Low-Error Two-Source extractors from efficient non-malleable extractors

DEAN DORON
TEL-AVIV UNIVERSITY

Joint work with AVRAHAM BEN-AROYA ESHAN CHATTOPADHYAY XIN LI AMNON TA-SHMA

Today's talk

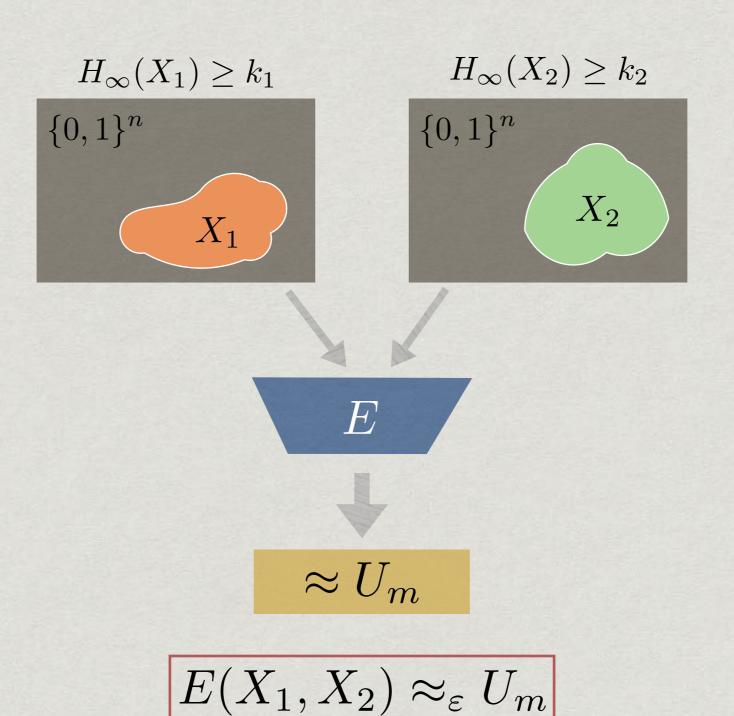
- * Two-source extractors.
- * Non-malleable extractors.
- * Current constructions of two-source extractors via non-malleable extractors and where they fail in achieving small error.
- * Constructing low-error two-source extractors given "good" non-malleable extractors.

Today's talk

- * Two-source extractors.
- * Non-malleable extractors.
- * Current constructions of two-source extractors via non-malleable extractors and where they fail in achieving small error.
- * Constructing low-error two-source extractors given "good" non-malleable extractors.

- * We say that a source X over $\{0,1\}^n$ has k minentropy if for every x, $\Pr[X=x] \le 2^{-k}$. This is how we model weak sources.
- * Alternatively, we can think of a weak source X as uniformly distributed over a subset of size 2^k .

- * We say that a source X over $\{0,1\}^n$ has k minentropy if for every x, $\Pr[X=x] \le 2^{-k}$. This is how we model weak sources.
- * Alternatively, we can think of a weak source X as uniformly distributed over a subset of size 2^k .
- * Given two **independent** weak source X_1 and X_2 , we want to extract almost-uniform bits (potentially, almost all the entropy).



- * Known results for constant error.
- * Omitted here: many constructions of multi-source extractors.

	min-entropy	
Non-explicit	logn+O(1)	
[CG88]	$(1/2+\delta)n$	
[Raz05]	$(1/2+\delta)n$, $O(\log n)$	
[Bourgain05]	0.499 <i>n</i>	
[CZ15]	polylog(n)	
[BDT16]	log ^{1+o(1)} n	
[Cohen16]	logn-poly(loglogn)	
[Li16]	logn·loglogn	

	min-entropy	
Non-explicit	logn+O(1)	
[CG88]	$(1/2 + \delta)n$	
[Raz05]	$(1/2+\delta)n$, $O(\log n)$	
[Bourgain05]	0.499 <i>n</i>	
[CZ15]	polylog(n)	
[BDT16]	log ^{1+o(1)} n	
[Cohen16]	logn-poly(loglogn)	
[Li16]	logn·loglogn	

- * Non-explicitly, we can hope for $\varepsilon=2^{-\Omega(k)}$.
- * Only the constructions of Chor-Goldreich, Raz and Bourgain achieve this.

	min-entropy	
Non-explicit	log n + O(1)	
[CG88]	$(1/2+\delta)n$	
[Raz05]	$(1/2+\delta)n$, $O(\log n)$	
[Bourgain05]	0.499 <i>n</i>	
[CZ15]	polylog(n)	
[BDT16]	log ^{1+o(1)} n	
[Cohen16]	logn-poly(loglogn)	
[Li16]	logn·loglogn	

- * Non-explicitly, we can hope for $\varepsilon=2^{-\Omega(k)}$.
- * Only the constructions of Chor-Goldreich, Raz and Bourgain achieve this.
- * We will soon see where recent constructions fall short.

	min-entropy	
Non-explicit	logn+O(1)	
[CG88]	$(1/2 + \delta)n$	
[Raz05]	$(1/2+\delta)n$, $O(\log n)$	
[Bourgain05]	0.499 <i>n</i>	
[CZ15]	polylog(n)	
[BDT16]	log ^{1+o(1)} n	
[Cohen16]	logn-poly(loglogn)	
[Li16]	logn·loglogn	

- * Non-explicitly, we can hope for $\varepsilon=2^{-\Omega(k)}$.
- * Only the constructions of Chor-Goldreich, Raz and Bourgain achieve this.
- * We will soon see where recent constructions fall short.
- * Viewing it differently: We want the construction to run in time polylog($1/\varepsilon$) instead of poly($1/\varepsilon$).

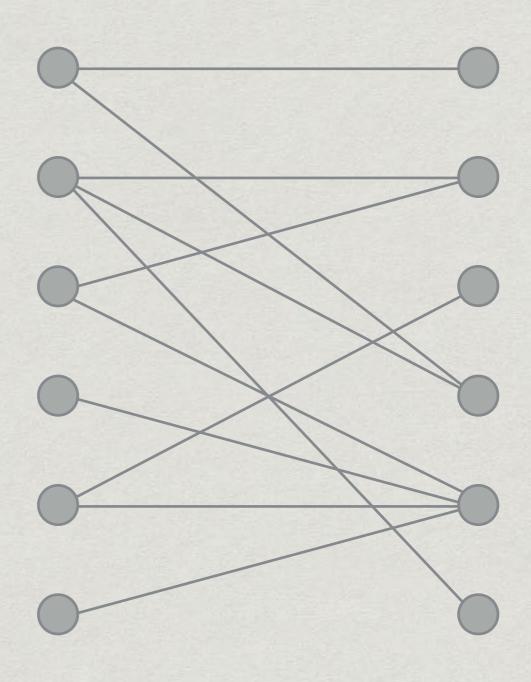
	min-entropy	
Non-explicit	logn+O(1)	
[CG88]	$(1/2 + \delta)n$	
[Raz05]	$(1/2+\delta)n$, $O(\log n)$	
[Bourgain05]	0.499 <i>n</i>	
[CZ15]	polylog(n)	
[BDT16]	log ^{1+o(1)} n	
[Cohen16]	logn-poly(loglogn)	
[Li16]	logn·loglogn	

Our goal: Low-error two-source extractors, even for δn min-entropy.

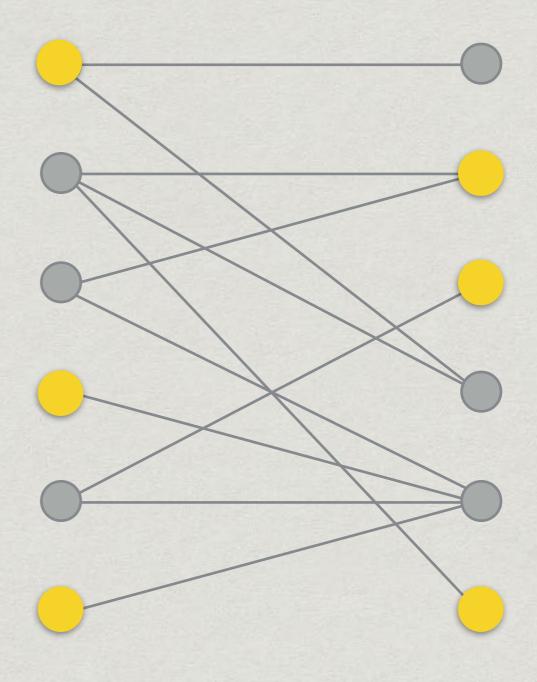
(Preferably outputting many bits as well, but it often goes together...)

- * The very-high error case is also interesting...
- * In every N×N bipartite graph there is a ½logN×½logN monochromatic subgraph (a bipartite clique or an independent set).

- * The very-high error case is also interesting...
- * In every N×N bipartite graph there is a ½logN×½logN monochromatic subgraph (a bipartite clique or an independent set).



- * The very-high error case is also interesting...
- * In every N×N bipartite graph there is a ½logN×½logN monochromatic subgraph (a bipartite clique or an independent set).



- * Erdős (1947) there exists an *N*×*N* bipartite graph with **no** *K*×*K* monochromatic subgraphs, for *K*=2log*N*.
- * A random graph has this property.
- * The Erdős \$100 challenge find such an explicit graph, even for $K=O(\log N)$.
- * Still open...

N

- * We can view every bipartite graph naturally as a function E:[N]×[N]→{0,1}.
- * The bipartite Ramsey problem: construct explicit matrices with no *K*×*K* constant sub-matrices.

