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Two-source extractors
We say that a source X over {0,1}n has k min-
entropy if for every x, Pr[X=x]≤2-k. This is how we 
model weak sources.

Alternatively, we can think of a weak source X as 
uniformly distributed over a subset of size 2k.

Given two independent weak source X1 and X2, 
we want to extract almost-uniform bits (potentially, 
almost all the entropy).  



Two-source extractors
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H1(X1) � k1 H1(X2) � k2
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Two-source extractors
Known results for 
constant error. 


Omitted here: many 
constructions of multi-
source extractors.

min-entropy
Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn
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A closer look at the error
Non-explicitly, we can hope for 
ε=2-Ω(k).

Only the constructions of 
Chor-Goldreich, Raz and 
Bourgain achieve this.

We will soon see where recent 
constructions fall short.

Viewing it differently: We want 
the construction to run in time 
polylog(1/ε) instead of     
poly(1/ε).

min-entropy
Non-explicit logn+O(1)
[CG88] (½+δ)n
[Raz05] (½+δ)n,O(logn)
[Bourgain05] 0.499n
[CZ15] polylog(n)
[BDT16] log1+o(1)n
[Cohen16] logn·poly(loglogn)
[Li16] logn·loglogn



Our goal: Low-error two-source extractors, even 
for δn min-entropy.

(Preferably outputting many bits as well, but it often goes 
together…)
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Bipartite Ramsey graphs
Erdős (1947) — there exists an N×N bipartite 
graph with no K×K monochromatic subgraphs, for 
K=2logN.


A random graph has this property.


The Erdős $100 challenge — find such an explicit 
graph, even for K=O(logN).


Still open…



Bipartite Ramsey graph
We can view every bipartite 
graph naturally as a function 
E:[N]×[N]→{0,1}.


The bipartite Ramsey 
problem: construct explicit 
matrices with no K×K 
constant sub-matrices.
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0 1 0 0 0 0 1 0 0
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0 1 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1 1
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Bipartite Ramsey graph
We can view every bipartite 
graph naturally as a function 
E:[N]×[N]→{0,1}.


The bipartite Ramsey 
problem: construct explicit 
matrices with no K×K 
constant sub-matrices.


The low-error two-source 
extractors problem: Insist on 
unbiased sub-matrices, with 
a very small bias.

0 1 0 1 0 1 1 1 0
0 0 0 1 1 0 0 1 0
0 0 1 0 1 1 1 0 1
0 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 1
0 1 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1 1

N
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Seeded extractors
A special case of two-
source extractors is when 
one source is completely 
uniform, the seed.


The seed length can be as 
small as 2log(n/ε).

{0, 1}n

X

⇡ Um

UdE

source

seed
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Seeded extractors
We say a seeded extractor is strong if the output 
is uniform even given the seed: (E(X,Y),Y) ≈ε (U,Y).

Equivalently, for every source X with entropy at 
least k there exists a set of good seeds of density 
at least 1-ε such that for every good seed y∈{0,1}d, 
E(X,y) ≈ε U.

We have good strong seeded extractors 
[LRVW03,GUV07,…]. 
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Non-malleable extractors [DW09]

A generalization of strong seeded-extractors.

An adversary cannot distinguish between the 
output nmE(X,Y) and a uniform string, even given 
the seed Y and the output of nmE on t correlated 
seeds.

(nmE(X,Y),nmE(X,f1(Y)),…,nmE(X,ft(Y)),Y) is ε-close 
to (U,nmE(X,f1(Y)),…,nmE(X,ft(Y)),Y).  
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Non-malleable extractors
{0, 1}n

X

f(Y )

nmE(X, f(Y ))

nmE

{0, 1}n

X

Y = Ud

nmE

YnmE(X,Y )( ), ,



Non-malleable extractors
{0, 1}n
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Non-malleable extractors
Known explicit constructions for t=1 (a partial list). A reduction 
by [Cohen16] allows us to go to an arbitrary t by roughly paying 
a factor of t in the entropy and t2 in the seed-length.

seed length min-entropy
[CRS12,DLWZ11] log(n/ε) (½+δ)n
[Li12] log(n/ε) 0.499n
[CGL15] log2(n/ε) Ω(d)
[Cohen16] log(n/ε)log(log(n)/ε) Ω(d)
[CL16] log1+o(1)(n/ε) Ω(d)
[Cohen16] log(n)+log(1/ε)poly(loglog(1/ε)) Ω(d)
[Li16] log(n)+log(1/ε)loglog(1/ε) Ω(d)
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We will use an equivalent definition (up to some loss in 
the error) [CZ15,Cohen16].

nmE is a n.m. extractor if every source induces a set of 
good seeds of high density such that the output of the 
extractor on a good seed is close to uniform even 
conditioned on its output on t other distinct seeds.



