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A	Monotone	Sampling	Scheme

Outcome 𝑆(𝒗, 𝑢) :	function	of	the	data	𝒗	and	seed	𝑢
§ Seed	value	𝑢 is	available	with	the	outcome

§ 𝑆(𝒗,𝑢) can	be	interpreted	as	the	set	of	all	data	vectors	
consistent	with	the	outcome	and	𝑢
Monotonicity:		Fixing	𝒗,	𝑆(𝒗, 𝑢) is	non-increasing	with	𝑢.	

Data	domain	
𝑽(⊂ 	𝑅+)

𝒗	

random	seed
𝑢	~	𝑈 0,1



Monotone	Estimation	Problem	(MEP)

Goal: estimate𝑓 𝒗
from	the	sample

A	monotone	sampling	scheme	(𝑽, 𝑆)	:
§ Data	domain	𝑽(⊂	𝑅+)
§ Sampling	scheme	𝑆:𝑽×[0,1],	

A	nonnegative	function	𝑓: 𝑽	 ≥ 0	

Desired	properties	of	the	estimator 𝑓6(𝑆):

§ Unbiased ∀𝒗,∫ 𝑓6 𝑺 𝒗,𝑥 , 𝑥 𝑑𝑥 = 𝑓 𝑣>
? (useful	with	sums	of	MEPs)

§ Nonnegative keep	estimate	𝑓6 in	the	same	domain	as	𝑓
§ (Pareto)	“optimal”	(admissible) any	estimator	with	smaller	
𝑣𝑎𝑟?∼C 𝑓6 𝑆 𝒗, 𝑢 has	for	some	𝒗′,	larger	𝑣𝑎𝑟?∼C E, 𝑓6 𝑆(𝒗′, 𝑢)

Data	𝒗 Sample	𝑺

Q:	𝑓(𝒗) ? 𝑓6(𝑺 𝒗, 𝑢 ,𝑢)
estimator



Bounds	on	𝑓(𝒗) from	𝑆 and	𝑢
Data		𝒗. The	lower	the	seed	𝑢 is,	the	more	we	know	on	𝒗 and	
hence	on	𝑓(𝒗).	

𝑓(𝑣)

𝑢 1

Information	
on	𝑓(𝑣)



Results	preview:	
Explicit	expressions	for	estimators	for	any	MEP	for	which	such	
estimator	exists

§ Unbiased,	Nonnegative,	Bounded	variance	
§ Admissible: “Pareto	Optimal”	in	terms	of	variance

Solution	is	not	unique.	

Notion	of	“Competitiveness”	of	estimators

Estimators	for	MEPs

We	will	come	back	to	this,	but	first	see	some	applications

Consider	some	estimators	with	natural	properties
§ if	we	requiremonotonicity	- 𝑓6(𝑆, 𝑢) is	non-increasing	with	𝑢,	

we	get	uniqueness



MEP	applications	in	data	analysis

§ Key-value	pairs	with	multiple	sets	of	values	(instances)
§ Take	coordinated	samples	of	instances.		We	get	a	MEP	

for	each	key
§ Sketching	graph-based	influence	and	similarity	functions

§ “Distance”	sketch	the	utility	values	(relations	of	node	to	
all	others).		Get	a	MEP	for	each	“target”	node	from	
sketches	of	seed	nodes

§ Sketching	generalized	coverage	functions
§ Coordinated	weighted	sample	of	the	“utility”	vector	of	

each	element.		MEP	for	each	item.	

Scalable computation	of	approximate	statistics	and	queries	
over	large	data	sets

§ Data	is	sampled	(composable,	distributed	scheme).	
Sample	is	used	to	estimate	statistics/queries	expressed	
as	a	sum	of	multiple	MEPs



Social/Communication	data
Activity	value 𝑣(𝑥)	is	associated	with	each	key 𝑥 = (𝑏, 𝑐)	(e.g.	
number	of	messages,	 communication	from	b to	c)

Monday	
activity

(a,b)	 	40

(f,g)	 					5

(h,c)	 		20

(a,z)			10

……

(h,f)	 			10				

(f,s)	 				10

Monday	
Sample:		

(a,b)	40

(a,z)		10

……..

