
Low-Error Two-Source
extractors from efficient
non-malleable extractors

DEAN DORON
TEL-AVIV UNIVERSITY

Joint work with
AVRAHAM BEN-AROYA
ESHAN CHATTOPADHYAY
XIN LI
AMNON TA-SHMA

Today’s talk
Two-source extractors.

Non-malleable extractors.

Current constructions of two-source extractors via
non-malleable extractors and where they fail in
achieving small error.

Constructing low-error two-source extractors
given “good” non-malleable extractors.

Today’s talk
Two-source extractors.

Non-malleable extractors.

Current constructions of two-source extractors via
non-malleable extractors and where they fail in
achieving small error.

Constructing low-error two-source extractors
given “good” non-malleable extractors.

Two-source extractors

Two-source extractors
We say that a source X over {0,1}n has k min-
entropy if for every x, Pr[X=x]≤2-k. This is how we
model weak sources.

Alternatively, we can think of a weak source X as
uniformly distributed over a subset of size 2k.

Two-source extractors
We say that a source X over {0,1}n has k min-
entropy if for every x, Pr[X=x]≤2-k. This is how we
model weak sources.

Alternatively, we can think of a weak source X as
uniformly distributed over a subset of size 2k.

Given two independent weak source X1 and X2,
we want to extract almost-uniform bits (potentially,
almost all the entropy).

Two-source extractors

{0, 1}n

E

{0, 1}n

X1
X2

H1(X1) � k1 H1(X2) � k2

⇡ Um

E(X1, X2) ⇡" Um

Two-source extractors
Known results for
constant error.

Omitted here: many
constructions of multi-
source extractors.

min-entropy
Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn

A closer look at the error
min-entropy

Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn

A closer look at the error
Non-explicitly, we can hope for
ε=2-Ω(k).

Only the constructions of
Chor-Goldreich, Raz and
Bourgain achieve this.

min-entropy
Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn

A closer look at the error
Non-explicitly, we can hope for
ε=2-Ω(k).

Only the constructions of
Chor-Goldreich, Raz and
Bourgain achieve this.

We will soon see where recent
constructions fall short.

min-entropy
Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn

A closer look at the error
Non-explicitly, we can hope for
ε=2-Ω(k).

Only the constructions of
Chor-Goldreich, Raz and
Bourgain achieve this.

We will soon see where recent
constructions fall short.

Viewing it differently: We want
the construction to run in time
polylog(1/ε) instead of
poly(1/ε).

min-entropy
Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn

Our goal: Low-error two-source extractors, even
for δn min-entropy.

(Preferably outputting many bits as well, but it often goes
together…)

Bipartite Ramsey graphs
The very-high error case is
also interesting…

In every N×N bipartite graph
there is a ½logN×½logN
monochromatic subgraph (a
bipartite clique or an
independent set).

Bipartite Ramsey graphs
The very-high error case is
also interesting…

In every N×N bipartite graph
there is a ½logN×½logN
monochromatic subgraph (a
bipartite clique or an
independent set).

Bipartite Ramsey graphs
The very-high error case is
also interesting…

In every N×N bipartite graph
there is a ½logN×½logN
monochromatic subgraph (a
bipartite clique or an
independent set).

Bipartite Ramsey graphs
Erdős (1947) — there exists an N×N bipartite
graph with no K×K monochromatic subgraphs, for
K=2logN.

A random graph has this property.

The Erdős $100 challenge — find such an explicit
graph, even for K=O(logN).

Still open…

Bipartite Ramsey graph
We can view every bipartite
graph naturally as a function
E:[N]×[N]→{0,1}.

The bipartite Ramsey
problem: construct explicit
matrices with no K×K
constant sub-matrices.

0 1 0 1 0 1 1 1 0
0 0 0 1 1 0 0 1 0
0 0 1 0 1 1 1 0 1
0 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 1
0 1 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1 1

N

N

Bipartite Ramsey graph
We can view every bipartite
graph naturally as a function
E:[N]×[N]→{0,1}.

The bipartite Ramsey
problem: construct explicit
matrices with no K×K
constant sub-matrices.

The low-error two-source
extractors problem: Insist on
unbiased sub-matrices, with
a very small bias.

