
Nimble Algorithms for Cloud Computing

Ravi Kannan, Santosh Vempala and David Woodruff

Cloud computing
Data is distributed arbitrarily on many servers

Parallel algorithms: time
Streaming algorithms: sublinear space

Cloud Complexity: time, space and communication
 [Cormode-Muthukrishnan-Ye 2008]

Nimble algorithm: polynomial time/space (as usual) and
sublinear (ideally polylog) communication between servers.

Cloud vs Streaming
}  Streaming algorithms make small “sketches” of data

}  Nimble algorithms must communicate small “sketches”

}  Are they equivalent?

Simple observation:
}  Communication in cloud = O(memory in streaming)
[Daume-Philips-Saha-Venkatasubramanian12]

}  Is cloud computing more powerful?

Basic Problems on large data sets
}  Frequency moments
}  Counting copies of subgraphs (homomorphisms)
}  Low-rank approximation
}  Clustering

}  …
}  Matchings
}  Flows
}  Linear programs

Streaming Lower Bounds
Frequency moments: Given a vector of frequencies 𝑓=(​
𝑓↓1 , ​𝑓↓2 ,…, ​𝑓↓𝑛 ) presented as a set of increments,
estimate ​‖𝑓‖↓𝑘 =∑𝑖↑▒​𝑓↓𝑖↑𝑘   to relative error 𝜖.

[Alon-Matias-Szegedy99, Indyk-Woodruff05]:
​𝜃 (​𝑛↑1−2/𝑘 ) space (k =1,2 by random projection)

Counting homomorphisms: Estimate #triangles, # ​𝐶↓4↑ , #​
𝐾↓𝑟,𝑟  … in a large graph G.
​Ω (​𝑛↑2 ) space lower bounds in streaming.

Streaming Lower Bounds

Low-rank approximation: Given n x d matrix A, find ​𝐴  of rank k
s.t.

 ​‖𝐴− ​𝐴 ‖↓𝐹 ≤(1+𝜖)​‖𝐴− ​𝐴↓𝑘 ‖↓𝐹 

[Clarkson-Woodruff09]

Any streaming algorithm needs Ω((𝑛+𝑑)𝑘​log ⁠𝑛𝑑)  space.

Frequency moments in the cloud
}  Lower bound via multi-player set disjointness.

}  t players have sets ​𝑆↓1 , ​𝑆↓2 , …, ​𝑆↓𝑡 , subsets of [n]
}  Problem: determine if sets are disjoint or have one

element in common.

}  Thm: Communication needed = Ω(​𝑛/𝑡​log ⁠𝑡  ) bits.

Frequency moments in the cloud
Thm. Communication needed to determine set disjointness of t
sets is Ω(​𝑛/𝑡​log ⁠𝑡  ) bits.

Consider s sets being either
(i) completely disjoint or (ii) with one common element
(each set is on one server)

Then k’th frequency moment is either 𝑛 or 𝑛−1+​𝑠↑𝑘 

Suppose we have a factor 2 approximation for the k’th moment.
With ​𝑠↑𝑘 = 𝑛+1, then we can distinguish these cases. Therefore,
communication needed is Ω(​𝑠↑𝑘−1 ).

Frequency moments in the cloud
Thm. [Kannan-V.-Woodruff13]
Estimating k’th frequency moment on s servers takes 𝑂(​
𝑠↑𝑘 / ​𝜖↑2 ) words of communication, with 𝑂(𝑏+ ​log ⁠𝑛 ) bits
per word.

}  Lower bound is ​𝑠↑𝑘−1 
}  Previous bound: ​𝑠↑𝑘−1 ​(​​log ⁠𝑛 /𝜖 )↑𝑂(𝑘)  [Woodruff-

Zhang12]
}  streaming space complexity is ​𝑛↑1−2/𝑘 

Main idea of algorithm: sample elements within a server
according to higher moments.

