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The study of pseudorandomness in graphs splits into three different
regimes:

@ The sparse case - d = O(1)
@ The dense case - d = Q(n)

@ The intermediate case

In this talk, we will focus on discussing the second and third cases.
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The dense case
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The dense case

p-quasirandom sequence

A sequence of graphs (G,)nen with |G| = nis said to be
p-quasirandom if

le(X, Y) = pIX||Y]| = o(pr?)

for all X, Y C V(G,).
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The dense case

p-quasirandom sequence

A sequence of graphs (G,)nen with |G| = nis said to be
p-quasirandom if

le(X, Y) = pIX||Y]| = o(pr?)

for all X, Y C V(G,).

Definition motivated by Szemerédi's regularity lemma.
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The adjacency matrix

The adjacency matrix A of a graph G on vertex set {1,2,...,n} is
the n x n matrix with entries given by

[ 0 ifuv ¢ E(G);
A”V_{ 1 if uv € E(G).
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The adjacency matrix

The adjacency matrix A of a graph G on vertex set {1,2,...,n} is
the n x n matrix with entries given by

[ 0 ifuv ¢ E(G);
A”V_{ 1 if uv € E(G).
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The adjacency matrix

The adjacency matrix A of a graph G on vertex set {1,2,...,n} is
the n x n matrix with entries given by

[ 0 ifuv ¢ E(G);
A”V_{ 1 if uv € E(G).

o = O
=
o = O

1 3

Denote the eigenvalues of the adjacency matrix of A by
AL > A2 > > A
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The Chung—Graham—-Wilson theorem

Theorem (Chung—Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp)nen of
density p with |G,| = n, the following properties are equivalent:

(i) forall X, Y C V(G,), |e(X,Y) — p|X||Y|| = o(pn?);
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The Chung—Graham—-Wilson theorem

Theorem (Chung—Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp)nen of
density p with |G,| = n, the following properties are equivalent:

(i) forall X, Y C V(G,), |e(X,Y) — p|X||Y|| = o(pn?);
(i) AM1(Gp) = (14 o(1))pn and X;(G,) = o(pn) for all i # 1;

(iii) for all fixed graphs H, the number of labelled copies of H is
(1+ 0(1))pH) (M,
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The Chung—Graham—-Wilson theorem

Theorem (Chung—Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp)nen of
density p with |G,| = n, the following properties are equivalent:

(i) forall X, Y C V(G,), |e(X,Y) — p|X||Y|| = o(pn?);
(i) AM1(Gp) = (14 o(1))pn and X;(G,) = o(pn) for all i # 1;

(iii) for all fixed graphs H, the number of labelled copies of H is
(1+ 0(1))pH) (M,

iv) the number of labelled copies of C; is (1 + o(1))p*n*.
(iv) p 4 is ( (1)p
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The Chung—Graham—-Wilson theorem

Theorem (Chung-Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp),en of
density p with |G,| = n, the following properties are equivalent:

(i) for all X, ¥ C V(Gy), [e(X, Y) — pIX||Y|| = o(pr?)
(i) A1(Gp) = (1 + o(1))pn and \;(G,) = o(pn) for all i # 1;
(iii) the number of labelled copies of Cy is (1 + o(1))p*n*.
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The Chung—Graham—-Wilson theorem

Theorem (Chung-Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp),en of
density p with |G,| = n, the following properties are equivalent:

DIS for all X, Y C V(G,), |e(X,Y) — p|X[|Y|| = o(pn?);
EIG A\(Gp) = (14 o(1))pn and Xi(G,) = o(pn) for all i # 1,
CYC the number of labelled copies of C4 is (1 + o(1))p*n*.
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EIG = DIS

Expander Mixing Lemma
If G is a graph for which all eigenvalues of the adjacency matrix,
save the largest, have absolute value at most A, then

e(X, Y) = pIX|[Y]] < AVIX] Y]

for all X, Y C V(G).
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EIG = DIS

Expander Mixing Lemma

If G is a graph for which all eigenvalues of the adjacency matrix,
save the largest, have absolute value at most A, then

(X, Y) = pIX[[ Y]] < AVIX]|Y]
for all X, Y C V(G).