Non-malleable extractors
We will use an equivalent definition (up to some loss in 
the error) [CZ15,Cohen16].

nmE is a n.m. extractor if every source induces a set of 
good seeds of high density such that the output of the 
extractor on a good seed is close to uniform even 
conditioned on its output on t other distinct seeds.

For every X there exists a set of G of density at least 1-ε 
such that for every y∈G and any y1,…,yt∈{0,1}d\{y} it holds 
that (nmE(X,y),nmE(X,y1),…,nmE(X,yt)) is ε-close to 
(U,nmE(X,y1),…,nmE(X,yt)).  
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Current constructions of 
two-source extractors

All recent constructions of two-source extractors 
use non-malleable extractors as a central ingredient.

A bird’s-eye view of these constructions: Given two 
inputs x1 and x2,


Generate a table of nmE(x1,i) for all seeds i∈{0,1}d. 

Using x2, sample a subset of the rows. 


Apply a resilient function on the reduced table. 
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Current constructions of 
two-source extractors
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Current constructions of 
two-source extractors
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nmE(x1, 7)

f

⇡ U1



Resilient functions



Resilient functions
The resulting table is close to being uniform and t-wise 
independent in the good rows.



Resilient functions
The resulting table is close to being uniform and t-wise 
independent in the good rows.

We need f to be resilient: 

Say we have D’ players. ε-fraction of them are malicious, 
and the rest are t-wise independent.



Resilient functions
The resulting table is close to being uniform and t-wise 
independent in the good rows.

We need f to be resilient: 

Say we have D’ players. ε-fraction of them are malicious, 
and the rest are t-wise independent.

The honest players draw their random bit and later the 
malicious players draw as they wish.



Resilient functions
The resulting table is close to being uniform and t-wise 
independent in the good rows.

We need f to be resilient: 

Say we have D’ players. ε-fraction of them are malicious, 
and the rest are t-wise independent.

The honest players draw their random bit and later the 
malicious players draw as they wish.

With high probability, the outcome is not biased — the 
malicious players cannot substantially bias the outcome.
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The bottleneck
A corollary of [KKL88] — even one malicious 
player can bias the output with probability at least   
logD’/D’.

We cannot hope for an error smaller than 1/D’, and 
D’ is the size of our table. 

Thus, the running time is at least 1/ε.
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Getting a small error
We should abandon resilient functions if we want 
to get a small error.

Instead of trying to sample and then employ t-wise 
in the good rows, let’s just try and hit a good row.

As usual, we hit with a disperser…
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Dispersers
Γ:{0,1}n×[D]→{0,1}m is a 
(K,K’)-disperser if for every 
set A of cardinality at least 
K, Γ maps A to a set of 
cardinality greater than K’.
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Dispersers
Γ:{0,1}n×[D]→{0,1}m is a 
(K,K’)-disperser if for every 
set A of cardinality at least 
K, Γ maps A to a set of 
cardinality greater than K’.

We are interested in the 
case where K’ is small 
compared to 2m. That is, we 
want to avoid small bad 
sets.

A
|A| � K

B

|�(A, [D])| > K 0

{0, 1}n = [N ]

{0, 1}m = [M ]



Dispersers
Used to reduce error in one-
sided probabilistic 
algorithms.


[RT]: When K’ is not too 
large, say K’=εM, the lower 
bound on the degree is

A
|A| � K

B

|�(A, [D])| > K 0

D = ⌦

 
log

N
K

log

1
"

!

{0, 1}n = [N ]

{0, 1}m = [M ]
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Zuckerman’s disperser
Quite amazingly, when K=N𝛿 for a constant 𝛿, there 
exist explicit constructions that achieve this bound 
[BKSSW05,Raz05,Zuck06].

The key ingredient in Zuckerman’s construction: A 
points-lines incidence graph. 



Zuckerman’s disperser
The input source is distributed, over [q]3, among the 
edges of the graph.

P = [q2] L = [q2]

` : y = ax+ c

p : (b, ab+ c)

e 2 [q3]

e
p

`

� : F3
q ⇥ [2] ! F2

q
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recurse.
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Zuckerman’s disperser
This gives a degree-2 disperser, and we can 
recurse.

