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[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Nudelman, L-B, Hoos, Devkar, Shoham: CP 2004]

[Xu, Hoos, L-B: CP 2007; AAAI 2012]
[Hutter, Xu, Hoos, L-B: CACM 2014; AIJ 2015]



Intractability

• NP-complete problems are commonly said to be 
intractable, but the reality is more complex

• The best available methods tend to
– offer no interesting theoretical guarantees
– work astoundingly well in practice
– exhibit exponentially varying performance

(e.g., milliseconds to days) even on fixed-size problems

Problems are intractable when they “can be solved, 
but not fast enough for the solution to be usable” 

[Hopcroft, Motwani & Ullman, 2007]



Motivating Question

• NP-complete problems are commonly said to be 
intractable, but the reality is more complex

• The best available methods tend to
– offer no interesting theoretical guarantees
– work astoundingly well in practice
– exhibit exponentially varying performance

(e.g., milliseconds to days) even on fixed-size problems

“How hard is it to solve a given problem in practice, 
using the best available methods?”

Even in settings where formal analysis seems hopeless:
– algorithms are complex black boxes
– instance distributions are heterogeneous or richly structured

…it is possible to apply rigorous statistical methods to 
answer such questions with high levels of confidence.



EMPIRICAL HARDNESS MODELS:
Learning the Performance of 

Algorithms for NP-Complete Problems

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Hutter, Xu, Hoos, L-B, INFORMS 2006; CACM 2014; AIJ 2015]

[Hutter, Xu, Hoos, L-B: CACM 2014]
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Empirical Hardness Models
• Predict how long an algorithm will take to run, given:

– A set of instances D

– For each instance i ∈ D, a vector xi of feature values
– For each instance i ∈ D, a runtime observation yi

• We want a mapping f(x) → y that 
accurately predicts yi given xi

• This is a regression problem
– We’ve tried about a dozen different methods over the years
– This choice can matter, but features are more important
– Overall, we recommend random forests of regression trees
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Overall View
We’ve found that EHMs work consistently, across:
• 4 problem domains (with new features in each domain)

– Satisfiability (SAT)
– Mixed Integer Programming (MIP)
– Travelling Salesman Problem (TSP)
– Combinatorial Auctions

• dozens of solvers, including:
– state of the art solvers in each domain
– black-box, commercial solvers

• dozens of instance distributions, including:
– major benchmarks (SAT competitions; MIPLIB; …)

– real-world data (hardware verification, computational sustainability, …)
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Actual Runtime Actual Runtime

Examples: EHMs for SAT, MIP
SAT Competition (Random + Handmade + Industrial) data, MINISAT solver SAT: IBM hardware verification data, SPEAR solver

Random Forest (RMSE=0.47) Random Forest (RMSE=0.38)

MIPLIB data, CPLEX 12.1 solver Red Crested Woodpecker habitat data, CPLEX 12.1 solver
Random Forest (RMSE=0.63) Random Forest (RMSE=0.02)
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Modeling Algorithm Families
• So far we’ve considered single, black 

box algorithms
• What about parameterized algorithm 

families?

• Models can be extended to the sets of 
algorithms described by solvers with 
parameters that are:
– continuous or discrete
– ordinal or categorical
– potentially conditional on the values of 

other parameters

• We call full parameter instantiations 
(i.e., runnable algorithms) 
configurations

SAT: IBM hw verification data, SPEAR 
Random Forest (RMSE=0.43)

MIP: MIPLIB data, CPLEX 12.1 solver
Random Forest (RMSE=0.55)

Actual Runtime
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ALGORITHM DESIGN:
CONFIGURATION

[Hutter, Hoos, L-B, LION 2011]
[Hutter, Hamadi, Hoos, L-B, CP 2006]

[Hutter, Hoos, L-B, Murphy, GECCO 2009]
[Hutter, Bartz-Beielstein, Hoos, L-B, Murphy, LION 2010]

[Hutter, Hoos, L-B, CPAIOR 2010; AMAI 2010]
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Recent, enormous increases in compute power
Approaches that might have seemed crazy in 2000 can make a lot of sense in 2016…
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Deep Optimization
Machine learning
• Classical approach

– Features based on expert insight
– Model family selected by hand
– Manual tuning of hyperparameters

• Deep learning
– Very highly parameterized models, 

using expert knowledge to identify 
appropriate invariances and model 
biases (e.g., convolutional structure)