Applying this lemma with A = o(pn) gives the required result.
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CYC = EIG

Since the number of cycles of length 4 is (1 + o(1))p*n*, the same
is true for the number of circuits of length 4.
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CYC = EIG

Since the number of cycles of length 4 is (1 + o(1))p*n*, the same
is true for the number of circuits of length 4. But the number of
circuits of length 4 is equal to

Tr(AY) =) AL
i=1
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CYC = EIG

Since the number of cycles of length 4 is (1 + o(1))p*n*, the same
is true for the number of circuits of length 4. But the number of
circuits of length 4 is equal to

Tr(AY) =) AL
i=1

Since A1 = (14 o(1))pn, we must have \; = o(pn) for all i # 1.
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DIS = CYC

Counting Lemma

If G is a graph which satisfies DIS with p fixed, then, for any fixed
graph H, the number of labelled copies of H in G is

(1 + o(1)p=M "™
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DIS = CYC

Counting Lemma

If G is a graph which satisfies DIS with p fixed, then, for any fixed
graph H, the number of labelled copies of H in G is

(1+ o(1))p<(H) (),

The required result is just the case where H = (4.
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DIS = CYC

To prove the counting lemma when H = K3, write

e(S.T)= > 1g(st),

seSteT

where 1¢ is the indicator function for edges of G.
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DIS = CYC

To prove the counting lemma when H = K3, write

e(S.T)= > 1g(st),

seSteT

where 1¢ is the indicator function for edges of G. By assumption,
|e(S, T) = pIS|| T = o(n?)

forall S, T C V(G). Rewriting this conclusion, we have

Y (6(s,t) = p)| = o(n?).

seS;teT
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DIS = CYC

To prove the counting lemma when H = K3, write
e(S.T)= > 1g(st),
seS,teT
where 1¢ is the indicator function for edges of G. By assumption,
|e(S, T) — plS|| TI| = o(n?)
forall S, T C V(G). Rewriting this conclusion, we have
| Y (L6(st) = p)| = o(n?).
seS;teT
In turn, this implies that for any functions u, v : V(G) — [0, 1],
> (Le(xy) = P)u(x)v(y)| = o(n®).
x,yeV(G)

This follows since the function we wish to optimise is linear in u(x)
and v(y) for each x and y, so the maximum occurs when v and v
are {0, 1}-valued, i.e., indicator functions.
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DIS = CYC

By telescoping, the deviation between the number of labeled
triangles in a set S C V/(G) and its expected value is

> (1elx)s(y, 2)16(z,x) - p?)

x,y,ZES
= > (le(xy) = p)lely, 2)lc(z,x)+

x,y,ZES
> pllely,2) = p)le(z )+ > p*(le(z,x) - p).
x,y,Z€ES X,y,ZES
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DIS = CYC

By telescoping, the deviation between the number of labeled
triangles in a set S C V/(G) and its expected value is

> (1elx)s(y, 2)16(z,x) - p?)

x,y,ZES
~ S (elen) - ety Aol )+

x,y,ZES
> pllely,2) = p)le(z )+ > p*(le(z,x) - p).
x,y,Z€ES X,y,ZES

Each term on the right-hand side of this equation may be written
as a sum over terms of the form 3", -\ )(1c(x,y) — p)u(x)v(y)
for some appropriate u and v, thus implying that the deviation we

are interested in is o(n3).
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Forcing graphs

Forcing graph

A graph H is said to be forcing if any sequence of graphs (Gp)nen
of density p with |G,| = n containing (1 + o(1))p(")n"(H) labelled
copies of H is p-quasirandom.
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Forcing graphs

Forcing graph

A graph H is said to be forcing if any sequence of graphs (Gp)nen
of density p with |G,| = n containing (1 + o(1))p(")n"(H) labelled
copies of H is p-quasirandom.

o (4
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A graph H is said to be forcing if any sequence of graphs (Gp)nen
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o (4
@ Cox - Chung—Graham-Wilson, 1989