Warm-up: 2 servers, third moment

Goal: estimate ∑𝑖↑▒​(​𝑢↓𝑖 + ​𝑣↓𝑖 )↑3  

1.  Estimate ∑𝑖↑▒​𝑢↓𝑖↑3  
2.  Sample j w.p. ​𝑝↓𝑗 = ​​𝑢↓𝑗↑3 /∑𝑖↑▒​𝑢↓𝑖↑3   ;

announce
3.  Second server computes X= ​​𝑢↓𝑗↑2 ​𝑣↓𝑗 /​𝑝↓𝑗  
4.  Average over many samples.

𝐸(𝑋)=∑𝑖↑▒​𝑢↓𝑖↑2 ​𝑣↓𝑖  

Warm-up: 2 servers, third moment

Goal: estimate ∑𝑖↑▒​(​𝑢↓𝑖 + ​𝑣↓𝑖 )↑3  

​𝑝↓𝑗 = ​​𝑢↓𝑗↑3 /∑𝑖↑▒​𝑢↓𝑖↑3    X= ​​𝑢↓𝑗↑2 ​𝑣↓𝑗 /​𝑝↓𝑗   𝐸(𝑋)=∑𝑖↑▒​𝑢↓𝑖↑2 ​𝑣↓𝑖  
𝑉𝑎𝑟(𝑋)≤ ​∑𝑖:​𝑣↓𝑖 >0↑▒​​(​𝑢↓𝑖↑2 ​𝑣↓𝑖 )↑2 /​𝑝↓𝑖    ↑ 

 ≤ ∑𝑖↑▒​𝑢↓𝑖↑3   ∑𝑖↑▒​𝑢↓𝑖 ​𝑣↓𝑖↑2  
 ≤ ​(∑𝑖↑▒​𝑢↓𝑖↑3 + ​𝑣↓𝑖↑3  )↑2 

So, 𝑂(​1/​𝜖↑2  ) samples suffice.

Many servers, k’th moment
} 

Many servers, k’th moment

Each server j:
}  Sample i w. prob ​𝑝↓𝑖 = ​​𝑓↓𝑖𝑗↑𝑘 /∑𝑡↑▒​𝑓↓𝑡𝑗↑𝑘    according to

k’th moment.
}  Every j’ sends ​𝑓↓𝑖​𝑗↑′ ↑  if j’ < j and ​𝑓↓𝑖​𝑗↑′ ↑  < ​𝑓↓𝑖𝑗 
 or j’>j and ​𝑓↓𝑖​𝑗↑′ ↑  ​≤𝑓↓𝑖𝑗 
}  Server j computes ​𝑋↓𝑖 = ​∏𝑗=1↑𝑠▒​​𝑓↓𝑖​𝑗↑′  ↓↑​𝑟↓𝑗   /​𝑝↓𝑖  

Many servers, k’th moment
Each server j:
}  Sample i w. prob ​𝑝↓𝑖 = ​​𝑓↓𝑖𝑗↑𝑘 /∑𝑡↑▒​𝑓↓𝑡𝑗↑𝑘    according to

k’th moment.

}  Every j’ sends ​𝑓↓𝑖​𝑗↑′ ↑  if j’ < j and ​𝑓↓𝑖​𝑗↑′ ↑  < ​𝑓↓𝑖𝑗 
 or j’>j and ​𝑓↓𝑖​𝑗↑′ ↑  ​≤𝑓↓𝑖𝑗 
}  Server j computes ​𝑋↓𝑖 = ​∏𝑗=1↑𝑠▒​​𝑓↓𝑖​𝑗↑′  ↓↑​𝑟↓𝑗   /​𝑝↓𝑖  

Lemma. 𝐸(𝑋)=∑​𝑅↓𝑗 ↑▒∏𝑗↑▒​𝑓↓𝑖𝑗↑​𝑟↓𝑗     and 𝑉𝑎𝑟(𝑋)≤ ​
(∑𝑖↑▒​𝑓↓𝑖𝑗↑𝑘  )↑2 

Theorem follows as there are < ​𝑠↑𝑘  terms in total.

Counting homomorphisms
}  How many copies of graph H in large graph G?

}  E.g., H = triangle, 4-cycle, complete bipartite etc.