For K=N𝛿, where 𝛿 is arbitrary, the dependence is

Also, the output length is determined by the 
number of recursion steps, and we have m=𝛿O(1)n.   

D = (1/�)O(1) n

log

1
"



Our reduction



Our reduction
We are given a source X1 over [N1] with entropy k1 
and a source X2 over [N2] with min-entropy k2.



Our reduction
We are given a source X1 over [N1] with entropy k1 
and a source X2 over [N2] with min-entropy k2.

Ingredients:


nmE: [N1]×[D]→{0,1}m, a strong t-n.m. extractor 
with error ε.


Γ: [N2]×[t+1]→[D], a (εK2,εD)-disperser.



Our reduction
We are given a source X1 over [N1] with entropy k1 
and a source X2 over [N2] with min-entropy k2.

Ingredients:


nmE: [N1]×[D]→{0,1}m, a strong t-n.m. extractor 
with error ε.


Γ: [N2]×[t+1]→[D], a (εK2,εD)-disperser.

On input x1,x2, output ⊕i∈[t+1]nmE(x1,Γ(x2,i)).
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Our reduction
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Our reduction
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Our reduction
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� M
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No resilient functions here!
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Proof outline
The source X1 defines a set of good and bad seeds. 
Let G be the set of good seeds, of density at least 
1-ε. 

By the properties of Γ, the number of elements x2 for 
which Γ(x2,[t+1]) contains only bad seeds is at most 
εK2.

Thus, with probability at least 1-εK2/K2=1-ε, the 
input x2 samples t+1 seeds of nmE, one of which, y, 
is good. 
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Proof outline
In such a case, nmE(X,y) is ε-close to uniform, 
even condition on t arbitrary outputs! This is since:

For every y∈G and any y1,…,yt∈{0,1}d\{y} it holds 
that (nmE(X,y),nmE(X,y1),…,nmE(X,yt)) is ε-close 
to (U,nmE(X,y1),…,nmE(X,yt)).

Hence, the parity of these random variables is also 
close to uniform, and the overall error is 2ε. 



Our reduction
So, if the n.m. extractor can support small error 
(and existing constructions can), we get a 
construction with a small error.
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Our reduction
The parity is not resilient… What happened here?

Instead of sampling (with a good sampler) D’ rows 
from the table and applying a resilient function, 
we pick a drastically smaller sample set — of size 
t+1.

Instead of requiring that the number of malicious 
players is small, we have the weaker requirement 
that not all of the players in our sample set are 
malicious.



But does it work?
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But does it work?
Or, when does it work? We have no option but to 
look closer into the parameters.

First, note that the disperser dictates n2, the length 
of the second source, and typically it is smaller than 
n1.

A potential circular hazard — the degree of Γ should 
be at least t+1, but the degree of Γ also depends on 
the seed length of the n.m. extractor, which in turn 
depends on t…



But does it work?

Let’s check this circularity on the board…
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there exists an explicit two-source extractor with 
small error for entropies k1 and k2=αn2 (for every 
constant α). 
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Our result
We see that the seed length of the n.m. extractor 
plays a crucial role. Say there exists an explicit 
n.m. extractor with seed length d and supports 
entropy k1. Our results:


If d=log(n1/ε)+O(t), there exists an explicit two-
source extractor with small error for entropies k1 
and k2=n2β for every constant β.



Good n.m. extractors



Good n.m. extractors
Non-explicitly, our constraints on d are easily 
satisfied. The seed length of a probabilistic 
construction is d=2log(n/ε)+O(log t).



Good n.m. extractors
Non-explicitly, our constraints on d are easily 
satisfied. The seed length of a probabilistic 
construction is d=2log(n/ε)+O(log t).

Taking a closer look on recent constructions of 
non-malleable extractors, we see that d=Ω(k) and 
k=Õ(t2log(n/ε)). 

Very roughly, this coupling between d and k is 
inherent when you do alternating extraction.
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Due to [CZ15,BDT16] we know that n.m. 
extractors with short seed length supporting small 
entropies give rise to good two-source extractors 
with constant error.



Good n.m. extractors
To summarize…

Due to [CZ15,BDT16] we know that n.m. 
extractors with short seed length supporting small 
entropies give rise to good two-source extractors 
with constant error.

This work: N.m. extractors also give rise to two-
source extractors with small error, as long as the 
seed-length’s dependency on t is good.



Good n.m. extractors
The moral: Keep constructing non-malleable 
extractors, with techniques that go beyond 
alternating extraction.



Thanks for listening.