 0
 1
 0
 1
 1
 1
 0

 0
 0
 0
 1
 1
 0
 0
 1
 0

 0
 0
 1
 0
 1
 1
 1
 0
 1

 0
 1
 0
 1
 0
 1
 0
 1
 0

 1
 1
 0
 1
 0
 0
 0
 1
 0
 1

 0
 0
 1
 0
 0
 0
 1
 0
 1

()

0

N

- * We can view every bipartite graph naturally as a function E:[N]×[N]→{0,1}.
- * The bipartite Ramsey problem: construct explicit matrices with no *K*×*K* constant sub-matrices.
- * The low-error two-source extractors problem: Insist on unbiased sub-matrices, with a very small bias.

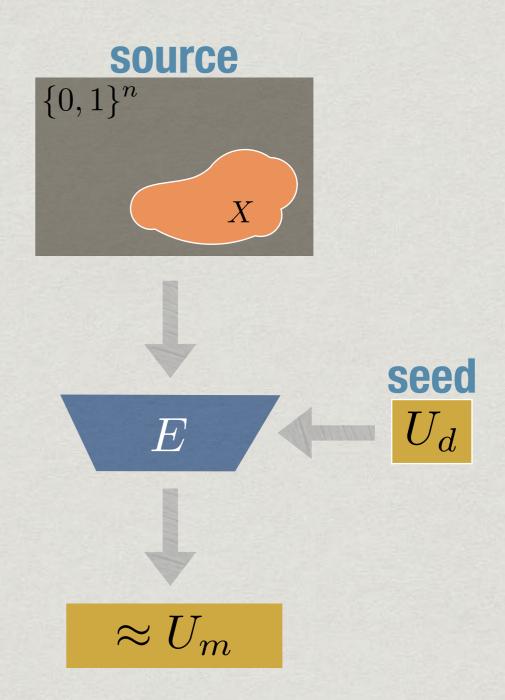
N

N

Today's talk

- * Two-source extractors.
- * Non-malleable extractors.
- * Current constructions of two-source extractors via non-malleable extractors and where they fail in achieving small error.
- * Constructing low-error two-source extractors given "good" non-malleable extractors.

- * A special case of twosource extractors is when one source is completely uniform, the seed.
- * The seed length can be as small as $2\log(n/\varepsilon)$.



* We say a seeded extractor is **strong** if the output is uniform even given the seed: $(E(X,Y),Y) \approx_{\varepsilon} (U,Y)$.

- * We say a seeded extractor is **strong** if the output is uniform even given the seed: $(E(X,Y),Y) \approx_{\varepsilon} (U,Y)$.
- * Equivalently, for every source X with entropy at least k there exists a set of good seeds of density at least $1-\varepsilon$ such that for every good seed $y \in \{0,1\}^d$, $E(X,y) \approx_{\varepsilon} U$.
- * We have good strong seeded extractors [LRVW03,GUV07,...].

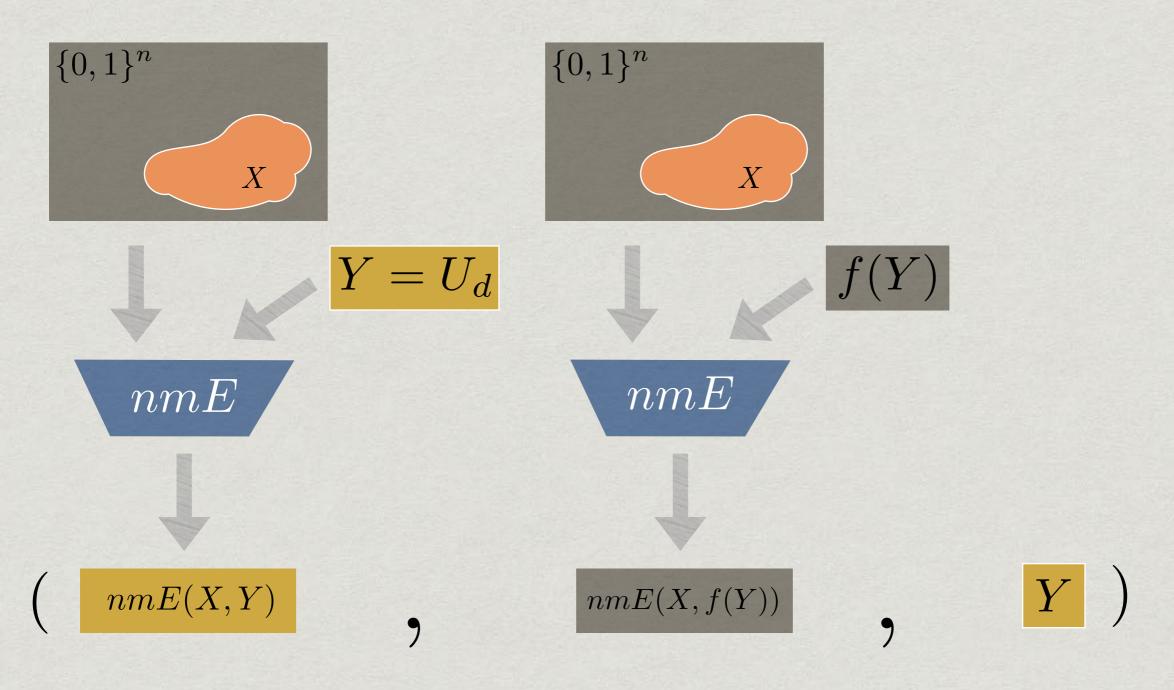
Non-malleable extractors [DW09]

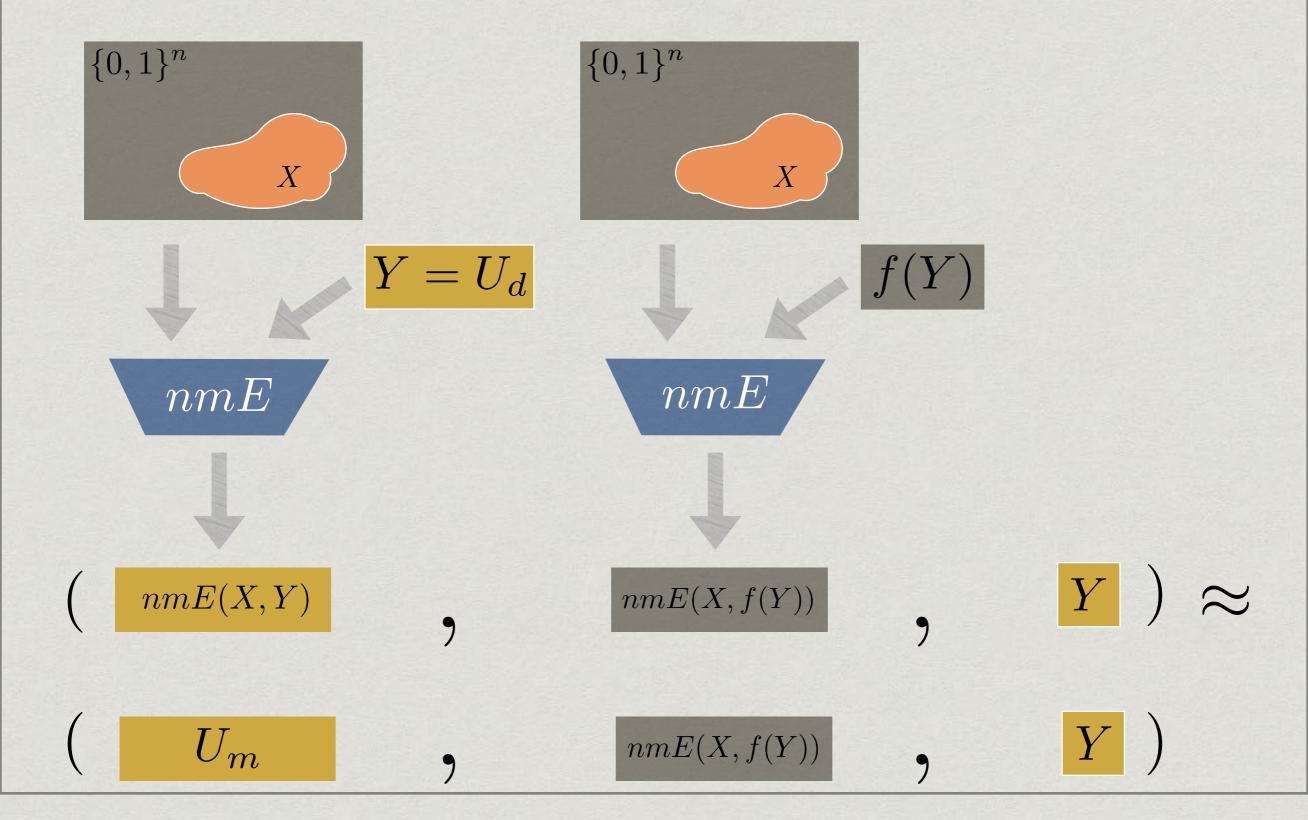
Non-malleable extractors [DW09]

- * A generalization of strong seeded-extractors.
- * An adversary cannot distinguish between the output nmE(X,Y) and a uniform string, even given the seed Y and the output of nmE on t correlated seeds.

Non-malleable extractors [DW09]

- * A generalization of strong seeded-extractors.
- * An adversary cannot distinguish between the output nmE(X,Y) and a uniform string, even given the seed Y and the output of nmE on t correlated seeds.
- * $(nmE(X,Y),nmE(X,f_1(Y)),...,nmE(X,f_t(Y)),Y)$ is ε -close to $(U,nmE(X,f_1(Y)),...,nmE(X,f_t(Y)),Y)$.