• “deep”: many layers of nodes, 
each depending on the last

– Use lots of data (plus “dropout” 
regularization) to avoid overfitting

– Computationally intensive search 
replaces human design

Discrete Optimization
• Classical approach

– Expert designs a heuristic algorithm
– Iteratively conducts small 

experiments to improve the design

• Deep optimization
– Very highly parameterized algorithms 

express a combinatorial space of 
heuristic design choices that make 
sense to an expert

• “deep”: many layers of parameters, 
each depending on the last

– Use lots of data to characterize 
the distribution of interest

– Computationally intensive search 
replaces human design
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Algorithm Configuration
• Our input: parameters encoding each 

design choice considered by the 
author of our heuristic algorithm

• Our task: the stochastic optimization 
problem of finding a parameter 
configuration with good performance. 

• An interesting black-box function 
optimization problem
– design dimensions can be continuous; ordinal; categorical
– extra design dimension: which instance do I test?
– objective function to be minimized is the same as the cost of 

evaluating a given point
– censored sampling: long runs can be terminated

• Best current methods for solving this problem are 
based on EHMs
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Visualizing Sequential Model-Based Optimization
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Sequential Model-based Algorithm Configuration (SMAC)
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Applications of Algorithm Configuration

Scheduling  and 
Resource Allocation

Exam 
Timetabling 

Supply Chain 
Planning & Optimization

Mixed integer 
programming

Wins in Competitions
SAT: since 2009
IPC: since 2011
ASP: since 2011

Timetabling: 2007
SMT: 2007

Academic Applications by Others
Protein Folding

Game Theory: Kidney Exchange
Computer GO

Linear algebra subroutines
Evolutionary Algorithms

Machine Learning: Classification

Spectrum 
repacking

Game
Optimization
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ALGORITHM DESIGN:
PORTFOLIOS

[Nudelman, L-B, Andrew, Gomes, McFadden, Selman, Shoham, 2003]
[Nudelman, L-B, Hoos, Devkar, Shoham, CP 2004]

[Xu, Hutter, Hoos, L-B, JAIR 2008]
[L-B, Nudelman, Andrew, McFadden, Shoham, IJCAI 2003; CP 2003]

[L-B, Nudelman, Shoham; JACM 2009]
[Xu, Hoos, L-B, AAAI 2010; Xu, Hutter, Hoos, L-B, workshop 2011]

[Lindauer, Hoos, L-B, Schaub, AIJ 2016]
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Is Algorithm Configuration Enough?
• There’s not (yet) a “best” SAT solver

– different solvers perform well on 
different instances

– performance differences between 
them are typically very large

• The effectiveness of EHMs suggests 
a straightforward solution
– given a new problem instance, predict 

the runtime of each SAT solvers from 
an algorithm portfolio

– run the one predicted to be fastest

• SATzilla: a portfolio-based algorithm 
selector for SAT (2003-present)
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Algorithm Selection
• Since proposing it, we’ve improved the approach to:

– allow randomized and incomplete algorithms as component solvers
– include presolvers that run for a short, fixed time
– optimize for complex scoring functions beyond runtime
– automate the construction of the selector given data

• e.g., pre-solver selection; component solver selection
• again, “deep optimization”

• We can also improve by moving to a different ML framework
– cost-sensitive classification directly selects best-performing solver 
– doesn’t need to predict runtime

• Or, just run all algorithms in the portfolio together in parallel
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Success of SATzilla
• 2003 SAT Competition 

– placed second and third in several categories
• 2007 and 2009 SAT Competitions

– winning five medals each time
• 2012 SAT Challenge

– eligible to enter four categories
– placed first, first, first, second

• Then, portfolios banned from competitions 

• SATzilla’s success demonstrates the effectiveness of 
automated, statistical methods for combining solvers
– including “uncompetitive” solvers with poor average performance

• Our approach is entirely general
– likely to work well for other problems with high runtime variation
– caveat: each domain needs instance features

Empirical Hardness Models Alg Design: Configuration Alg Design: Portfolios Spectrum Repacking Beyond Worst Case Analysis



• So far we’ve assumed that we start out with a 
manageable set of relatively uncorrelated solvers
– what if all we start out with is a huge, deep parameter space?