(f,s)	 			10

For	𝝉 > 0,	iid 𝑢 𝑥 ∼ 𝑈[0,1]:
𝑥 ∈ 𝑆 ↔ 𝑣 𝑥 ≥ 	𝝉	 · 	𝑢(𝑥)

§ Take	a	weighted	sample	of	keys.		For	example	bottom-k	
(“weighed	reservoir”)	or		PPS	(Probability	Proportional	to	Size)		

§ With	bottom-𝑘,	𝝉 is	set	to	
obtain	a	fixed	sample	size	𝑘

§ Without	replacement	
sampling:	𝑣 𝑥 ≥ −𝝉	ln	𝑢 𝑥

§ Fully	composable sampling	
scheme



Samples	of	multiple	days
Coordinated	samples:	Different	values	for	different	days.	
Each	key	is	sampled	with	same	seed	𝑢(𝑥) in	different	days

Tuesday	
activity

(a,b)	 	3	

(f,g)	 			5

(g,c)	 	10

(a,z)	50

……

(s,f)	 		20

(g,h)	 	10

Tuesday	
Sample:		

(g,c)

(a,z)	50

……..

(g,h)

Monday	
activity

(a,b)	 	40

(f,g)	 					5

(h,c)	 		20

(a,z)			10

……

(h,f)	 			10				

(f,s)	 				10

Monday	
Sample:		

(a,b)	40

(a,z)		10

……..

(f,s)	 			10

Wednesday	
activity

(a,b)	 	30	

(g,c)	 			5

(h,c)	 	10

(a,z)	10

……

(b,f)	 		20

(d,h)	 	10

Wednesday
Sample:		

(a,b)	 	30

(b,f)	 		20

……..

(d,h)	 	10



Matrix	view	keys	× instances
In	our	example:		keys	𝑥 = (𝑎, 𝑏)	are	user	pairs.		Instances	are	days.

Su Mo Tu We Th Fr Sa

(a,b) 40 30 10 43 55 30 20

(g,c) 0 5 0 0 4 0 10

(h,c) 5 0 0 60 3 0 2

(a,z) 20 10 5 24 15 7 4

(h,f) 0 7 6 3 8 5 20

(f,s) 0 0 0 20 100 70 50

(d,h) 13 10 8 0 0 5 6



Example	Statistics

Queries/Statistics				∑ 	S∈T 𝑓(𝑣> 𝑥 , 𝑣U 𝑥 ,… , 𝑣+ 𝑥 )
§ Total	communication	of	segment	on	Wednesday.	∑ 𝑣> 𝑥S∈T
§ 𝐿X

X distance/Weighted	Jaccard change	in	activity	of	segment	between	
Friday	and	Saturday	∑ 	S∈T |𝑣>(𝑥) − 𝑣U(𝑥)|X

§ 𝐿X
X increase/decrease	∑ 	S∈T max	{0, 𝑣>(𝑥) − 𝑣U(𝑥)}X

§ Coverage of	segment	𝑌 in	days	D :	∑ 	S∈T max
a∈b

	𝑣a(𝑥)
§ Average/sum	of	median/max/min/top-3/concave	aggregate	of	activity	

values	over	days	D

We	would	like	to	compute	an	estimate from	the	sample

§ Specify	a	segment of	the	keys	𝑌 ⊂ 𝑋,	examples:
§ one	user	in	CA	and	one	in	NY
§ apple	device	to	android



Matrix	view	keys	× instances
Coordinated	PPS	sample		𝜏 = 100 for	all	entries

Su Mo Tu We Th Fr Sa

(a,b) 40 30 10 43 55 30 20

(g,c) 0 5 0 0 4 0 10

(h,c) 5 0 0 60 3 0 2

(a,z) 20 10 5 24 15 7 4

(h,f) 0 7 6 3 8 5 20

(f,s) 0 0 0 20 100 70 50

(d,h) 13 10 8 0 0 5 6

𝒖

0.33

0.22

0.82

0.16

0.92

0.16

0.77



Estimate	sum	statistics, one	key	at	a	time

Sum over	keys	𝑥 ∈ 𝑌 of	𝑓(𝒗 𝑥 ),	where	𝒗(𝑥) = (𝑣> 𝑥 ,𝑣U(𝑥)… )

f 𝑓(𝒗(𝒙))
S∈T

Estimate	one	key	at	a	time:

f𝑓6(𝑆(𝑣(𝑥))
S∈T

For		𝐿X distance:	𝑓(𝒗) = |𝑣> − 𝑣U|X

The	estimator	for	𝑓(𝒗) is	applied	to	
the	sample	of	𝒗



Easy	statistics:	Sum	over	entries	
Estimate	a	single	entry	at	a	time

§ Example:	Total	communication	of	segment	𝑌	on	Monday

Inverse	probability	estimate	(Horviz Thompson)	[HT52]:

Sum	over	sampled	𝑥 ∈ 𝑌 of		𝒗𝒎𝒐𝒏𝒅𝒂𝒚 𝒙𝒑𝒎𝒐𝒏𝒅𝒂𝒚 (𝒙)	

Inclusion	Probability	𝒑𝒎𝒐𝒏𝒅𝒂𝒚 𝒙 can	be	computed
from	𝑣 𝑥 and	𝝉 :

𝑥 ∈ 𝑆 ↔ 𝑣 𝑥 ≥ 	𝝉	 · 	𝑢(𝑥)
𝑝a 𝑥 = Pr	

?∈C
[𝑣a 𝑥 ≥ 	𝝉𝒊 	 · 	𝑢 𝑥 ]



HT	estimator	(single-instance)
Coordinated	PPS	sample		𝜏 = 100

Su Mo Tu We Th Fr Sa

(a,b) 40 30 10 43 55 30 20

(g,c) 0 5 0 0 4 0 10

(h,c) 5 0 0 60 3 0 2

(a,z) 20 10 5 24 13 7 4

(h,f) 0 7 6 3 8 5 20

(f,s) 0 0 0 20 100 70 50

(d,h) 13 10 8 0 0 5 6

𝒖

0.33

0.22

0.82

0.14

0.92

0.16

0.77



HT	estimator	(single-instance)
𝜏 = 100.	 Day:	Wednesday,	Segment:	CA-NY

Su Mo Tu We Th Fr Sa

(a,b) 40 30 10 43 55 30 20

(g,c) 0 5 0 0 4 0 10

(h,c) 5 0 0 60 3 0 2

(a,z) 20 10 5 24 15 7 4

(h,f) 0 7 6 3 8 5 20

(f,s) 0 0 0 20 100 70 50

(d,h) 13 10 8 0 0 5 6

𝒖

0.33

0.22

0.82

0.16

0.92

0.16

0.77



HT	estimator	for	single-instance

We

(a,b) 43

(g,c) 0

(h,c) 60

(a,z) 24

(h,f) 3

(f,s) 20

(d,h) 0

𝒖

0.33

0.22

0.82

0.16

0.92

0.16

0.77

𝑝 = 0.43

𝑝 = 0.20

Exact:		43 + 60 + 20 = 123

HT	estimate:		100+ 100 = 200

HT	estimate	is	0	for	keys	that	are	not	
sampled,	𝑣/𝑝 when	key	is	sampled

𝜏 = 100.	 Day:	Wednesday,	Segment:	CA-NY



Inverse-Probability	(HT)	estimator

ü Unbiased:		 1 − 𝑝 𝑥 ⋅ 0 + 𝑝 𝑥 z { S
X S = 𝑓(𝑣 𝑥 )

ü Nonnegative:	𝑣 𝑥 ≥ 0 so		{ S
X S ≥ 0

ü Bounded	variance	(for	all	𝒗)
ü Monotone: more	information	⇒ higher	estimate
ü Optimal: UMVU		The	unique	minimum	variance	

(unbiased,	nonnegative,	sum)	estimator

Works	when	𝑓	 depends	on	a	single	entry.		
What	about	general	𝑓	?	



Queries	involving	multiple	columns
§ 𝐿X

X distance	 𝑓(𝒗) = |𝑣> − 𝑣U|X

𝑓(𝒗) = max{0,𝑣> − 𝑣U}X§ 𝐿X
X increase	

§ HT	estimate	is	positive	only	when	we	know	𝑓 𝑣 = |𝑣> − 𝑣U| from	
the	sample.	

§ But	for	𝑣U = 0,	𝑣> > 0 then	𝑓 𝑣 > 0 but	sample	never	reveals	
𝑓 𝑣 because	second	entry	is	never	sampled.		Thus,	HT	is	biased

§ Even	when	unbiased,	HT	may	not	be	optimal.	E.g.	when	𝑣> is	
sampled	and	we	can	deduce	from	𝜏U and	𝑢 that	𝑣U ≤ 𝑎 < 𝑣> then	
we	know	that	𝑓 𝑣 ≥ v> − a.		An	optimal	estimator	will	use	this	
incomplete	information

