Reinforcement Learning with Rich Observations

Alekh Agarwal
Microsoft Research NYC

Joint work with Nan Jiang, Akshay Krishnamurthy, John Langford and Robert
Schapire

What is Reinforcement Learning?

e 3
. R NIl s St -

How to Learn?

Practice Theory
Powerful modeling, simple exploration Sophisticated exploration in small-state MDPs
e.g.: Atari Deep Reinforcement Learning e.g. E3, R-MAX algorithms

Limited theory for rich observations

Develop Reinforcement Learning approaches guaranteed to learn an optimal policy with a
small number of samples despite rich observations.

Our Results

Small-state MDPs Known
Structured large-state MDPs New
Reactive POMDPs Extended
Reactive PSRs New

LQR (continuous actions) Known

Our Results

Small-state MDPs Known
Structured large-state MDPs New
Reactive POMDPs Extended
Reactive PSRs New

LQR (continuous actions) Known

Key ideas

= New measure of the hardness of exploration

= Algorithm with sample complexity scaling with this

measure

= Applications in several RL settings

Model

Markov Decision Processes (MDPs)

X1~ Fl

Markov Decision Processes (MDPs)

X1~ Fl

Take action a4, Observe r;(a;)

Markov Decision Processes (MDPs)

* Episodic: H actions in a trajectory

e Layered: Distinct states at each
8 level

| * Markovian: x; only depends on
(Xn—1,Ap-1), T on (Xp, ap)

x1~ Iy
Take action a4, Observe r;(a;)
New state x,~I'(xq,aq)

Goal of Learning

= Maximize long-term reward
H

z Th(an)

h=1

Goal of Learning

= Maximize long-term reward...using policies
H

> ()

h=1

= Policies are mappings from states to actions

Example: Navigation in a toy setting

Robotic agent navigating in real-world (left)

States: Position in a grid
Actions: Forward/Back/Left/Right
Reward: 1 on reaching target, -100 for dying

Example: Navigation in a real setting

Robotic agent navigating in real-world (right)
States: Camera view in front of the robot
Actions: Forward/Back/Left/Right

Reward: 1 on reaching target, -100 for dying

Example: Web Search —
= User comes with an intent @
= |ssues a query to the search engine =

No-click

» Receives ranked list of results
= |ssues another query

States: Query, info on user
Actions: Search results
Reward: 1 when user finds a satisfactory result

Existing results

®Learn e-optimal policy using poly (\X\,A, H, El) samples

®Small number of states necessary for learning

Lower bound

There is an MDP with |A|" states where findingan -
A"
€2

optimal policy requires (2 () trajectories.
Intuition: Embed a bandit problem with |A[" arm:s.

Compact ‘F not sufficient for generalization in RL
Gathering the right data has large sample complexity

Large-state MDPs

= Too many “unique” states in real-world tasks

= Cannot reason separately for each state

= Need information sharing between similar states

= aka generalization

= Typically done via value-function approximation

Function Approximation

Optimal value function

m

= Optimal value function Q" fa
X
= Maps (x, a) pair to a long-term reward \

= Take action a in state x and follow the optimal 0*(x, @) = length of shortest

policy thereafter path after taking a in x

= Removes the need to reason over multiple

decisions

= Optimal policy m*(x) = argmax,Q"(x,a)

Value of a policy

= Value: Long-term reward on following a policy
V() = Ex.r, [V (x,m)], where

Distribution of
initial state

V(x,m) = E,p, [r(n(x)) + Ex'~I‘(x,n(x))V(x"n)]

Distribution of

next state
Instantaneous

reward

Optimal value function

= Optimal value function: Best reward from each state
V* = Ey-r, [V*(x)], where

Distribution of
initial state

V*(x) = max Eyp, [r(@) + By rgea)V* (3]

Optimal action Distribution of

Instantaneous next state
reward

Optimal value function

= Optimal value function: Best reward from each state
V* = Esor, [V*(x)], where

V*(x) = mgX\ETNDx [r(a) + Ex’~F(x,a)V*(x’)]l

|
Q™ (x,a)

Optimal policy: m*(x) = argmax Q*(x, a)
a

Function approximation

Given a class F : XXA — R, find a good approximation to
Q*, assuming Q* € F
Associated greedy policy: my = argmax, f (x, a)

= Key intuition: Use a class ‘J that generalizes well in
supervised learning

= Consider ‘F of small VC-dimension/Rademacher complexity/finite size...