* Known explicit constructions for t=1 (a partial list). A reduction by [Cohen16] allows us to go to an arbitrary t by roughly paying a factor of t in the entropy and t^2 in the seed-length.

	seed length	min-entropy
[CRS12,DLWZ11]	$\log(n/\varepsilon)$	$(1/2+\delta)n$
[Li12]	$\log(n/\varepsilon)$	0.499 <i>n</i>
[CGL15]	$\log^2(n/\varepsilon)$	$\Omega(d)$
[Cohen16]	$\log(n/\varepsilon)\log(\log(n)/\varepsilon)$	$\Omega(d)$
[CL16]	$\log^{1+o(1)}(n/\varepsilon)$	$\Omega(d)$
[Cohen16]	$log(n) + log(1/\epsilon) poly(loglog(1/\epsilon))$	$\Omega(d)$
[Li16]	$\log(n) + \log(1/\varepsilon) \log\log(1/\varepsilon)$	$\Omega(d)$

- * We will use an equivalent definition (up to some loss in the error) [CZ15,Cohen16].
- * nmE is a n.m. extractor if every source induces a set of good seeds of high density such that the output of the extractor on a good seed is close to uniform even conditioned on its output on t other distinct seeds.

- * We will use an equivalent definition (up to some loss in the error) [CZ15,Cohen16].
- * nmE is a n.m. extractor if every source induces a set of good seeds of high density such that the output of the extractor on a good seed is close to uniform even conditioned on its output on *t* other distinct seeds.
- * For every X there exists a set of G of density at least $1-\varepsilon$ such that for every $y \in G$ and any $y_1, ..., y_t \in \{0,1\}^d \setminus \{y\}$ it holds that $(nmE(X,y),nmE(X,y_1),...,nmE(X,y_t))$ is ε -close to $(U,nmE(X,y_1),...,nmE(X,y_t))$.

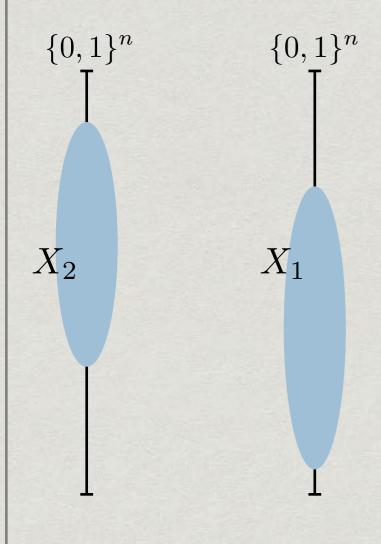
Today's talk

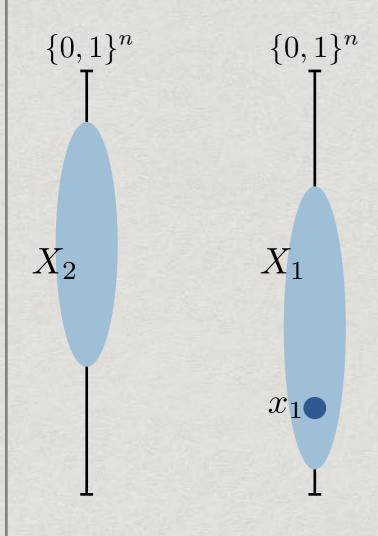
- * Two-source extractors.
- * Non-malleable extractors.
- * Current constructions of two-source extractors via non-malleable extractors and where they fail in achieving small error.
- * Constructing low-error two-source extractors given "good" non-malleable extractors.

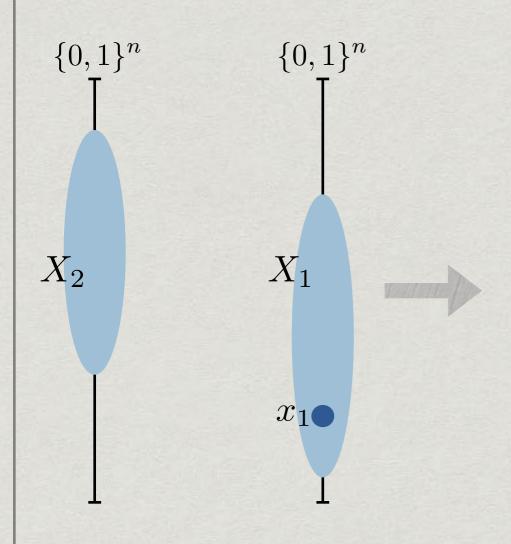
Current constructions of two-source extractors

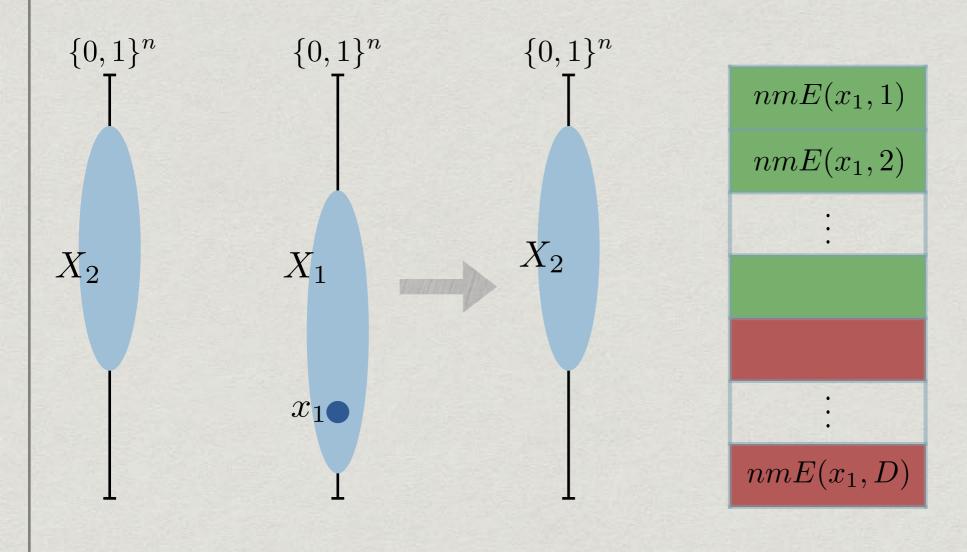
* All recent constructions of two-source extractors use non-malleable extractors as a central ingredient.

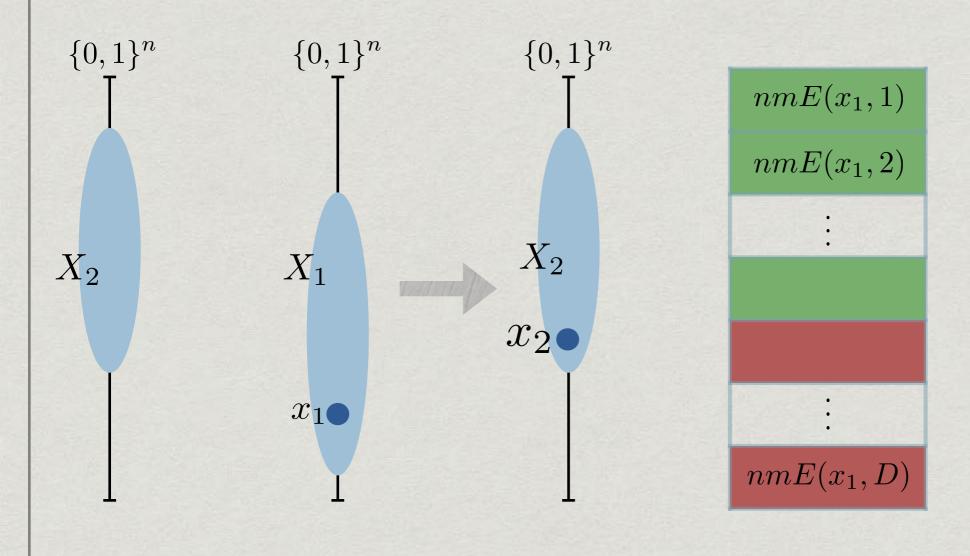
- * All recent constructions of two-source extractors use non-malleable extractors as a central ingredient.
- * A bird's-eye view of these constructions: Given two inputs x_1 and x_2 ,
 - * Generate a table of nmE(x_1 ,i) for all seeds $i \in \{0,1\}^d$.
 - * Using x_2 , sample a subset of the rows.
 - * Apply a *resilient* function on the reduced table.