David Conlon Pseudorandomness and regularity in graphs |



Forcing graphs

Forcing graph

A graph H is said to be forcing if any sequence of graphs (Gp)nen
of density p with |G,| = n containing (1 + o(1))p(")n"(H) labelled
copies of H is p-quasirandom.

o (4
@ Cox - Chung—Graham-Wilson, 1989

@ K - Skokan—Thoma, 2004
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Forcing graphs

Forcing graph

A graph H is said to be forcing if any sequence of graphs (Gp)nen
of density p with |G,| = n containing (1 + o(1))p(")n"(H) labelled
copies of H is p-quasirandom.

o (4
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H is not forcing if it is
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Forcing graphs

Forcing graph

A graph H is said to be forcing if any sequence of graphs (Gp)nen
of density p with |G,| = n containing (1 + o(1))p(")n"(H) labelled
copies of H is p-quasirandom.

o (4
@ Cox - Chung—Graham-Wilson, 1989
@ K - Skokan—Thoma, 2004

Negative results

H is not forcing if it is
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Forcing graphs

Forcing graph

A graph H is said to be forcing if any sequence of graphs (Gp)nen
of density p with |G,| = n containing (1 + o(1))p(")n"(H) labelled
copies of H is p-quasirandom.

o (4
@ Cox - Chung—Graham-Wilson, 1989
@ K - Skokan—Thoma, 2004

Negative results

H is not forcing if it is

@ non-bipartite or

@ a tree.
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The forcing conjecture

The forcing conjecture

A graph H is forcing if it is bipartite and contains a cycle.
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The forcing conjecture

The forcing conjecture

A graph H is forcing if it is bipartite and contains a cycle.

Progress on this conjecture closely parallels the progress on
Sidorenko's conjecture (Conlon—Fox—Sudakov, Szegedy-Li,
Kim—Lee-Lee, Szegedy, Conlon—-Kim—Lee—Lee).
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The forcing conjecture

The forcing conjecture

A graph H is forcing if it is bipartite and contains a cycle.

Progress on this conjecture closely parallels the progress on
Sidorenko's conjecture (Conlon—Fox—Sudakov, Szegedy-Li,
Kim—Lee-Lee, Szegedy, Conlon—-Kim—Lee—Lee).

Example - Conlon—Fox—Sudakov; Szegedy—Li

Every bipartite graph which is not a tree and has a vertex which is
complete to the other side is forcing.
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A result of Simonovits and Sds

Theorem (Chung—Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp)nen of
density p with |G,| = n, the following properties are equivalent:

DIS for all X, Y C V(G,), |e(X,Y) — p|X||Y|| = o(pn?);
EIG A\1(Gn) = (1 + o(1))pn and \;(G,) = o(pn) for all i # 1;
CYC the number of labelled copies of Cy is (1 + o(1))p*n*;
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A result of Simonovits and Sds

Theorem (Chung—Graham—-Wilson, 1989)

For any fixed 0 < p < 1 and any sequence of graphs (Gp)nen of
density p with |G,| = n, the following properties are equivalent:

DIS for all X, Y C V(G,), |e(X,Y) — p|X||Y|| = o(pn?);
EIG A\1(Gn) = (1 + o(1))pn and \;(G,) = o(pn) for all i # 1;
CYC the number of labelled copies of Cy is (1 + o(1))p*n*;

HER for every S C V/(G,), the number of labelled triangles in
G,[S] is equal to p3|S|® + o(p3n3).
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Hereditary quasirandomness

Theorem (Simonovits—Sés, 1997)

For any 0 < p < 1 and any € > 0, there exists § > 0 such that if
the number of labelled triangles in G[S] is equal to p3|S|3 £ 6n3,
then

le(X, Y) = pIX|| Y]] < en’
for all X, Y C V(G).
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Hereditary quasirandomness

Theorem (Simonovits—Sés, 1997)

For any 0 < p < 1 and any € > 0, there exists § > 0 such that if
the number of labelled triangles in G[S] is equal to p3|S|3 £ 6n3,
then

le(X, Y) = pIX|| Y]] < en’
for all X, Y C V(G).

