Nimble Algorithms for Cloud Computing

I Ravi Kannan, Santosh Vempala and David Woodruff

Cloud computing

Data is distributed arbitrarily on many servers

Parallel algorithms: time

Streaming algorithms: sublinear space

Cloud Complexity: time, space and communication
[Cormode-Muthukrishnan-Ye 2008]

Nimble algorithm: polynomial time/space (as usual) and
sublinear (ideally polylog) communication between servers.

Cloud vs Streaming

Streaming algorithms make small “sketches” of data
Nimble algorithms must communicate small “sketches”
Are they equivalent!?

Simple observation:

Communication in cloud = O(memory in streaming)

[Daume-Philips-Saha-Venkatasubramanian|2]

Is cloud computing more powerful?

Basic Problems on large data sets

Frequency moments
Counting copies of subgraphs (homomorphisms)
Low-rank approximation

Clustering

Matchings
Flows

Linear programs

Streaming Lower Bounds

Frequency moments: Given a vector of frequencies /=(
1, fI2,..., fin) presented as a set of increments,
estimate [//[[{& =) iT# fliTk to relative error e
[Alon-Matias-Szegedy99, Indyk-Woodruff05]:

8§ (nT1—2/%)space (k =1,2 by random projection)

Counting homomorphisms: Estimate #triangles, #C4 T, #
Klr,r ...in alarge graph G.

Q) (172) space lower bounds in streaming.

Streaming Lower Bounds

Low-rank approximation: Given n x d matrix A, find 4 of rank k
S.t.

[A—A [[LF < (1+€)[|A— Ak [[LF

[Clarkson-Woodruff09]
Any streaming algorithm needs Q((724+d)#lognd) space.

Frequency moments in the cloud

Lower bound via multi-player set disjointness.

t players have sets SY1, 5Y2, ..., $Yz, subsets of [n]

Problem: determine if sets are disjoint or have one
element in common.

Thm: Communication needed =) (72/fogt) bits.

Frequency moments in the cloud

Thm. Communication needed to determine set disjointness of t
sets is (A (n2/dogt) bits.

Consider s sets being either
(i) completely disjoint or (ii) with one common element
(each set is on one server)

Then Kk’th frequency moment is either 7 or 7—1+sTk

Suppose we have a factor 2 approximation for the k’th moment.
With sT4 = n+1, then we can distinguish these cases.Therefore,
communication needed is Q(sTA—1).

Frequency moments in the cloud

Thm. [Kannan-V.-Woodruffl 3]

Estimating k’th frequency moment on s servers takes J(
sTk /€72) words of communication, with O(b+logn) bits
per word.

Lower bound is sTA—1

Previous bound: sT4—1 (logn /€)TO(k) [Woodruff-
Zhang| 2]

streaming space complexity is 2T1—-2/4

Main idea of algorithm: sample elements within a server
according to higher moments.

Warm-up: 2 servers, third moment

W, V, | 1. Estimate yruusr
2. Sample j W.p. pij=uij13 /SitEuiit3 ;
_ announce
' 3. Second server computes X=ulj12 vij /pij
Wy Y/ 4. Average over many samples.
EX)=)iT#EuliT2 vii

Warm-up: 2 servers, third moment

So, 0(1/e12) samples suffice.

Many servers, k’th moment

L=1 \J=1
Y.
K J
= Z 7 (v T
L Y, .Y, Wi J
SV, =K y
3
7 O\ ST
Yi.... VA L J
Vi Va L _

Many servers, k’th moment

Sample i w.prob pli=/fLijTk /))eTE fltjThk according to
k’th moment.
Every | sends f4/T' T if { <jand fUyT T < flif

or’>j and fLyT T <flif

Many servers, k’th moment

Each server j:
Sample i w.prob pli=/fLijTk /)eTE fLtjThk according to

k’th moment.
Every i’ sends f4/T T if { <jand fUyT T < flif
or’>j and AT T <flif

Server j computes X4/ =[[/=1Ts#LT ITri) /pli
Lemma. £(X)=)RL/ TE[TELTrd) and Var(X)<

Theorem follows as there are <sT4 terms in total.

Counting homomorphisms

How many copies of graph H in large graph G?
E.g., H = triangle, 4-cycle, complete bipartite etc.
Linear lower bounds for counting 4-cycles, triangles.