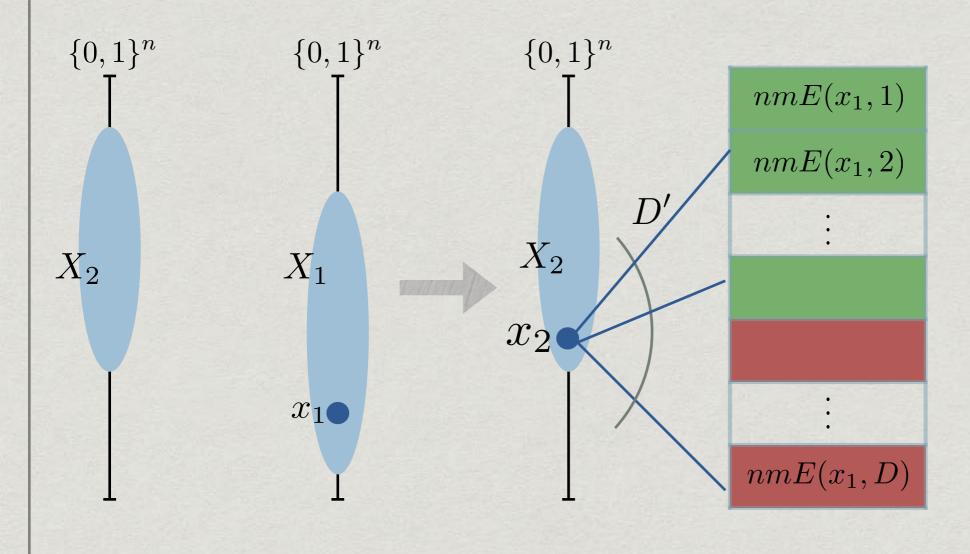


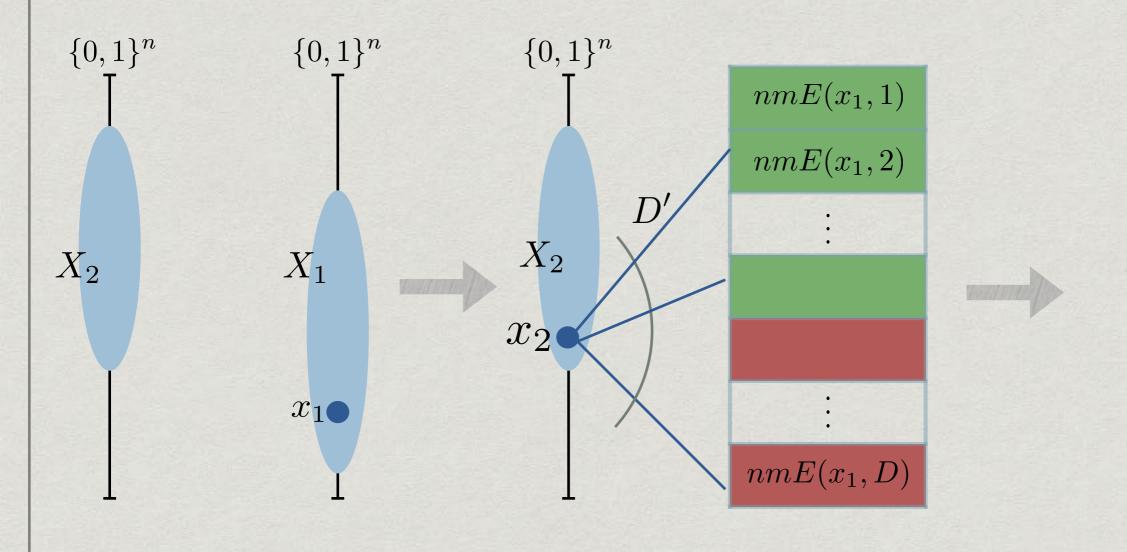


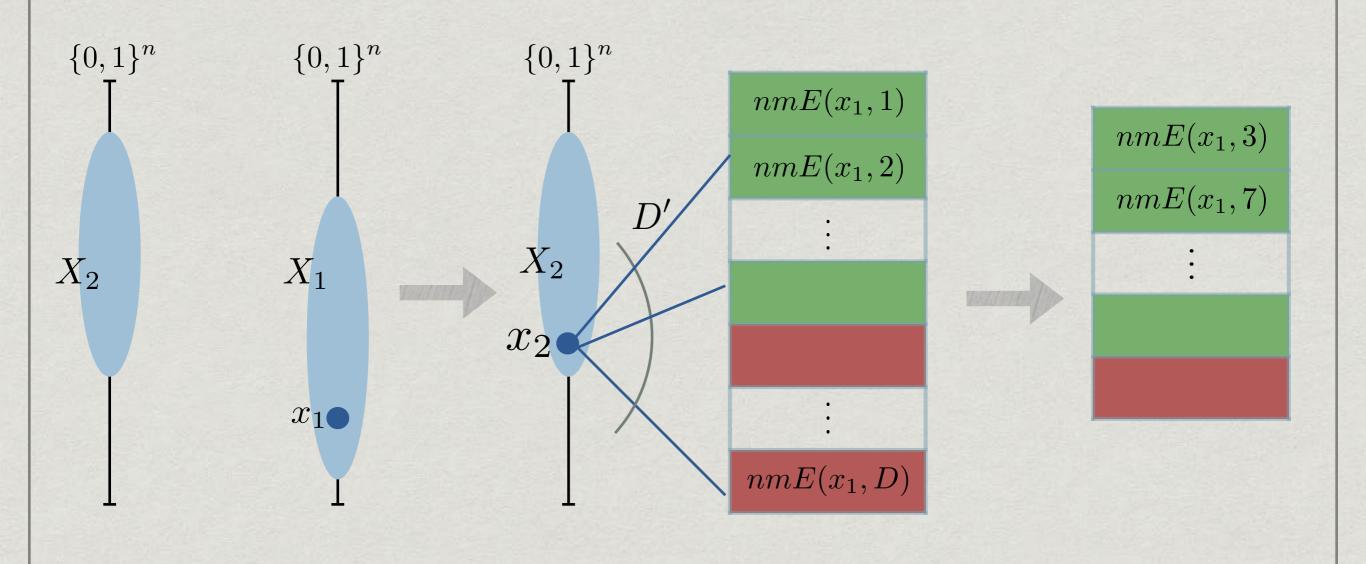


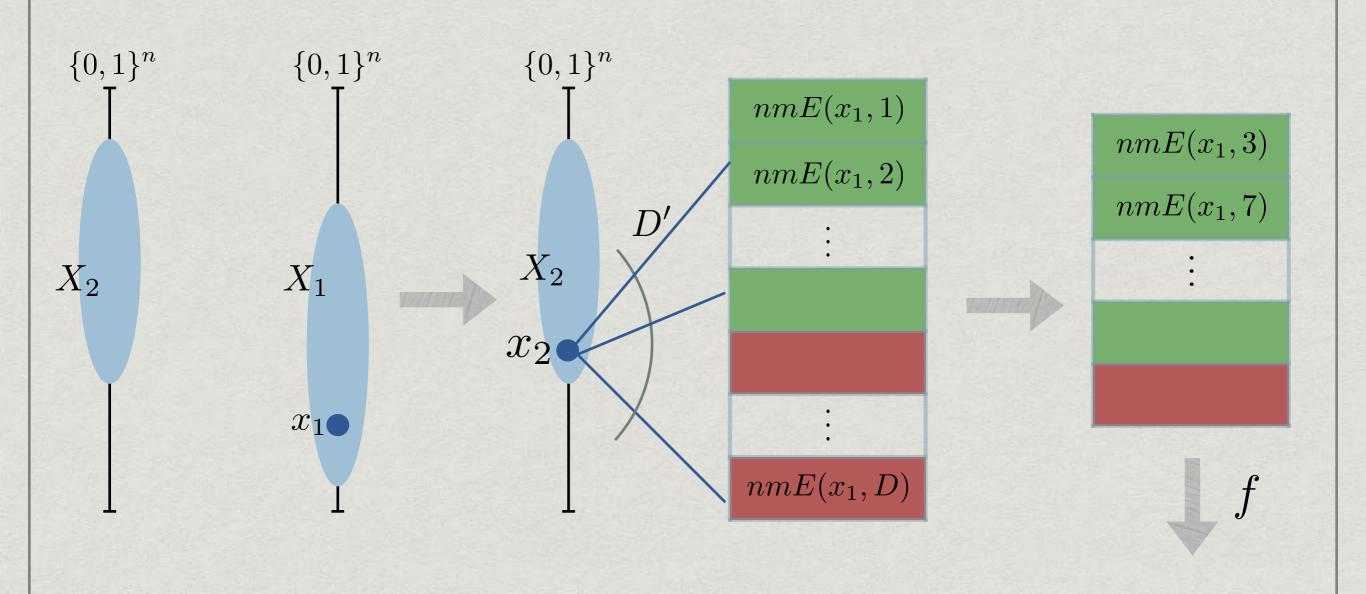


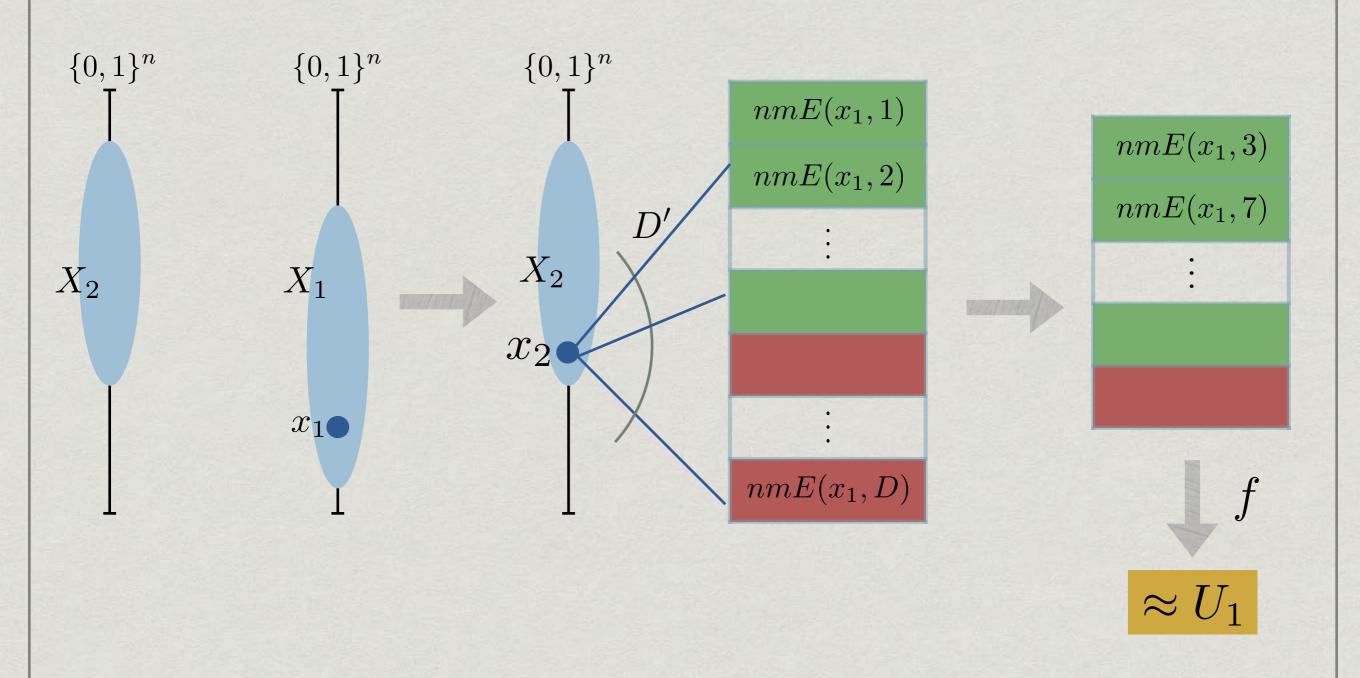












* The resulting table is close to being uniform and *t*-wise independent in the good rows.