0 1 0 1 0 1 1 1 0
0 0 0 1 1 0 0 1 0
0 0 1 0 1 1 1 0 1
0 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 1
0 1 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1 1

N

N

Today’s talk
Two-source extractors.

Non-malleable extractors.

Current constructions of two-source extractors via
non-malleable extractors and where they fail in
achieving small error.

Constructing low-error two-source extractors
given “good” non-malleable extractors.

Seeded extractors
A special case of two-
source extractors is when
one source is completely
uniform, the seed.

The seed length can be as
small as 2log(n/ε).

{0, 1}n

X

⇡ Um

UdE

source

seed

Seeded extractors

Seeded extractors
We say a seeded extractor is strong if the output
is uniform even given the seed: (E(X,Y),Y) ≈ε (U,Y).

Seeded extractors
We say a seeded extractor is strong if the output
is uniform even given the seed: (E(X,Y),Y) ≈ε (U,Y).

Equivalently, for every source X with entropy at
least k there exists a set of good seeds of density
at least 1-ε such that for every good seed y∈{0,1}d,
E(X,y) ≈ε U.

We have good strong seeded extractors
[LRVW03,GUV07,…].

Non-malleable extractors [DW09]

Non-malleable extractors [DW09]

A generalization of strong seeded-extractors.

An adversary cannot distinguish between the
output nmE(X,Y) and a uniform string, even given
the seed Y and the output of nmE on t correlated
seeds.

Non-malleable extractors [DW09]

A generalization of strong seeded-extractors.

An adversary cannot distinguish between the
output nmE(X,Y) and a uniform string, even given
the seed Y and the output of nmE on t correlated
seeds.

(nmE(X,Y),nmE(X,f1(Y)),…,nmE(X,ft(Y)),Y) is ε-close
to (U,nmE(X,f1(Y)),…,nmE(X,ft(Y)),Y).

Non-malleable extractors

Non-malleable extractors
{0, 1}n

X

f(Y)

nmE(X, f(Y))

nmE

{0, 1}n

X

Y = Ud

nmE

YnmE(X,Y)(), ,

Non-malleable extractors
{0, 1}n

X

f(Y)

nmE(X, f(Y))

nmE

{0, 1}n

X

Y = Ud

nmE

YnmE(X,Y)(), ,
nmE(X, f(Y)) YUm

⇡

(), ,

Non-malleable extractors
Known explicit constructions for t=1 (a partial list). A reduction
by [Cohen16] allows us to go to an arbitrary t by roughly paying
a factor of t in the entropy and t2 in the seed-length.

seed length min-entropy
[CRS12,DLWZ11] log(n/ε) (½+δ)n
[Li12] log(n/ε) 0.499n
[CGL15] log2(n/ε) Ω(d)
[Cohen16] log(n/ε)log(log(n)/ε) Ω(d)
[CL16] log1+o(1)(n/ε) Ω(d)
[Cohen16] log(n)+log(1/ε)poly(loglog(1/ε)) Ω(d)
[Li16] log(n)+log(1/ε)loglog(1/ε) Ω(d)

Non-malleable extractors

Non-malleable extractors
We will use an equivalent definition (up to some loss in
the error) [CZ15,Cohen16].

nmE is a n.m. extractor if every source induces a set of
good seeds of high density such that the output of the
extractor on a good seed is close to uniform even
conditioned on its output on t other distinct seeds.

Non-malleable extractors
We will use an equivalent definition (up to some loss in
the error) [CZ15,Cohen16].

nmE is a n.m. extractor if every source induces a set of
good seeds of high density such that the output of the
extractor on a good seed is close to uniform even
conditioned on its output on t other distinct seeds.

For every X there exists a set of G of density at least 1-ε
such that for every y∈G and any y1,…,yt∈{0,1}d\{y} it holds
that (nmE(X,y),nmE(X,y1),…,nmE(X,yt)) is ε-close to
(U,nmE(X,y1),…,nmE(X,yt)).

Today’s talk
Two-source extractors.

Non-malleable extractors.

Current constructions of two-source extractors
via non-malleable extractors and where they
fail in achieving small error.

Constructing low-error two-source extractors
given “good” non-malleable extractors.

Current constructions of
two-source extractors

Current constructions of
two-source extractors

All recent constructions of two-source extractors
use non-malleable extractors as a central ingredient.