The proof uses the regularity lemma and so gives a bound of the

form ,
5L <02 A
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Hereditary quasirandomness

Theorem (Simonovits—Sés, 1997)

For any 0 < p < 1 and any € > 0, there exists § > 0 such that if
the number of labelled triangles in G[S] is equal to p3|S|3 £ 6n3,
then

le(X, Y) = pIX|| Y]] < en’
for all X, Y C V(G).

The proof uses the regularity lemma and so gives a bound of the

.2
sl < 22)4%

Theorem (C.—Fox—Sudakov, 2016+)

form

One may take § = Q(e).
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Hereditary quasirandomness

Theorem (Simonovits—Sés, 1997)

For any 0 < p < 1 and any € > 0, there exists § > 0 such that if
the number of labelled triangles in G[S] is equal to p3|S|3 £ 6n3,
then

le(X, Y) = pIX|| Y]] < en’
for all X, Y C V(G).

The proof uses the regularity lemma and so gives a bound of the

.2
sl < 22)4%

Theorem (C.—Fox—Sudakov, 2016+)

form

One may take § = Q(e).

An alternative regularity-free proof given by Reiher and Schacht.
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An application

Ramsey’s theorem

For any graph H, there exists a natural number n such that if the
edges of the complete graph K|, are two-coloured, there is always a
monochromatic copy of H.

The Ramsey number r(H) is the smallest n for which this holds.
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An application

Ramsey’s theorem

For any graph H, there exists a natural number n such that if the
edges of the complete graph K|, are two-coloured, there is always a
monochromatic copy of H.

The Ramsey number r(H) is the smallest n for which this holds.

Bounds for complete graphs

V2' < r(K,) < 4
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An application

Theorem (Erdés—Szekeres, 1935)

s ()-o(f)
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An application
Theorem (Erd38s—Szekeres, 1935)

s ()-o(f)

Theorem (C., 2009)

There exists a positive constant ¢ such that

41’
tclogt/loglogt”

r(t) <
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An application
Theorem (Erd38s—Szekeres, 1935)

s ()-o(f)

Theorem (C., 2009)

There exists a positive constant ¢ such that

41’
tclogt/loglogt”

r(t) <

Proof idea:

@ Show that any colouring with no monochromatic K; is
quasirandom.
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An application
Theorem (Erd38s—Szekeres, 1935)

s ()-o(f)

Theorem (C., 2009)

There exists a positive constant ¢ such that

41’
tclogt/loglogt”

r(t) <

Proof idea:

@ Show that any colouring with no monochromatic K; is
quasirandom.

@ Show that the colouring contains the correct number of
monochromatic K, for p ~ log t/ log log t.
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An application
Theorem (Erd38s—Szekeres, 1935)

s ()-o(f)

Theorem (C., 2009)

There exists a positive constant ¢ such that

41’
tclogt/loglogt”

r(t) <

Proof idea:
@ Show that any colouring with no monochromatic K; is
quasirandom.
@ Show that the colouring contains the correct number of
monochromatic K, for p ~ log t/ log log t.
@ Show that this contradicts another property of the colouring.
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Sparser graphs

Problem

Does the Chung-Graham—Wilson theorem hold when p = o(1)?
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Sparser graphs

Problem

Does the Chung-Graham—Wilson theorem hold when p = o(1)?

YES: EIG = DIS
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Problem

Does the Chung-Graham—Wilson theorem hold when p = o(1)?

YES: EIG = DIS

Apply the Expander Mixing Lemma.
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Sparser graphs

Problem
Does the Chung-Graham—Wilson theorem hold when p = o(1)?

YES: EIG = DIS
Apply the Expander Mixing Lemma.
NO: DIS 4 EIG
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Sparser graphs

Problem
Does the Chung-Graham—Wilson theorem hold when p = o(1)?