- * The resulting table is close to being uniform and *t*-wise independent in the good rows.
- * We need f to be resilient:
 - * Say we have D' players. ε -fraction of them are malicious, and the rest are t-wise independent.

- * The resulting table is close to being uniform and *t*-wise independent in the good rows.
- * We need f to be resilient:
 - * Say we have D' players. ε -fraction of them are malicious, and the rest are t-wise independent.
 - * The honest players draw their random bit and later the malicious players draw as they wish.

- * The resulting table is close to being uniform and *t*-wise independent in the good rows.
- * We need f to be resilient:
 - * Say we have D' players. ε -fraction of them are malicious, and the rest are t-wise independent.
 - * The honest players draw their random bit and later the malicious players draw as they wish.
 - * With high probability, the outcome is not biased the malicious players cannot substantially bias the outcome.

* A corollary of [KKL88] — even one malicious player can bias the output with probability at least logD'/D'.

- * A corollary of [KKL88] even one malicious player can bias the output with probability at least logD'/D'.
- * We cannot hope for an error smaller than 1/D', and D' is the size of our table.

- * A corollary of [KKL88] even one malicious player can bias the output with probability at least logD'/D'.
- * We cannot hope for an error smaller than 1/D', and D' is the size of our table.
- * Thus, the running time is at least $1/\varepsilon$.

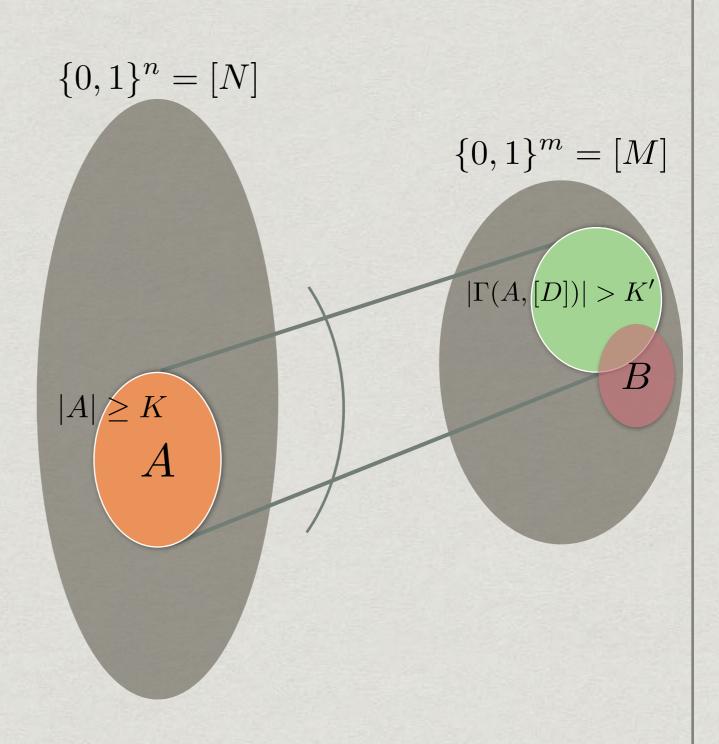
Today's talk

- * Two-source extractors.
- * Non-malleable extractors.
- * Current constructions of two-source extractors via non-malleable extractors and where they fail in achieving small error.
- * Constructing low-error two-source extractors given "good" non-malleable extractors.

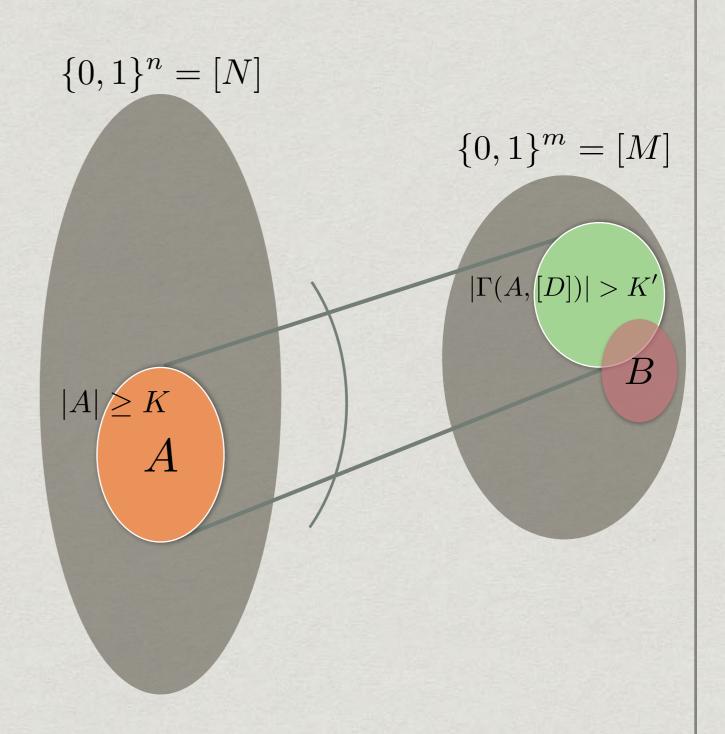
* We should abandon resilient functions if we want to get a small error.

- * We should abandon resilient functions if we want to get a small error.
- * Instead of trying to sample and then employ *t*-wise in the good rows, let's just try and **hit** a good row.

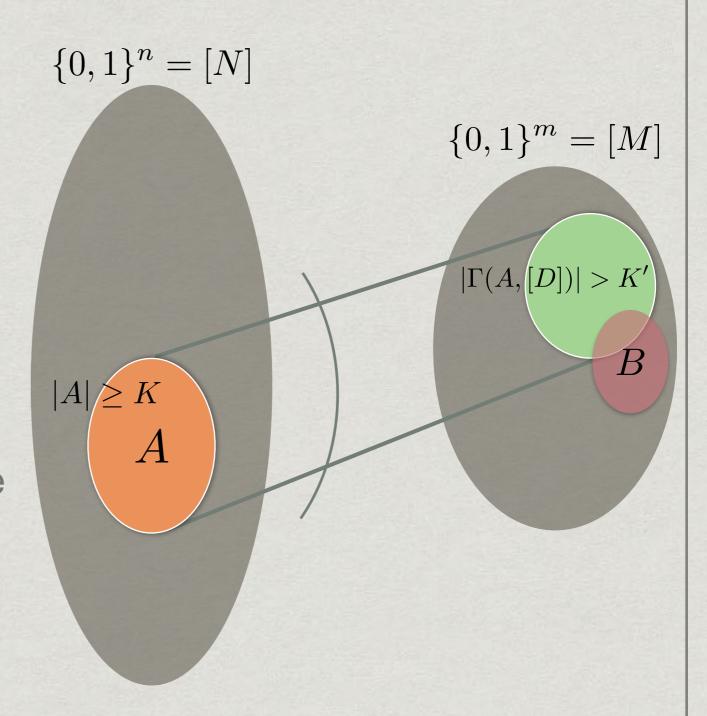
- * We should abandon resilient functions if we want to get a small error.
- * Instead of trying to sample and then employ *t*-wise in the good rows, let's just try and **hit** a good row.
- * As usual, we hit with a disperser...



* $\Gamma:\{0,1\}^n \times [D] \to \{0,1\}^m$ is a (K,K')-disperser if for every set A of cardinality at least K, Γ maps A to a set of cardinality greater than K'.

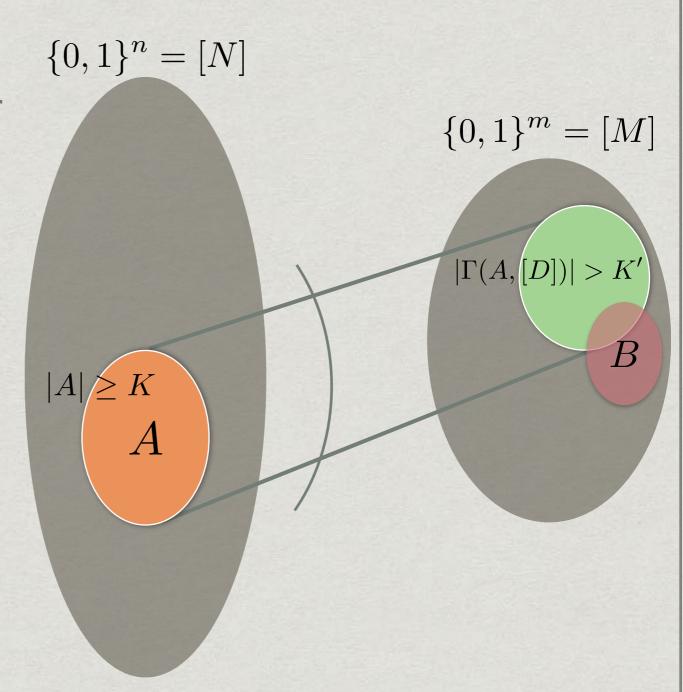


- * $\Gamma:\{0,1\}^n \times [D] \to \{0,1\}^m$ is a (K,K')-disperser if for every set A of cardinality at least K, Γ maps A to a set of cardinality greater than K'.
- * We are interested in the case where K' is small compared to 2^m . That is, we want to avoid **small** bad sets.