Current constructions of
two-source extractors

All recent constructions of two-source extractors
use non-malleable extractors as a central ingredient.

A bird’s-eye view of these constructions: Given two
inputs x1 and x2,

Generate a table of nmE(x1,i) for all seeds i∈{0,1}d.

Using x2, sample a subset of the rows.

Apply a resilient function on the reduced table.

Current constructions of
two-source extractors

X1X2

{0, 1}n {0, 1}n

Current constructions of
two-source extractors

X1X2

x1

{0, 1}n {0, 1}n

Current constructions of
two-source extractors

X1X2

x1

{0, 1}n {0, 1}n

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

x2

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

x2

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

D0

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

x2

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

D0

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

x2

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

D0
...

nmE(x1, 3)

nmE(x1, 7)

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

x2

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

D0
...

nmE(x1, 3)

nmE(x1, 7)

f

X2

{0, 1}n

Current constructions of
two-source extractors

X1X2

x1

x2

{0, 1}n {0, 1}n

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

D0
...

nmE(x1, 3)

nmE(x1, 7)

f

⇡ U1

Resilient functions

Resilient functions
The resulting table is close to being uniform and t-wise
independent in the good rows.

Resilient functions
The resulting table is close to being uniform and t-wise
independent in the good rows.

We need f to be resilient:

Say we have D’ players. ε-fraction of them are malicious,
and the rest are t-wise independent.

Resilient functions
The resulting table is close to being uniform and t-wise
independent in the good rows.

We need f to be resilient:

Say we have D’ players. ε-fraction of them are malicious,
and the rest are t-wise independent.

The honest players draw their random bit and later the
malicious players draw as they wish.

Resilient functions
The resulting table is close to being uniform and t-wise
independent in the good rows.

We need f to be resilient:

Say we have D’ players. ε-fraction of them are malicious,
and the rest are t-wise independent.

The honest players draw their random bit and later the
malicious players draw as they wish.

With high probability, the outcome is not biased — the
malicious players cannot substantially bias the outcome.

The bottleneck

The bottleneck
A corollary of [KKL88] — even one malicious
player can bias the output with probability at least
logD’/D’.

The bottleneck
A corollary of [KKL88] — even one malicious
player can bias the output with probability at least
logD’/D’.

We cannot hope for an error smaller than 1/D’, and
D’ is the size of our table.

The bottleneck
A corollary of [KKL88] — even one malicious
player can bias the output with probability at least
logD’/D’.

We cannot hope for an error smaller than 1/D’, and
D’ is the size of our table.

Thus, the running time is at least 1/ε.

Today’s talk
Two-source extractors.

Non-malleable extractors.

Current constructions of two-source extractors via
non-malleable extractors and where they fail in
achieving small error.

Constructing low-error two-source extractors
given “good” non-malleable extractors.

Getting a small error

Getting a small error
We should abandon resilient functions if we want
to get a small error.

Getting a small error
We should abandon resilient functions if we want
to get a small error.

Instead of trying to sample and then employ t-wise
in the good rows, let’s just try and hit a good row.

Getting a small error
We should abandon resilient functions if we want
to get a small error.

Instead of trying to sample and then employ t-wise
in the good rows, let’s just try and hit a good row.

As usual, we hit with a disperser…

Dispersers

A
|A| � K

B

|�(A, [D])| > K 0

{0, 1}n = [N]

{0, 1}m = [M]

Dispersers
Γ:{0,1}n×[D]→{0,1}m is a
(K,K’)-disperser if for every
set A of cardinality at least
K, Γ maps A to a set of
cardinality greater than K’.

A
|A| � K

B

|�(A, [D])| > K 0

{0, 1}n = [N]

{0, 1}m = [M]

Dispersers
Γ:{0,1}n×[D]→{0,1}m is a
(K,K’)-disperser if for every
set A of cardinality at least
K, Γ maps A to a set of
cardinality greater than K’.

We are interested in the
case where K’ is small
compared to 2m. That is, we
want to avoid small bad
sets.

A
|A| � K

B

|�(A, [D])| > K 0

{0, 1}n = [N]

{0, 1}m = [M]

Dispersers
Used to reduce error in one-
sided probabilistic
algorithms.