YES: EIG = DIS
Apply the Expander Mixing Lemma.
NO: DIS 4 EIG

Random
d-regular
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Some positive results

Theorem (Bilu-Linial, 2006)
Suppose that G is a d-regular graph with n vertices such that

d
(X, Y) = —IX[[YI| < nvIX[]Y]

for all X, Y C V(G). Then every eigenvalue of the adjacency
matrix, save the largest, has absolute value O(7log d).
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Some positive results

Theorem (Bilu-Linial, 2006)
Suppose that G is a d-regular graph with n vertices such that

d
(X, Y) = —IX[[YI| < nvIX[]Y]

for all X, Y C V(G). Then every eigenvalue of the adjacency
matrix, save the largest, has absolute value O(7log d).

Theorem (Alon—Coja-Oghlan—-Han—Kang—RaddI-Schacht, 2010)

Suppose that (Gp)nen with |Gp| = n is a sequence of graphs such
that
le(X, Y) = pIX|| Y]] = o(pr?)

for all X, Y C V(G,). Then one may remove a o(1)-fraction of the
vertices to find a sequence of graphs (G)),cn satisfying EIG.
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Cayley graphs

Cayley graph

Suppose that G is a group and S is a subset of G satisfying
S = S~1. The Cayley graph Cay(G, S) is the graph with vertex set
G and edge set {(sg,g):g € G,s € S}.
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Cayley graphs

Cayley graph

Suppose that G is a group and S is a subset of G satisfying
S = S~1. The Cayley graph Cay(G, S) is the graph with vertex set
G and edge set {(sg,g):g € G,s € S}.

Cay(G,S) is an n-vertex d-regular graph with n = |G| and d = |S]|.
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Cayley graphs

Cayley graph

Suppose that G is a group and S is a subset of G satisfying
S = S~1. The Cayley graph Cay(G, S) is the graph with vertex set
G and edge set {(sg,g):g € G,s € S}.

Cay(G,S) is an n-vertex d-regular graph with n = |G| and d = |S]|.

e Paley graph - G =7Z,, S = {x* : x € Z, \ {0}}
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Cayley graphs

Cayley graph

Suppose that G is a group and S is a subset of G satisfying
S = S~1. The Cayley graph Cay(G, S) is the graph with vertex set
G and edge set {(sg,g):g € G,s € S}.

Cay(G,S) is an n-vertex d-regular graph with n = |G| and d = |S]|.

e Paley graph - G =7Z,, S = {x* : x € Z, \ {0}}
@ Lubotzky—Phillips—Sarnak - G = PSL(2,q), S=...
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DIS = EIG in Cayley graphs

Theorem (Kohayakawa—Rodl-Schacht, 2016+)

If G is an abelian group and Cay(G, S) satisfies
d
e(X, ¥) = SIX||Y]| < edn

for all X, Y C V(G), then all eigenvalues of Cay(G, S), save the
largest, have absolute value O(ed).
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DIS = EIG in Cayley graphs
Theorem (Kohayakawa—Rodl-Schacht, 2016+)

If G is an abelian group and Cay(G, S) satisfies
d
e(X, ¥) = SIX||Y]| < edn

for all X, Y C V(G), then all eigenvalues of Cay(G, S), save the
largest, have absolute value O(ed).

Theorem (C.—Zhao, 2016+)

If G is any group and Cay(G, S) satisfies

d
(X, Y) — —|X[|Y]| < edn

for all X, Y C V(G), then all eigenvalues of Cay(G, S), save the
largest, have absolute value O(ed).
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DIS = EIG in Cayley graphs
Theorem (Kohayakawa—Rodl-Schacht, 2016+)

If G is an abelian group and Cay(G, S) satisfies
d
e(X, ¥) = SIX||Y]| < edn

for all X, Y C V(G), then all eigenvalues of Cay(G, S), save the
largest, have absolute value O(ed).

Theorem (C.—Zhao, 2016+)

If G is any group and Cay(G, S) satisfies

d
(X, Y) — —|X[|Y]| < edn

for all X, Y C V(G), then all eigenvalues of Cay(G, S), save the
largest, have absolute value O(ed).
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The intermediate case

Jumbledness

A graph G on vertex set V is (p, 3)-jumbled if, for all vertex
subsets X, Y C V(G),

e(X, Y) = pIX|[Y]] < BVIX]|Y].
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The intermediate case

Jumbledness

A graph G on vertex set V is (p, 3)-jumbled if, for all vertex
subsets X, Y C V(G),

e(X, Y) = pIX|[Y]] < BVIX]|Y].