§ We	want	estimators	with	the	same	nice	properties	as	HT	and
optimality



Sampled	data
Coordinated	PPS	sample		𝜏 = 100

Su Mo Tu We Th Fr Sa

(a,b) 40 30 10 43 55 30 20

(g,c) 0 5 0 0 4 0 10

(h,c) 5 0 0 60 3 0 2

(a,z) 20 10 5 24 15 7 4

(h,f) 0 7 6 3 8 5 20

(f,s) 0 0 0 20 100 70 50

(d,h) 13 10 8 0 0 5 6

𝒖

0.33

0.22

0.82

0.16

0.92

0.16

0.77

Want	to	estimate	 55 − 43 U + 8− 3 U + 24− 15 U

Lets	look	at	key	(a,z),	and	estimating	 𝟐𝟒− 𝟏𝟓 𝟐



Information	on 𝑓
Fix	the	data		𝒗. The	lower	𝑢 is,	the	more	we	know	on	𝒗
and	on	𝑓 𝒗 = 24− 15 U = 81.	
We	plot	the	lower	bound	we	have	on	𝑓(𝒗)	as	a	function	
of	the	seed	𝑢.

81

𝑢
10.15 0.24



This	is	a	MEP	!
Monotone	Estimation	Problem

Goal: estimate	𝑓(𝒗):	specify	an	estimator 𝑓6(𝑆, 𝑢) that	is	

A	monotone	sampling	scheme	(𝑽, 𝑆)	:
§ Data	domain	𝑽(⊂	𝑅+) here	 𝑣>, 𝑣U ∈ 𝑅�EU

§ Sampling	scheme	𝑆:𝑽×[0,1],	here	𝑆((𝑣>, 𝑣U),𝑢)
reveals		𝑣a when	𝑣a > 100	𝑢

A	nonnegative	function	𝑓:𝑽	 ≥ 0	 here		 𝑣> − 𝑣U U

Unbiased,	Nonnegative,	Bounded	variance,	Admissible	(optimal)	

Solution	is	not	unique.	



The	optimal	(admissible)	range

Cum.	Est
For	𝑥 > 𝑢

We	see	𝑆(𝑣,𝑢) and	𝑢.			We	know	what	𝑆(𝑣,𝑥) is	for	all	𝑥 > 𝑢.		
Suppose	we	fixed	𝑀 = ∫ 𝑓6 𝑆 𝑣, 𝑥 , 𝑥 𝑑𝑥	>

?



MEP	Estimators
§ Order	optimal	estimators:		For	an	order	≺ on	the	data	domain 𝑽:		

Any	estimator	with	lower	variance	on 𝒗,	must	have	higher	variance	
on	𝒛 ≺ 𝒗

The	L*	estimator:
§ The	unique	admissible	monotone estimator
§ Order	optimal	for:		𝒛 ≺ 𝒗 ⟺ 𝒇 𝒛 < 𝒇(𝒗)
§ 4-variance	competitive	(soon	we	define	that)

The	U*	estimator:
§ Order	optimal	for:		𝒛 ≺ 𝒗 ⟺ 𝒇 𝒛 > 𝒇(𝒗)

Choice	of	estimator	depends	on	properties	we	want,	possibly	
depending	on	typical	data	distribution.	L*	is	a	good	default	
(monotone	and	competitive)



Variance	Competitiveness	[CK13]

An	estimator	𝑓6 𝑆, 𝑢 is	c-competitive if	for	any	data	𝒗,	the	
expectation	of	the	square	is	within	a	factor	c of	the	minimum	
possible	for	𝒗 (by	an	unbiased	and	nonnegative	estimator).

For	all	unbiased	nonnegative	𝑔�,		
				𝐸?∈C[E,>]	[𝑓6U S(𝐯, u) ] ≤ 𝑐		𝐸?∈C E,> 	[𝑔�U S(𝐯, u )]

We	use	such	“optimal”	estimator	𝑓6(𝒗) for	𝒗 as	a	reference	point.

A	“worst-case”	over	data	theoretical	indicator	for	estimator	quality	
For	each	𝒗, we	can	consider	the	minimum		
𝐸?∈C[E,>]	[𝑓6U S 𝐯, u , 𝑢 ] attainable	by	an	estimator	that	is	
unbiased	and	nonnegative	for	all	other	𝒗’

The L∗ estimator	is	4-competitive	and	this	is	tight.		For	some	MEPs,	
ratio	is	4



Optimal	estimator	𝑓6(𝒗) for	data	𝒗
(unbiased	and	nonnegative	for	all	data)

Intuition:	The	lower	bound	guides	us	on	outcome	S,	how	“high”	
we	can	go	with	the	estimate,	in	order	to	optimize	variance	for	𝒗
while	still	being	nonnegative	on	all	other	consistent	data	vectors.

𝑓(𝑆, 𝑢)

𝑢 1

The	optimal	estimates	𝑓6(𝒗)	are	the	negated	derivative	
of	the	lower	hull	of	the		Lower	bound	function.	