We assume an (arbitrary) partition of the vertices among
servers.

Counting homomorphisms

To count number of paths of length 2,in a graph with degrees @!/1,
dl2 , ..., din, we need:

t(AIL2,6)=) i=1Tni#E(dli [2)
This is a polynomial in frequency moments!
#stars is £(KI1,r,G)=) i=1Tn# (dli [r)
#C4's: let dli/ is the number of common neighbors of i and j.Then,
L4 ,G)=) i=1Tn#E({dly [2)
#Klab:let dLS be the number of common neighbors of a set of
vertices S.Then,

Low-rank approximation

Given n x d matrix A partitioned arbitrarily as
A=AI1 + A2 + ..+ Als among s servers, find A of rank k s.t.
[[A—A [[{F < (1+€)OPT.

To avoid linear communication, on each server t, we leave a
matrix A Jt,st. A=AJ1 +A4J2 +...4+A4 Js and is of rank k.

How to compute these matrices!?

Low-rank approximation in the cloud

Thm. [KVW!13]. Low-rank approximation of n x d matrix A
partitioned arbitrarily among s servers takes 0T (skd)
communication.

ol

Warm-up: row partition

Full matrix A is n xd with n >> d.

Each server j has a subset of rows 44/

Computes AL/T7"Alj and sends to server |.

announces V, the top k eigenvectors of B.

Now each server j can compute A/ VVTT .

Total communication = J(sdT2).

Low-rank approximation: arbitrary partition

To extend this to arbitrary partitions, we use limited-
independence random projection.

Subspace embedding: matrix P of size O(d/eT2)Xn s.t.for
any xe€XTd, [[PAx[[=(1x¢€)[[Ax]].

Agree on projection Z via a random seed
Each server computes PA.¢, sends to server |.

singular vectorsV.
Project rows of A to V.

Total communication = O(sdT2 /€72).

Low-rank approximation: arbitrary partition

Agree on projection /Z via a random seed
Each server computes PA4.¢, sends to server |.

Project rows of A to V.

Thm. [[A—AVVTIT [|[<(1+0(€))OPT.
Pf. ExtendV to a basis 241, vi2, ..., vdd .Then,

[Audi |12
=(1+0(€))0PTT2 .

Low-rank approximation in the cloud

To improve to O(skd), we use a subspace embedding up
front, and observe that O(k)-wise independence suffices for
the random projection matrix.

Agree on O(%k/€)Xn matrix S and O(4/€T2)X7n matrix
P

Each server computes S44¢ and sends to server |.

UTT for its row space.
Apply previous algorithm to A/.

K-means clustering

Find a set of k centers ¢!1, cl2, ..., clk that minimize
QEeSTEMInd/=1Tk [[ALi —cl) [[T2

A near-optimal (i.e. 1+¢) solution could be very different!

So, cannot project up front to reduce dimension and
approximately preserve distances.

K-means clustering

Kannan-Kumar condition:
Every pair of cluster centers are f(k) standard deviations apart.

“variance’”’: maximum over |-d projections, of the average
squared distance of a point to its center.

(e.g. for Gaussian mixtures, max directional variance)

Thm. [Kannan-Kumar | 0]. Under this condition, projection to
the top k principal components followed by the k-means
iteration starting at an approximately optimal set of centers
finds a nearly correct clustering.

Finds centers close to the optimal ones, so that the induced
clustering is same for most point.

K-means clustering in the cloud

Points (rows) are partitioned among servers
Low-rank approximation to project to SVD space.

How to find a good starting set of centers!?
Need a constant-factor approximation.

Thm [Chen].There exists a small subset (“core”) s.t. the k-
means value of this set (weighted) is within a constant factor
of the k-means value of the full set of points (for any set of
centers!).

Chen’s algorithm can be made nimble.

Thm. K-means clustering in the cloud achieves the Kannan-
Kumar guarantee with O(d72 + /474) communication on s =
O(I) servers.

Cloud computing:
What problems have nimble algorithms?

Approximate flow/matching?
Linear programs

Which graph properties/parameters can be checked/estimated in
the cloud?

(e.g., planarity? expansion? small diameter?)
Other Optimization/Clustering/

Learning problems
[Balcan-Blum-Fine-Mansour |2,
Daume-Philips-Saha-Venkatasubramaian | 2]

Random partition of data?

Connection to property testing?