- * Used to reduce error in onesided probabilistic algorithms.
- * [RT]: When K' is not too large, say $K'=\varepsilon M$, the lower bound on the degree is

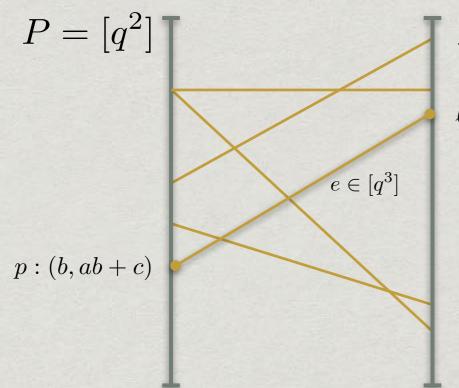
$$D = \Omega\left(\frac{\log\frac{N}{K}}{\log\frac{1}{\varepsilon}}\right)$$



* Quite amazingly, when $K=N^{\delta}$ for a constant δ , there exist explicit constructions that achieve this bound [BKSSW05,Raz05,Zuck06].

- * Quite amazingly, when $K=N^{\delta}$ for a constant δ , there exist explicit constructions that achieve this bound [BKSSW05,Raz05,Zuck06].
- * The key ingredient in Zuckerman's construction: A points-lines incidence graph.

The input source is distributed, over $[q]^3$, among the edges of the graph.



$$L = [q^2]$$

$$\ell: y = ax + c$$

$$\Gamma: \mathbb{F}_q^3 \times [2] \to \mathbb{F}_q^2$$

* This gives a degree-2 disperser, and we can recurse.

Zuckerman's disperser

- * This gives a degree-2 disperser, and we can recurse.
- * For $K=N^{\delta}$, where δ is arbitrary, the dependence is

$$D = (1/\delta)^{O(1)} \frac{n}{\log \frac{1}{\varepsilon}}$$

Zuckerman's disperser

- * This gives a degree-2 disperser, and we can recurse.
- * For $K=N^{\delta}$, where δ is arbitrary, the dependence is

$$D = (1/\delta)^{O(1)} \frac{n}{\log \frac{1}{\varepsilon}}$$

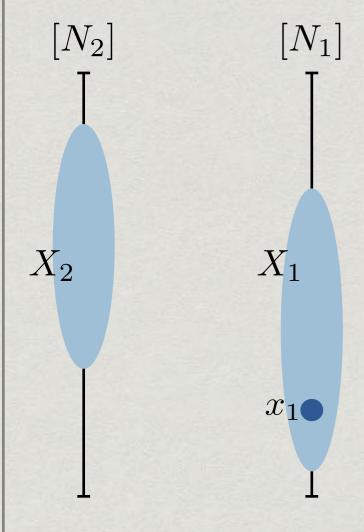
* Also, the output length is determined by the number of recursion steps, and we have $m = \delta^{O(1)}n$.

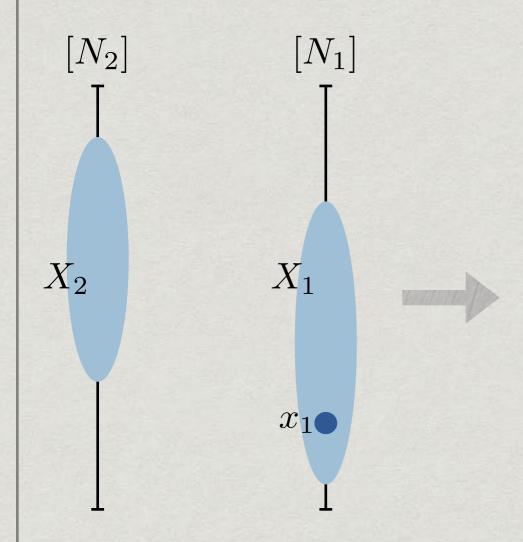
* We are given a source X_1 over $[N_1]$ with entropy k_1 and a source X_2 over $[N_2]$ with min-entropy k_2 .

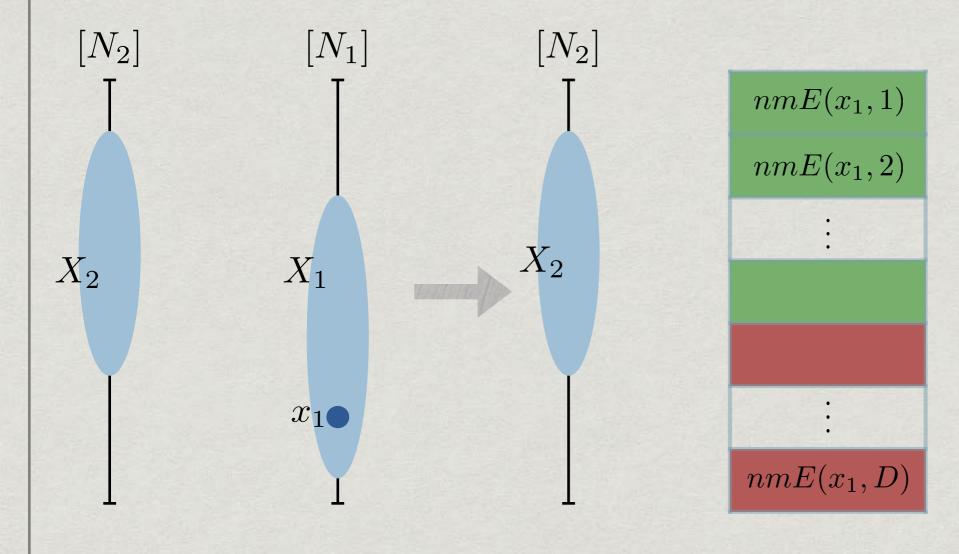
- * We are given a source X_1 over $[N_1]$ with entropy k_1 and a source X_2 over $[N_2]$ with min-entropy k_2 .
- * Ingredients:
 - * nmE: $[N_1] \times [D] \rightarrow \{0,1\}^m$, a strong **t**-n.m. extractor with error ε .
 - * $\Gamma: [N_2] \times [t+1] \rightarrow [D]$, a $(\varepsilon K_2, \varepsilon D)$ -disperser.

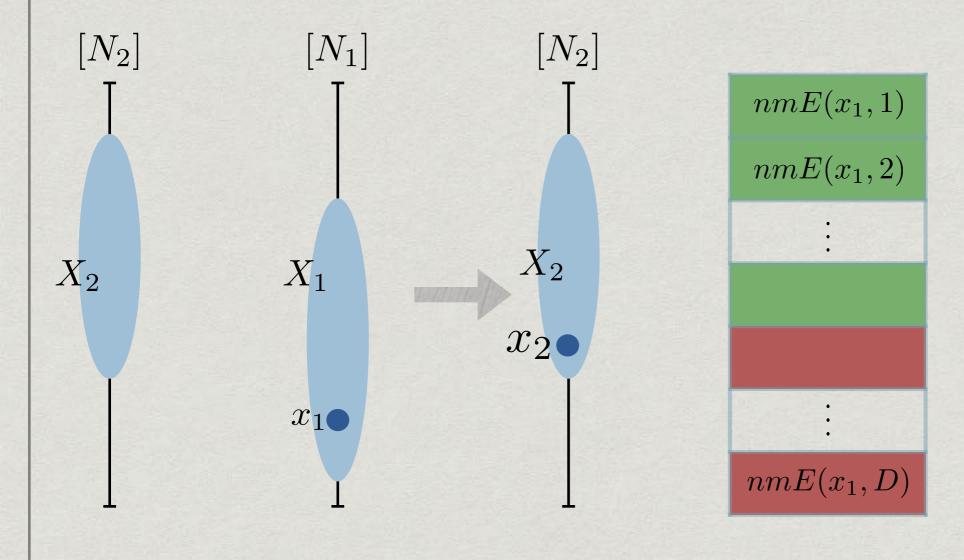
- * We are given a source X_1 over $[N_1]$ with entropy k_1 and a source X_2 over $[N_2]$ with min-entropy k_2 .
- * Ingredients:
 - * nmE: $[N_1] \times [D] \rightarrow \{0,1\}^m$, a strong **t**-n.m. extractor with error ε .
 - * $\Gamma: [N_2] \times [t+1] \rightarrow [D]$, a $(\varepsilon K_2, \varepsilon D)$ -disperser.
- * On input x_1, x_2 , output $\bigoplus_{i \in [t+1]} nmE(x_1, \Gamma(x_2, i))$.