[RT]: When K’ is not too
large, say K’=εM, the lower
bound on the degree is

A
|A| � K

B

|�(A, [D])| > K 0

D = ⌦

log

N
K

log

1
"

!

{0, 1}n = [N]

{0, 1}m = [M]

Zuckerman’s disperser

Zuckerman’s disperser
Quite amazingly, when K=N𝛿 for a constant 𝛿, there
exist explicit constructions that achieve this bound
[BKSSW05,Raz05,Zuck06].

Zuckerman’s disperser
Quite amazingly, when K=N𝛿 for a constant 𝛿, there
exist explicit constructions that achieve this bound
[BKSSW05,Raz05,Zuck06].

The key ingredient in Zuckerman’s construction: A
points-lines incidence graph.

Zuckerman’s disperser
The input source is distributed, over [q]3, among the
edges of the graph.

P = [q2] L = [q2]

` : y = ax+ c

p : (b, ab+ c)

e 2 [q3]

e
p

`

� : F3
q ⇥ [2] ! F2

q

Zuckerman’s disperser

Zuckerman’s disperser
This gives a degree-2 disperser, and we can
recurse.

Zuckerman’s disperser
This gives a degree-2 disperser, and we can
recurse.

For K=N𝛿, where 𝛿 is arbitrary, the dependence is

D = (1/�)O(1) n

log

1
"

Zuckerman’s disperser
This gives a degree-2 disperser, and we can
recurse.

For K=N𝛿, where 𝛿 is arbitrary, the dependence is

Also, the output length is determined by the
number of recursion steps, and we have m=𝛿O(1)n.

D = (1/�)O(1) n

log

1
"

Our reduction

Our reduction
We are given a source X1 over [N1] with entropy k1
and a source X2 over [N2] with min-entropy k2.

Our reduction
We are given a source X1 over [N1] with entropy k1
and a source X2 over [N2] with min-entropy k2.

Ingredients:

nmE: [N1]×[D]→{0,1}m, a strong t-n.m. extractor
with error ε.

Γ: [N2]×[t+1]→[D], a (εK2,εD)-disperser.

Our reduction
We are given a source X1 over [N1] with entropy k1
and a source X2 over [N2] with min-entropy k2.

Ingredients:

nmE: [N1]×[D]→{0,1}m, a strong t-n.m. extractor
with error ε.

Γ: [N2]×[t+1]→[D], a (εK2,εD)-disperser.

On input x1,x2, output ⊕i∈[t+1]nmE(x1,Γ(x2,i)).

Our reduction

X1X2

[N1][N2]

Our reduction

X1X2

x1

[N1][N2]

Our reduction

X1X2

x1

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

t+ 1

�

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

t+ 1

�

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

...

nmE(x1, 3)

nmE(x1, 7)t+ 1

�

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

...

nmE(x1, 3)

nmE(x1, 7)t+ 1

� M

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

...

nmE(x1, 3)

nmE(x1, 7)

⇡ U1

t+ 1

� M

[N1][N2]

X2

[N2]

Our reduction

X1X2

x1

x2

...

...

nmE(x1, 1)

nmE(x1, 2)

nmE(x1, D)

...

nmE(x1, 3)

nmE(x1, 7)

⇡ U1

t+ 1

� M

[N1][N2]

No resilient functions here!

Proof outline

Proof outline
The source X1 defines a set of good and bad seeds.
Let G be the set of good seeds, of density at least
1-ε.

Proof outline
The source X1 defines a set of good and bad seeds.
Let G be the set of good seeds, of density at least
1-ε.

By the properties of Γ, the number of elements x2 for
which Γ(x2,[t+1]) contains only bad seeds is at most
εK2.

Proof outline
The source X1 defines a set of good and bad seeds.
Let G be the set of good seeds, of density at least
1-ε.

By the properties of Γ, the number of elements x2 for
which Γ(x2,[t+1]) contains only bad seeds is at most
εK2.

Thus, with probability at least 1-εK2/K2=1-ε, the
input x2 samples t+1 seeds of nmE, one of which, y,
is good.