}  Linear lower bounds for counting 4-cycles, triangles.

}  We assume an (arbitrary) partition of the vertices among
servers.

Counting homomorphisms
}  To count number of paths of length 2, in a graph with degrees ​𝑑↓1 , ​
𝑑↓2 , …, ​𝑑↓𝑛 , we need:

𝑡(​𝐾↓1,2 ,𝐺)= ∑𝑖=1↑𝑛▒(​​𝑑↓𝑖 ¦2 ) 
 This is a polynomial in frequency moments!
}  #stars is 𝑡(​𝐾↓1,𝑟 ,𝐺)= ∑𝑖=1↑𝑛▒(​​𝑑↓𝑖 ¦𝑟 ) 
}  #C4’s: let ​𝑑↓𝑖𝑗  is the number of common neighbors of i and j. Then,

𝑡(​𝐶↓4 ,𝐺)= ∑𝑖=1↑𝑛▒(​​𝑑↓𝑖𝑗 ¦2 ) 
}  #​𝐾↓𝑎,𝑏 : let ​𝑑↓𝑆  be the number of common neighbors of a set of

vertices S. Then,
𝑡(​𝐾↓𝑎,𝑏 ,𝐺)= ∑𝑆⊂𝑉, |𝑆|=𝑎↑▒(​​𝑑↓𝑆 ¦𝑏 ) 

Low-rank approximation
Given n x d matrix A partitioned arbitrarily as
𝐴= ​𝐴↓1 + ​𝐴↓2 + …+ ​𝐴↓𝑠  among s servers, find ​𝐴  of rank k s.t.

​‖𝐴− ​𝐴 ‖↓𝐹 ≤(1+𝜖)𝑂𝑃𝑇.

To avoid linear communication, on each server t, we leave a
matrix ​​𝐴 ↓𝑡 , s.t. ​𝐴 = ​​𝐴 ↓1 + ​​𝐴 ↓2 +…+​​𝐴 ↓𝑠  and is of rank k.

How to compute these matrices?

Low-rank approximation in the cloud
Thm. [KVW13]. Low-rank approximation of n x d matrix A
partitioned arbitrarily among s servers takes ​𝑂↑∗ (𝑠𝑘𝑑)
communication.

Warm-up: row partition
}  Full matrix A is n x d with n >> d.
}  Each server j has a subset of rows ​𝐴↓𝑗 

}  Computes ​𝐴↓𝑗↑𝑇 ​𝐴↓𝑗  and sends to server 1.
}  Server 1 computes 𝐵=∑𝑗=1↑𝑠▒​𝐴↓𝑗↑𝑇 ​𝐴↓𝑗   and

announces V, the top k eigenvectors of B.
}  Now each server j can compute ​𝐴↓𝑗 𝑉​𝑉↑𝑇 .

}  Total communication = 𝑂(𝑠​𝑑↑2 ).

Low-rank approximation: arbitrary partition
}  To extend this to arbitrary partitions, we use limited-

independence random projection.

}  Subspace embedding: matrix P of size 𝑂(​𝑑/​𝜖↑2  )×𝑛 s.t. for
any 𝑥∈ ​𝑅↑𝑑 , ‖𝑃𝐴𝑥‖=(1±𝜖)‖𝐴𝑥‖.

}  Agree on projection 𝑃 via a random seed
}  Each server computes 𝑃​𝐴↓𝑡 , sends to server 1.
}  Server 1 computes 𝑃𝐴=∑𝑡↑▒𝑃​𝐴↓𝑡   and its top k right

singular vectors V.
}  Project rows of A to V.

}  Total communication = 𝑂(​𝑠​𝑑↑2 /​𝜖↑2  ).

Low-rank approximation: arbitrary partition
}  Agree on projection 𝑃 via a random seed
}  Each server computes 𝑃​𝐴↓𝑡 , sends to server 1.
}  Server 1 computes 𝑃𝐴=∑𝑡↑▒𝑃​𝐴↓𝑡   and its top k right singular vectors V.
}  Project rows of A to V.