Lower	Hull
Lower	Bound	function	for	𝒗



The	L*	estimator

𝑓 𝑆(𝑣, 𝑢), 𝑢
u −�

𝑓 𝑆(𝑣, 𝑥), 𝑥
𝑥U 𝑑𝑥	

>

?

We	see	𝑆(𝑣,𝑢) and	𝑢.			We	know	what	𝑆(𝑣,𝑥) is	for	all	𝑥 > 𝑢



𝐿> estimation	example
Estimators	for	𝑓 v>, vU = 𝑣> − 𝑣U
Scheme:		𝑣a ≥ 0 is	sampled	if	𝑣a > 𝑢

§ “lower	bound”	 (LB)	on	𝑓 0.6,0.2	 from	𝑆 and	𝑢
§ The	Lower	hull	of	LB

The	𝐿∗,	𝑈∗,		and	opt	for	𝑣 estimators

𝑈∗ is	optimized	for	the	vector		𝑓 0.6,0.0 (always	consistent	with	𝑆)
𝐿∗ is	optimized	locally	for	the	vector		𝑓 0.6, 𝑢 (consistent	vector	with	smallest		𝑓



𝐿UU estimation	example
Estimators	for	𝑓 v>, vU = 𝑣> − 𝑣U U

Scheme:		𝑣a ≥ 0 is	sampled	if	𝑣a > 𝑢
§ “lower	bound”	 (LB)	on	𝑓 0.6,0.2	 from	𝑆 and	𝑢
§ The	Lower	hull	of	LB

The	𝐿∗,	𝑈∗,		and	opt	for	𝑣 estimators

𝑈∗ is	optimized	for	the	vector		𝑓 0.6,0.0 (always	consistent	with	𝑆)
𝐿∗ is	optimized	locally	for	the	vector		𝑓 0.6, 𝑢 (consistent	vector	with	smallest		𝑓



Summary
§ Defined	Monotone	Estimation	Problems	(MEPs)	(motivated	by	

coordinated	sampling)
§ Derive	Pareto	optimal	(admissible)	unbiased	and	nonnegative	

estimators	(for	any	MEP	when	they	exist):	
§ L*	(lower	end	of	range:	unique	monotone	estimator,	
dominates	HT)	,

§ U*	(upper	end	of	range),	
§ Order	optimal	estimators		(optimized	for	certain	data	patterns)



Applications
§ Estimators	for	Euclidean	and	Manhattan	distances	
from	samples		[C		KDD	‘14]

§ sketch-based	closeness	similarity	in	social	networks	
[CDFGGW	COSN	‘13]	(similarity	of	the	sets	of	long-
range	interactions)

§ Sketching	generalized	coverage	functions,	including	
graph-based	influence	functions [CDPW	’14,	C’	16]



Future
§ Tighter	bounds	on	universal	ratio:	L*	is	4	competitive,	can	
do	3.375	competitive,	lower	bound	is	1.44	competitive.	

§ Instance-optimal	competitiveness	– Give	efficient	
construction	for	any	MEP

§ Multi-dimensional	MEPs:	Have	multiple	independent	seed	
(independent	samples	of	“columns”),	some	initial	
derivations	for	𝑑 = 2 and	coverage	and	distance	
functions	[CK	12,	C	14],	but	the	full	picture	is	missing



L1 distance [C KDD14] 
Independent / Coordinated PPS sampling

#IP flows to a destination in two time periods



L 	UU distance [C KDD14]

Surname occurrences in 2007, 2008 books (Google ngrams)
Independent/Coordinated PPS sampling





Coordination	of	samples

§ Locality	Sensitive	Hashing	(LSH)	(similar	weight	vectors	have	similar	
samples/sketches)

§ Multi-objective	samples (universal	 samples):		A	single	 sample	(as	small	as	possible)	
that	provides	statistical	guarantees	for	multiple	 sets	of	weights.

§ Statistics/Domain	queries	that	span	multiple	“instances”	(Jaccard similarity,	𝐿X
distances,	distinct	counts,	union	size,…)
§ MinHash sketches	are	a	special	case	with	0/1	weights.

§ Facilitates	faster	computation	of	samples.		Example: [C’	97]	Sketching/sampling	
reachability	sets	and	neighborhoods	 of	all	nodes	 in	a	graph	in	near-linear	 time.

Very	powerful	 tool	for	big	data	analysis	with		applications	well	beyond	what	
[Brewer,	Early,	Joyce	1972] could	envision