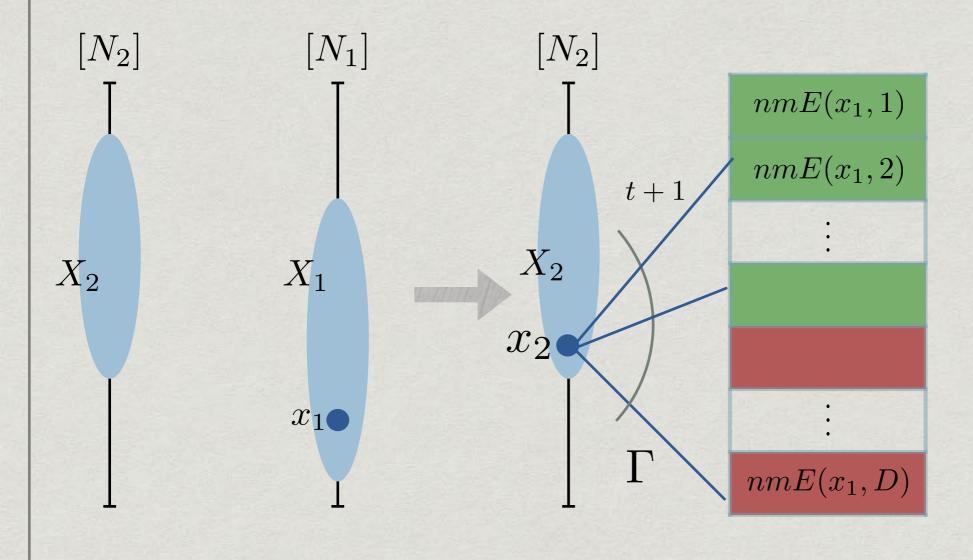


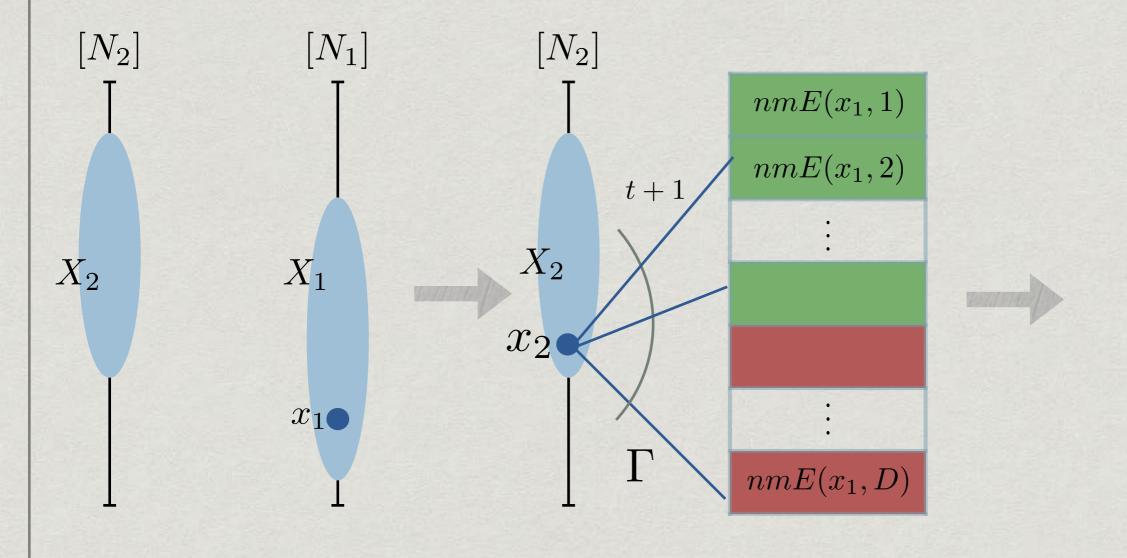


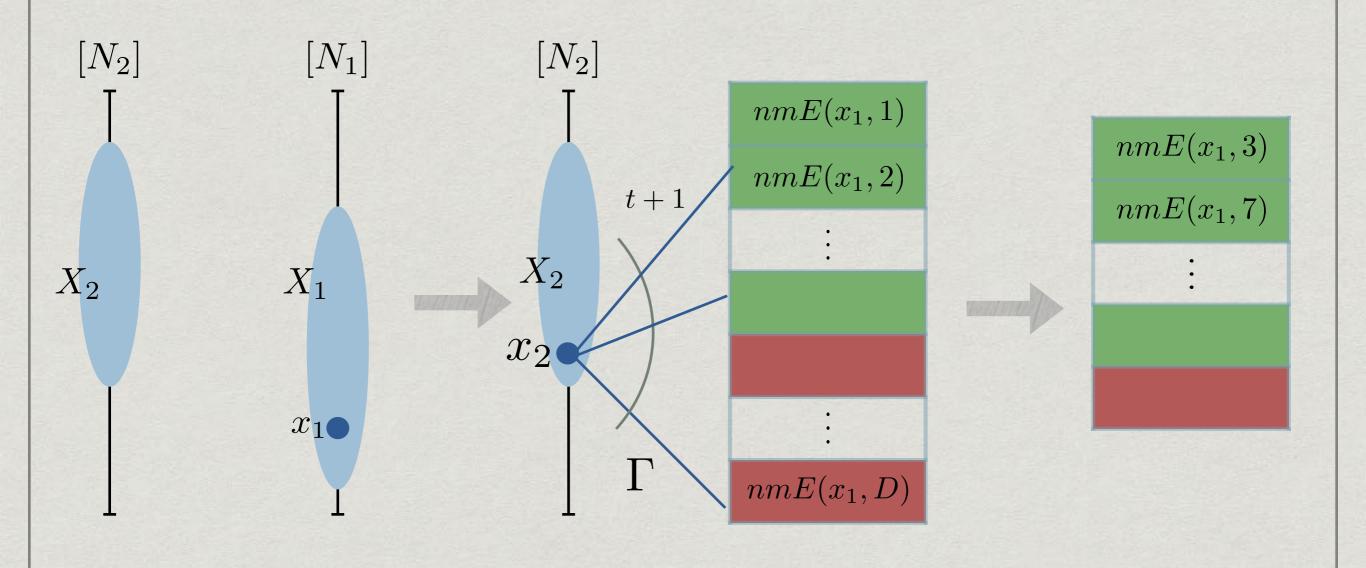


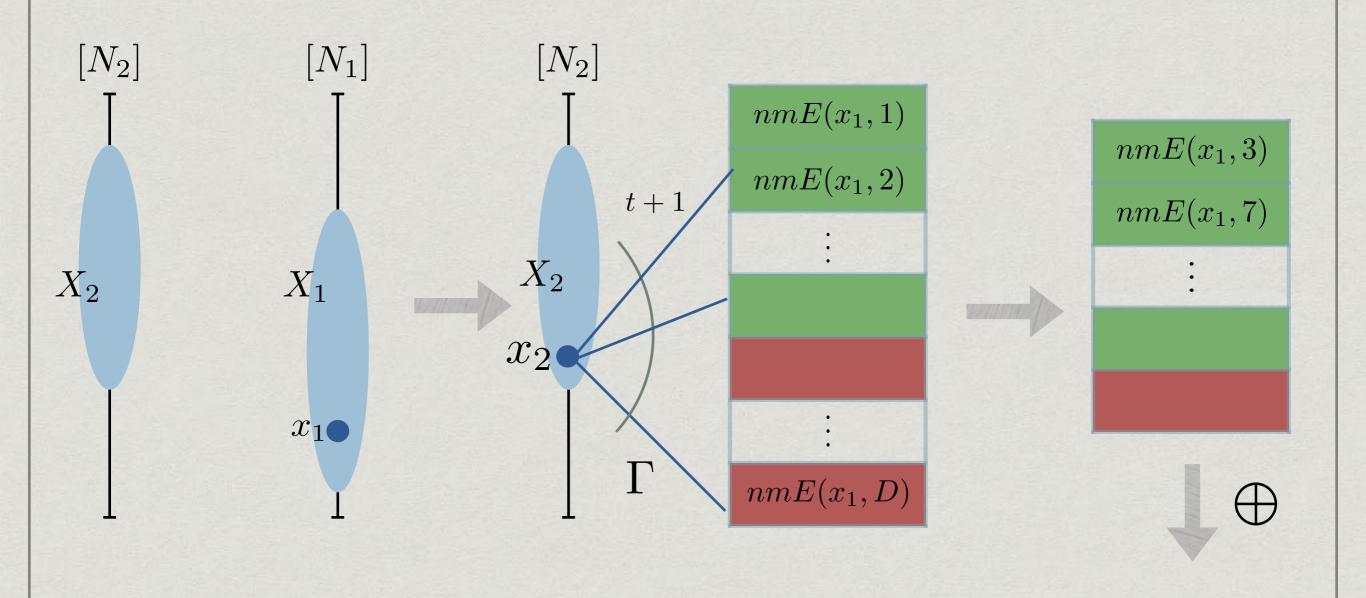


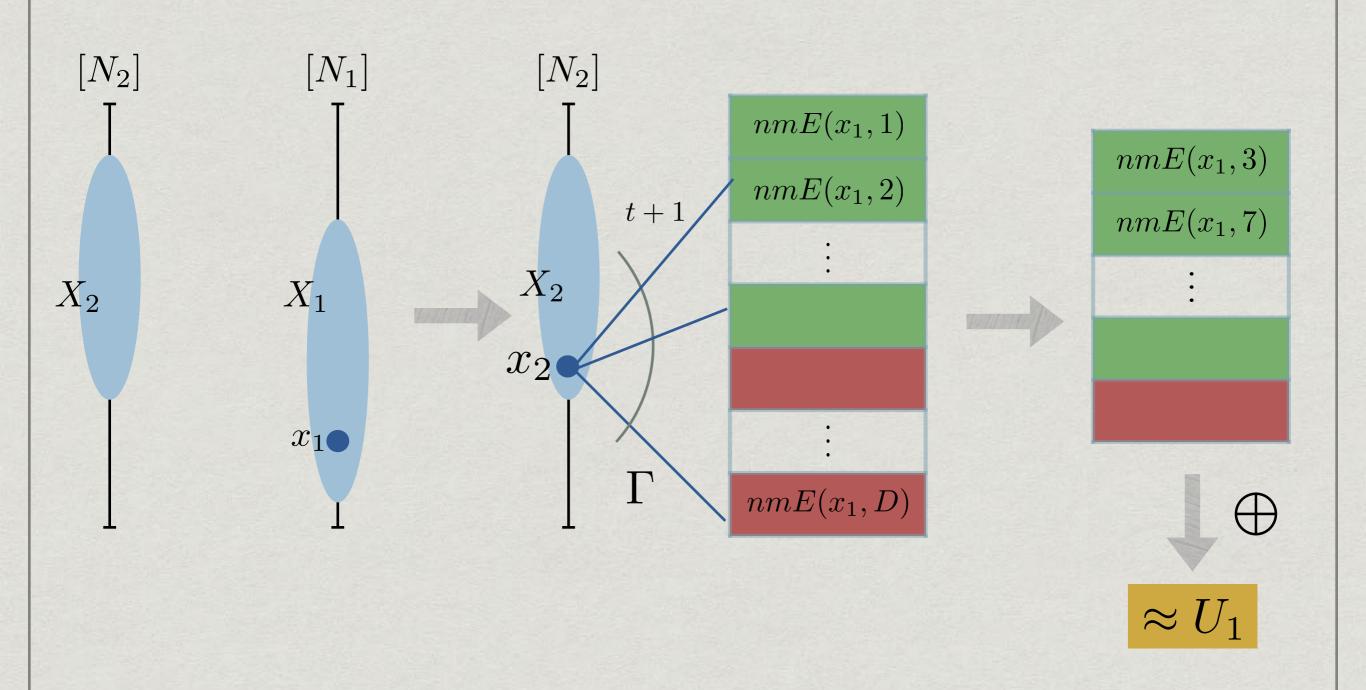


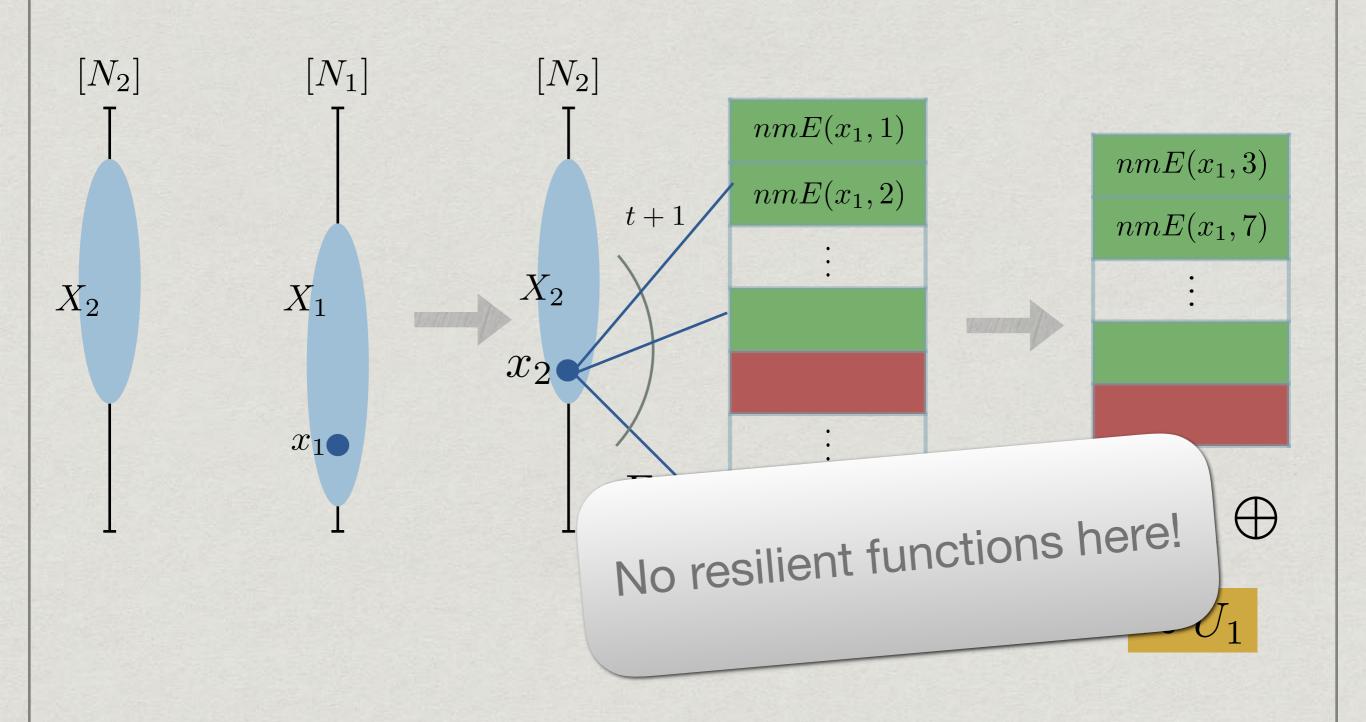












* The source X_1 defines a set of good and bad seeds. Let G be the set of good seeds, of density at least $1-\varepsilon$.

- * The source X_1 defines a set of good and bad seeds. Let G be the set of good seeds, of density at least $1-\varepsilon$.
- * By the properties of Γ , the number of elements x_2 for which $\Gamma(x_2,[t+1])$ contains only bad seeds is at most εK_2 .

- * The source X_1 defines a set of good and bad seeds. Let G be the set of good seeds, of density at least $1-\varepsilon$.
- * By the properties of Γ , the number of elements x_2 for which $\Gamma(x_2,[t+1])$ contains only bad seeds is at most εK_2 .
- * Thus, with probability at least $1-\varepsilon K_2/K_2=1-\varepsilon$, the input x_2 samples t+1 seeds of nmE, one of which, y, is good.

* In such a case, nmE(X,y) is ε -close to uniform, even condition on t arbitrary outputs! This is since:

- * In such a case, nmE(X,y) is ε -close to uniform, even condition on t arbitrary outputs! This is since:
- * For every $y \in G$ and any $y_1, ..., y_t \in \{0,1\}^o \setminus \{y\}$ it holds that $(nmE(X,y),nmE(X,y_1),...,nmE(X,y_t))$ is ε -close to $(U,nmE(X,y_1),...,nmE(X,y_t))$.

- * In such a case, nmE(X,y) is ε -close to uniform, even condition on t arbitrary outputs! This is since:
- * For every $y \in G$ and any $y_1, ..., y_t \in \{0,1\}^d \setminus \{y\}$ it holds that $(nmE(X,y),nmE(X,y_1),...,nmE(X,y_t))$ is ε -close to $(U,nmE(X,y_1),...,nmE(X,y_t))$.
- * Hence, the parity of these random variables is also close to uniform, and the overall error is 2ε .

* So, if the n.m. extractor can support small error (and existing constructions can), we get a construction with a small error.

* The parity is not resilient... What happened here?

- * The parity is not resilient... What happened here?
 - * Instead of sampling (with a good sampler) D' rows from the table and applying a resilient function, we pick a drastically smaller sample set — of size t+1.

- * The parity is not resilient... What happened here?
 - * Instead of sampling (with a good sampler) D' rows from the table and applying a resilient function, we pick a drastically smaller sample set — of size t+1.
 - * Instead of requiring that the number of malicious players is small, we have the weaker requirement that not *all* of the players in our sample set are malicious.

* Or, when does it work? We have no option but to look closer into the parameters.

- * Or, when does it work? We have no option but to look closer into the parameters.