Example - random graphs

Let p = p(n) < 0.99. Then, asymptotically almost surely, the
binomial random graph G(n, p) has the following property. For any
two subsets X, Y C V(G),

le(X, Y) — pIX|[Y]] = O(v/pn|X||Y]).
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The intermediate case

Jumbledness

A graph G on vertex set V is (p, 3)-jumbled if, for all vertex
subsets X, Y C V(G),

e(X, Y) = pIX|[Y]] < BVIX]|Y].

Example - random graphs

Let p = p(n) < 0.99. Then, asymptotically almost surely, the
binomial random graph G(n, p) has the following property. For any
two subsets X, Y C V(G),

le(X, Y) — pIX|[Y]] = O(v/pn|X||Y]).

This is close to best possible, in that we must have 8 = Q(,/pn).
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(n,d, \)-graphs

(n,d, A)-graphs

A graph G is said to be an (n, d, \)-graph if it has n vertices, every
vertex has degree d and, if \; > Ao > --- > ), are the eigenvalues
of the adjacency matrix of G, |\j| < A for all i > 2.
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(n,d, \)-graphs

(n,d, A)-graphs

A graph G is said to be an (n, d, \)-graph if it has n vertices, every
vertex has degree d and, if \; > Ao > --- > ), are the eigenvalues
of the adjacency matrix of G, |\j| < A for all i > 2.

By the expander mixing lemma,

d|X||Y
e(x. v) - XY < 3 /x]v.

so that (n, d, \)-graphs are (d/n, \)-jumbled.
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Strongly regular graphs

Strongly regular graphs

A strongly regular graph srg(n, d,n, p) is a d-regular graph on n
vertices in which every pair of adjacent vertices have exactly n
common neighbours and every pair of nonadjacent vertices have
exactly ¢ common neighbours.
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Strongly regular graphs
Strongly regular graphs

A strongly regular graph srg(n, d,n, p) is a d-regular graph on n
vertices in which every pair of adjacent vertices have exactly n
common neighbours and every pair of nonadjacent vertices have
exactly ¢ common neighbours.

For |n — u| = O(\/H) the strongly regular graph srg(n, d,n, p) is
an (n,d, \)-graph with A = O(\/d).
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Strongly regular graphs
Strongly regular graphs

A strongly regular graph srg(n, d,n, p) is a d-regular graph on n
vertices in which every pair of adjacent vertices have exactly n
common neighbours and every pair of nonadjacent vertices have
exactly ¢ common neighbours.

For |n — u| = 0(\/9) the strongly regular graph srg(n, d,n, p) is
an (n,d, \)-graph with A = O(\/d).

Paley graphs

Suppose g = 1 (mod 4) is prime. The Paley graph Py is the graph
with vertex set Zg, where x and y are joined if and only if x — y is
a quadratic residue. This graph is strongly regular, with
parameters (q, (g — 1)/2,(q — 5)/4,(g — 1)/4), and so is an

(n,d, X)-graph with n =g, d = (¢ — 1)/2 and A = O(,/9).
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Further examples

Let g be a prime power and PG(q, t) the projective space of
dimension t, that is, each element is an equivalence class of
non-zero vectors of length t 4+ 1 over the finite field of order g,
where two vectors are taken as equivalent if one is a multiple of
the other by an element in the field. This set has

n= (gt —1)/(g — 1) elements.
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Further examples

Let g be a prime power and PG(q, t) the projective space of
dimension t, that is, each element is an equivalence class of
non-zero vectors of length t 4+ 1 over the finite field of order g,
where two vectors are taken as equivalent if one is a multiple of
the other by an element in the field. This set has

n= (gt —1)/(g — 1) elements.
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Further examples

We define a graph G whose vertices are the points of PG(q, t) and
where two vertices x = (xo, x1,...,%¢) and y = (Yo, 1, .., Yt) are
adjacent if and only if

Xoyo + x1y1 + -+ + xeyr = 0.
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Further examples

We define a graph G whose vertices are the points of PG(q, t) and
where two vertices x = (xo, x1,...,%¢) and y = (Yo, 1, .., Yt) are
adjacent if and only if

Xoyo + x1y1 + -+ + xeyr = 0.