A solution sketch

= Start with an initial guess f; € ‘Ffor Q~
= Act according to f;, collect trajectories
(x1,a4,71, ..., Xy, Ay, Ty) Where ap = 1, (Xp)
= Use the trajectories to obtain a better estimate f, € ‘F

= Repeat

A solution sketch
= Start with an initial guess f; € ‘Ffor Q~
= Act according to f;, collect trajectories
(x1,a4,71, ..., Xy, Ay, Ty) Where ap = 1, (Xp)
= Use the trajectories to obtain a better estimate f, € ‘F

= Repeat

Our Setting

Bellman Equations
Q"(x,a) = E,.p, [r(a) + Ex’~F(x,a)V*(x,)]

= Take a at current step, act optimally thereafter

Bellman Equations

Q*(x,@) = Erep, |1(@) + By prq) max Q" (x', @)

= Take a at current step, act optimally thereafter

Bellman Equations
Q*(X, Cl) — ET~Dx [T(Cl) T Ex’~F(x,a)Q*(x’1n*(x,))]

= Take a at current step, act optimally thereafter
= Holds for each x, hence any distribution over x

Bellman Equations
e(f,mh) =E[f(xp, ap) =1 — f(Xpt1, Qner)],

where a4, ... ap_1~ T and ay, ap, according to 7

!ﬁ

Bellman Equations
e(f,mh) =E[f(xp, ap) =1 — f(Xpt1, Qner)],

where a4, ... ap_1~ T and ay, ap, according to 7
Standard result: e(Q*, m, h) = 0, forall o

Gives a test for checking if f = Q~

Using Bellman Equations
= Given candidate f € ‘F, check e(f,m, h) for all m, h
= Reject f if e(f,m,h) > 0 foranym, h

Validity condition

" Restricttomr =7, forg € f

Challenge: Computing £(f, i, h) requires samples from

For all 1t ; requires O(| ‘}]) samples!

Key challenges
= Too many functions in any interesting ‘F

= Data based on one f might not prove sub-optimality

for others
= Need to collect the right data

= |ike bandits, but with exponentially many arms!

Bellman factorization and rank

= Consider the | F] x| F] matrix:
e(F.h)sg = e(f g,)

Bellman rank of an MDP is the rank of ('}, h)

= Bounded by number of states
= Bounded by rank of transition matrix I
= Bounded by number of “hidden” states

Example: Navigation in a real setting

Robotic agent navigating in real-world (right)
States: Camera view in front of the robot
Transitions determined by grid-view (left)
Bellman rank bounded by size of grid!

microsoft researc
I I I | I l 110,000,000 RESULTS Any tit
[] .
Microso ft Research - Tur
research microsoft.com

Since Microsoft Researcl :
fastest-growing, most respected s E
" 1 L

Click/
No-click

= User comes with an intent

= |ssues a query to the search engine
= Receives ranked list of results

= |ssues another query

States: Query, info on user
Transitions often depend on user intent
Bellman rank bounded by number of possible intents (topics)

Summary so far

= Given function approximators f € ‘F

= Want to find an f such that
= f is valid
= f yields a good policy, that is V' (7t¢) is large

= Algorithm intuition: Low Bellman rank gives concise
basis for checking validity (exploration)

= Challenge: We do not know the basis, just its existence

Our Algorithm

Reminder...

= ()™ is valid for state distribution under any policy

= Q™ captures the optimal value:
V(") = Ey.r, max[Q*(x, a)]

— Ex~F1 Q*(x' T[*(X))

Optimism Led Iterative Value-function

Elimination (OLIVE)
Jo=7F

= For t=1,2,...
= Choose f, to maximize V = Eyr, [f (X, th(x))]

= Collect trajectories using m; = 1y,

" fV(m) 2V —€ Checking our
= Return 1, optimistic belief

= Reject all f with large e(f, ¢, h) forany h
= Set ‘F; to be the set of surviving f

Optimism under
uncertainty, guess for

V() iff = Q"

Prune the possible
solutions

PAC Guarantee

Suppose Q™ € ‘F, and the Bellman rank is at most M.
OLIVE returns a policy m satisfying V() > V(m™) — €
and with probability 1 — 0, the number of trajectories
needed is at most

€2

p (MZHS\A\Z IOg(\ﬂ/(?))

Implications

= Retains sample-efficiency for small-state MDPs

= albeit better results exist here

= New results for several settings

= Low-rank MDPs
= Reactive POMDPs
= Reactive PSRs

= Unifying treatment for sample-efficient RL

Proof intuition (correctness)

Algorithm always retains Q*, terminates when:
V(T[t) EV_EZV*_E

= Either f found in first step is near-optimal
= Or, we will reject it
= Shows correctness

Proof intuition (sample efficiency)

= Bellman error matrix has low rank
= Each elimination step decreases rank by 1 if we check
fore(f,m,h) =0

= Extension to noisy checking: Ellipsoidal argument

= Reduce the volume of “Bellman error vectors” by constant fraction each time

Extensions

= Do not require Q™ € ‘F

* Find the valid f with largest V ()

= Adapt to the knowledge of M
= Allow errors in Bellman factorization and validity

= Allow infinite classes F with low VC-like dimensions

Wrapping up
= New structural condition for efficient exploration in RL

= First sample-complexity results in a broad setup called
Contextual Decision Processes

= Unifying treatment for several RL models

= Algorithm robust to modeling assumptions

= Key open problem: Computational efficiency

Thank Youl!
Details at: https://arxiv.org/abs/1610.09512

