning (ICLR 2017)

• Each word predicts what it is a dependent of as
a kind of head-dependent attention relation

• We then find the best tree (MST algorithm)

PTB-SD 3.3.0 and CTB 5.1 Results

Type Model
PTB-SD CTB

UAS LAS UAS LAS

Transition Chen & Manning (2014) 92.0 89.7 83.9 82.4

Andor et al. (2016) 94.61 92.79 -- --

Kuncoro et al. (2016) 95.8 94.6 -- --

Graph K & G (2016) 93.9 91.9 87.6 86.1

Cheng et al. (2016) 94.10 91.49 88.1 86.1

Hashimoto et al. (2016) 94.67 92.90 -- --

Ours 95.74 94.08 89.30 88.23

Tree-Structured Long Short-Term
Memory Networks [Tai et al., ACL 2015]

Tree-structured LSTM
Generalizes sequential LSTM to trees with any branching factor

Better Dataset Helped Even Simple
Models
Positive/negative sentence classification Uni+Bigram Naïve Bayes

• But hard negation cases are still mostly incorrect
• We also need a more powerful model!

70

75

80

85

90

95

Training with Sentence Labels Training with Treebank

Positive/Negative Results on Treebank

70

75

80

85

90

95

Training with Sentence Labels Training with Treebank

Bi NB

TreeLSTM

Classifying Sentences: Accuracy improves to 88%

Experimental Results on Treebank
• TreeRNN can capture constructions like X but Y
• Biword Naïve Bayes is only 58% on these

Results on Negating Negatives

E.g., sentiment of “not uninteresting”
Goal: Positive activation should increase

Envoi
• Deep learning – distributed representations, end-to-

end training, and richer modeling of state – has
brought great gains to NLP

• At the moment, it seems like we can’t win, or we can
only barely win, by having more structure than a
vector space mush

• However, I deeply believe that we do need more
structure and modularity for language, memory,
knowledge, and planning; it’ll just take some time