It is straightforward to check that G is d-regular with
d = (q' —1)/(qg — 1), though there may be some loops. However,
there are O(g*~1) vertices with loops. To calculate the eigenvalues
of G, let | be the n x n identity matrix and J the n x n all-one
matrix. Then

A2 = pud + (d = p)l,

where = (gt~ — 1)/(q — 1). This easily implies that all
eigenvalues apart from the largest have absolute value /d — p.
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Further examples

Theorem (Alon, 1994)

There is a triangle-free (n, d, \)-graph with n = 23,
d =212kt — 1) and X = O(2¥) = O(Vd).
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Further examples

Theorem (Alon, 1994)

There is a triangle-free (n, d, \)-graph with n = 23,
d =212kt — 1) and X = O(2¥) = O(Vd).

Note that this has d = Q(n?/3), which is significantly denser than
the triangle-free graphs obtained from modifications of random
graphs, which have d = Q(y/n).
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Some properties

The independence number a(G) of a (p, 3)-jumbled graph G
satisfies

a(G) < B/p.
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Some properties

The independence number a(G) of a (p, 3)-jumbled graph G
satisfies

a(G) < B/p.

To see this, note that if U is an independent set in G, then, by the
definition of (p, 8)-jumbledness,

plU> = [2e(U) — p|U?| < BIU|.
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Some properties

The independence number a(G) of a (p, 3)-jumbled graph G
satisfies

a(G) < B/p.

To see this, note that if U is an independent set in G, then, by the
definition of (p, §)-jumbledness,

plU> = [2e(U) — p|U?| < BIU|.

In the Paley graph Py, where g = p? is the square of a prime,
every element of the subfield GF(p) is a quadratic residue in
GF(p?) since GF(p?) is a splitting field for X?> — a for all a €
GF(p). To form an independent set of order ,/q, consider 3GF(p),
where ( is a quadratic non-residue.
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Some properties

The chromatic number x(G) of a (p, 3)-jumbled graph G with n
vertices satisfies

x(G) > pn/p.
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Some properties

The chromatic number x(G) of a (p, 3)-jumbled graph G with n
vertices satisfies

x(G) > pn/p.

The Paley graph Py with g = p? again shows that this is tight.

David Conlon Pseudorandomness and regularity in graphs |



Some properties

For any € > 0 and any graph H with maximum degree A, there
exists ¢ > 0 such that if G is a (p, 8)-jumbled graph with
B < cp®n, then the number of labelled copies of H in G is equal to

(1 + €)pH) pv(H)
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Some properties

For any € > 0 and any graph H with maximum degree A, there
exists ¢ > 0 such that if G is a (p, 8)-jumbled graph with
B < cp®n, then the number of labelled copies of H in G is equal to

(1 + €)pH) pv(H)

For triangles, Alon's example shows that this is tight.
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An application

Problem
What is the MAXCUT of an m-edge triangle-free graph?
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An application

Problem
What is the MAXCUT of an m-edge triangle-free graph?

For an ordinary graph with m edges, MAXCUT is m/2 + Q(y/m)
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An application

Problem
What is the MAXCUT of an m-edge triangle-free graph?

For an ordinary graph with m edges, MAXCUT is m/2 + Q(y/m)

Theorem (Alon, 1996)

The MAXCUT of an m-edge triangle-free graph is m/2 + Q(m®*/®).
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An application

Problem
What is the MAXCUT of an m-edge triangle-free graph?

For an ordinary graph with m edges, MAXCUT is m/2 + Q(y/m)

Theorem (Alon, 1996)

The MAXCUT of an m-edge triangle-free graph is m/2 + Q(m*/®).

The MAXCUT of an (n, d, X)-graph with m = dn/2 edges is at
most m/2 — A,n/4. In particular, the MAXCUT of Alon’s example

is m/2 + O(m*/%).

v
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Thank you for listening!
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