- * First, note that the disperser dictates n_2 , the length of the second source, and typically it is smaller than n_1 .

- * Or, when does it work? We have no option but to look closer into the parameters.
- * First, note that the disperser dictates n_2 , the length of the second source, and typically it is smaller than n_1 .
- * A potential circular hazard the degree of Γ should be at least t+1, but the degree of Γ also depends on the seed length of the n.m. extractor, which in turn depends on t...

* Let's check this circularity on the board...

Our result

- * We see that the seed length of the n.m. extractor plays a crucial role. Say there exists an explicit n.m. extractor with seed length *d* and supports entropy *k*₁. Our results:
 - * If $d=ct\log(n_1/\varepsilon)$ for a small enough constant c, there exists an explicit two-source extractor with small error for entropies k_1 and $k_2=an_2$ (for every constant a).

Our result

- * We see that the seed length of the n.m. extractor plays a crucial role. Say there exists an explicit n.m. extractor with seed length *d* and supports entropy *k*₁. Our results:
 - * If $d=t^{\gamma}\log(n_1/\varepsilon)$ for a small enough constant γ , there exists an explicit two-source extractor with small error for entropies k_1 and $k_2=n_2^{\beta}$ for some constant β .

Our result

- * We see that the seed length of the n.m. extractor plays a crucial role. Say there exists an explicit n.m. extractor with seed length *d* and supports entropy *k*₁. Our results:
 - * If $d=\log(n_1/\varepsilon)+O(t)$, there exists an explicit two-source extractor with small error for entropies k_1 and $k_2=n_2^\beta$ for every constant β .

* Non-explicitly, our constraints on d are easily satisfied. The seed length of a probabilistic construction is $d=2\log(n/\varepsilon)+O(\log t)$.

- * Non-explicitly, our constraints on d are easily satisfied. The seed length of a probabilistic construction is $d=2\log(n/\varepsilon)+O(\log t)$.
- * Taking a closer look on recent constructions of non-malleable extractors, we see that $d=\Omega(k)$ and $k=\tilde{O}(t^2\log(n/\varepsilon))$.
- * Very roughly, this coupling between *d* and *k* is inherent when you do alternating extraction.

* To summarize...

- * To summarize...
- * Due to [CZ15,BDT16] we know that n.m. extractors with short seed length supporting small entropies give rise to good two-source extractors with constant error.

- * To summarize...
- * Due to [CZ15,BDT16] we know that n.m. extractors with short seed length supporting small entropies give rise to good two-source extractors with constant error.
- * This work: N.m. extractors also give rise to twosource extractors with small error, as long as the seed-length's dependency on *t* is good.

* The moral: Keep constructing non-malleable extractors, with techniques that go beyond alternating extraction.