Thm. ‖𝐴−𝐴𝑉​𝑉↑𝑇 ‖≤(1+𝑂(𝜖))𝑂𝑃𝑇.
Pf. Extend V to a basis ​𝑣↓1 , ​𝑣↓2 , …, ​𝑣↓𝑑 . Then,
​‖𝐴−𝐴𝑉​𝑉↑𝑇 ‖↓𝐹↑2 =∑𝑖=𝑘+1↑𝑑▒​‖𝐴​𝑣↓𝑖 ‖↑2 ≤ ​(1+𝜖)↑2 ∑𝑖=𝑘+1↑𝑑▒​‖𝑃𝐴​𝑣↓𝑖 
‖↑2   .

And, with ​𝑢↓1 , ​𝑢↓2 , …, ​𝑢↓𝑑  singular vectors of A,
∑𝑖=𝑘+1↑𝑑▒​‖𝑃𝐴​𝑣↓𝑖 ‖↑2  ≤∑𝑖=𝑘+1↑𝑑▒​‖𝑃𝐴​𝑢↓𝑖 ‖↑2  ≤ ​(1+𝜖)↑2 ∑𝑖=𝑘+1↑𝑑▒​
‖𝐴​𝑢↓𝑖 ‖↑2  

 =(1+𝑂(𝜖))𝑂𝑃​𝑇↑2 .

Low-rank approximation in the cloud
To improve to O(skd), we use a subspace embedding up
front, and observe that O(k)-wise independence suffices for
the random projection matrix.

}  Agree on 𝑂(​𝑘/𝜖 )×𝑛 matrix S and 𝑂(​𝑘/​𝜖↑2  )×𝑛 matrix

P.
}  Each server computes 𝑆​𝐴↓𝑡  and sends to server 1.
}  S1 computes 𝑆𝐴=∑𝑡↑▒𝑆​𝐴↓𝑡   and an orthonormal basis ​
𝑈↑𝑇  for its row space.

}  Apply previous algorithm to 𝐴𝑈.

K-means clustering
}  Find a set of k centers ​𝑐↓1 , ​𝑐↓2 , …, ​𝑐↓𝑘  that minimize
∑𝑖∈𝑆↑▒​ ​Min↓𝑗=1↑𝑘  ⁠​‖​𝐴↓𝑖 − ​𝑐↓𝑗 ‖↑2   

}  A near-optimal (i.e. 1+𝜖) solution could be very different!

}  So, cannot project up front to reduce dimension and
approximately preserve distances.

K-means clustering
}  Kannan-Kumar condition:
}  Every pair of cluster centers are f(k) standard deviations apart.
}  “variance”: maximum over 1-d projections, of the average

squared distance of a point to its center.
 (e.g. for Gaussian mixtures, max directional variance)

}  Thm. [Kannan-Kumar10]. Under this condition, projection to

the top k principal components followed by the k-means
iteration starting at an approximately optimal set of centers
finds a nearly correct clustering.

}  Finds centers close to the optimal ones, so that the induced

clustering is same for most point.

K-means clustering in the cloud
}  Points (rows) are partitioned among servers
}  Low-rank approximation to project to SVD space.

}  How to find a good starting set of centers?
}  Need a constant-factor approximation.

}  Thm [Chen]. There exists a small subset (“core”) s.t. the k-

means value of this set (weighted) is within a constant factor
of the k-means value of the full set of points (for any set of
centers!).

}  Chen’s algorithm can be made nimble.

Thm. K-means clustering in the cloud achieves the Kannan-
Kumar guarantee with 𝑂(​𝑑↑2 + ​𝑘↑4 ) communication on s =
O(1) servers.

Cloud computing:
What problems have nimble algorithms?

}  Approximate flow/matching?
}  Linear programs
}  Which graph properties/parameters can be checked/estimated in

the cloud?
 (e.g., planarity? expansion? small diameter?)
}  Other Optimization/Clustering/
}  Learning problems
 [Balcan-Blum-Fine-Mansour12,
 Daume-Philips-Saha-Venkatasubramaian12]

}  Random partition of data?

}  Connection to property testing?