Proof outline

Proof outline
In such a case, nmE(X,y) is ε-close to uniform,
even condition on t arbitrary outputs! This is since:

Proof outline
In such a case, nmE(X,y) is ε-close to uniform,
even condition on t arbitrary outputs! This is since:

For every y∈G and any y1,…,yt∈{0,1}d\{y} it holds
that (nmE(X,y),nmE(X,y1),…,nmE(X,yt)) is ε-close
to (U,nmE(X,y1),…,nmE(X,yt)).

Proof outline
In such a case, nmE(X,y) is ε-close to uniform,
even condition on t arbitrary outputs! This is since:

For every y∈G and any y1,…,yt∈{0,1}d\{y} it holds
that (nmE(X,y),nmE(X,y1),…,nmE(X,yt)) is ε-close
to (U,nmE(X,y1),…,nmE(X,yt)).

Hence, the parity of these random variables is also
close to uniform, and the overall error is 2ε.

Our reduction
So, if the n.m. extractor can support small error
(and existing constructions can), we get a
construction with a small error.

Our reduction

Our reduction
The parity is not resilient… What happened here?

Our reduction
The parity is not resilient… What happened here?

Instead of sampling (with a good sampler) D’ rows
from the table and applying a resilient function,
we pick a drastically smaller sample set — of size
t+1.

Our reduction
The parity is not resilient… What happened here?

Instead of sampling (with a good sampler) D’ rows
from the table and applying a resilient function,
we pick a drastically smaller sample set — of size
t+1.

Instead of requiring that the number of malicious
players is small, we have the weaker requirement
that not all of the players in our sample set are
malicious.

But does it work?

But does it work?
Or, when does it work? We have no option but to
look closer into the parameters.

But does it work?
Or, when does it work? We have no option but to
look closer into the parameters.

First, note that the disperser dictates n2, the length
of the second source, and typically it is smaller than
n1.

But does it work?
Or, when does it work? We have no option but to
look closer into the parameters.

First, note that the disperser dictates n2, the length
of the second source, and typically it is smaller than
n1.

A potential circular hazard — the degree of Γ should
be at least t+1, but the degree of Γ also depends on
the seed length of the n.m. extractor, which in turn
depends on t…

But does it work?

Let’s check this circularity on the board…

Our result
We see that the seed length of the n.m. extractor
plays a crucial role. Say there exists an explicit
n.m. extractor with seed length d and supports
entropy k1. Our results:

If d=ctlog(n1/ε) for a small enough constant c,
there exists an explicit two-source extractor with
small error for entropies k1 and k2=αn2 (for every
constant α).

Our result
We see that the seed length of the n.m. extractor
plays a crucial role. Say there exists an explicit
n.m. extractor with seed length d and supports
entropy k1. Our results:

If d=tɣlog(n1/ε) for a small enough constant ɣ,
there exists an explicit two-source extractor with
small error for entropies k1 and k2=n2β for some
constant β.

Our result
We see that the seed length of the n.m. extractor
plays a crucial role. Say there exists an explicit
n.m. extractor with seed length d and supports
entropy k1. Our results:

If d=log(n1/ε)+O(t), there exists an explicit two-
source extractor with small error for entropies k1
and k2=n2β for every constant β.

Good n.m. extractors

Good n.m. extractors
Non-explicitly, our constraints on d are easily
satisfied. The seed length of a probabilistic
construction is d=2log(n/ε)+O(log t).

Good n.m. extractors
Non-explicitly, our constraints on d are easily
satisfied. The seed length of a probabilistic
construction is d=2log(n/ε)+O(log t).

Taking a closer look on recent constructions of
non-malleable extractors, we see that d=Ω(k) and
k=Õ(t2log(n/ε)).

Very roughly, this coupling between d and k is
inherent when you do alternating extraction.

Good n.m. extractors

Good n.m. extractors
To summarize…

Good n.m. extractors
To summarize…

Due to [CZ15,BDT16] we know that n.m.
extractors with short seed length supporting small
entropies give rise to good two-source extractors
with constant error.

Good n.m. extractors
To summarize…

Due to [CZ15,BDT16] we know that n.m.
extractors with short seed length supporting small
entropies give rise to good two-source extractors
with constant error.

This work: N.m. extractors also give rise to two-
source extractors with small error, as long as the
seed-length’s dependency on t is good.

Good n.m. extractors
The moral: Keep constructing non-malleable
extractors, with techniques that go beyond
alternating extraction.

Thanks for listening.