• top level parameter may encode for which of many different solvers to use

– want a “deep optimization” approach that works entirely automatically

• Hydra: augment an additional 
portfolio P by targeting instances 
on which P performs poorly

• Give SMAC a dynamic performance metric:
– performance of alg s when s outperforms P;

performance of P otherwise
– Intuitively: s scored for marginal contribution to P

Hydra: Automatic Portfolio Synthesis
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ALGORITHM DESIGN:
A Case Study on Spectrum Repacking

[Frechette, Newman, L-B, AAAI 2016; ongoing work]
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FCC’s “Incentive Auction”
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Thanks to all those who helped make this work possible!

Others (then) at UBC:

• Chris Cameron
• Holger Hoos
• Frank Hutter
• Ashiqur Khudabukhsh
• Steve Ramage
• James Wright
• Lin Xu

Auctionomics:
• Ulrich Gall
• Jon Levin
• Paul Milgrom
• Ilya Segal
• Karen Wrege

FCC & associates:
• Melissa Dunford
• Gary Epstein
• Karla Hoffman
• Sasha Javid
• Evan Kwerel
• Rory Molinari
• Brett Tarnutzer
• Venkat Veeramneni

Further students who made contributions to software:
Nick Arnosti; Emily Chen; Ricky Chen;

Paul Cernek; Guillaume Saulnier Comte; Alim Virani

Funding from: Auctionomics; Compute Canada; NSERC Discovery; NSERC E.W.R. Steacie

Student leads 
on the project:

Neil Newman ,    Alexandre Fréchette
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Building (& Evaluating) a Feasibility Tester
• Data generated Nov 2015 – Feb 2016 using 

– the FCC’s Nov 2015 interference constraints
– the FCC’s “smoothed ladder” simulator
– varying simulation assumptions:

• how much spectrum is cleared: 126 MHz; 108 MHz; 84 MHz
• which stations opt to participate
• these stations’ valuations
• the timeout given to SATFC in the simulation (1; 5; 10; 60 min)

• 128 auctions ⇒ 1.4 M instances
– 6,128 – 17,764 instances per auction

• all not solvable by directly augmenting the previous solution
• about 20% of the problems encountered in full simulations

– split auctions 102/26 into training/test sets
• Our goal: solve problems within a one-minute cutoff
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Feasibility Testing via MIP Encoding
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Feasibility Testing via SAT Encoding
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Best Configured Solver
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Performance of the Algorithm Portfolio
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BEYOND WORST-CASE COMPLEXITY:
A Case Study on Characterizing SAT Solver 
Performance On Uniform Random 3-SAT:

Beyond the Clauses-to-Variables Ratio

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Nudelman, L-B, Hoos, Devkar, Shoham: CP 2004]

[Xu, Hoos, L-B: CP 2007; AAAI 2012]
[Hutter, Xu, Hoos, L-B: CACM 2014]
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SAT Instance Features
• Problem Size (clauses, variables, clauses/variables, …)

• Syntactic properties (e.g., positive/negative clause ratio)

• Statistics of various constraint graphs
– factor graph
– clause–clause graph
– variable–variable graph

• Knuth’s search space size estimate
• Cumulative number of unit propagations at different 

depths (SATz heuristic)

• Local search probing 
• Linear programming relaxation
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Fixed Ratio Prediction (Kcnfs)
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Feature Importance – Fixed Ratio

Variable Cost of 
Omission

SapsBestSolMean2 100

SapsBestSolMean · MeanDPLLDepth 74

GsatBestSolCV · MeanDPLLDepth 21

VCGClauseMean · GsatFirstLMRatioMean 9
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Uniform-Random 3-SAT, Variable Ratio

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio
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Hierarchical Hardness Models
• Conditioning on satisfiability of the instance: clauses/variables 

unimportant; single-feature models become sufficient
– Satisfiable: local search probing
– Unsatisfiable: search space size

• Hierarchical hardness model [Xu, Hoos, Leyton-Brown, 2007]:
1. Predict satisfiability status
2. Use this prediction as a feature to combine the 

predictions of SAT-only and UNSAT-only models

• Not necessarily easy: SAT-only and UNSAT-only models can make 
large errors when given wrong data

SAT-only UNSAT-only
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Empirical Performance of HHMs

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio
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Predicting Satisfiability Status  (fixed-ratio 3-SAT)
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Can We Really Predict Satisfiability Status?

• Consider phase-transition instances varying from 
100 variables (solvable in milliseconds) to 600 variables 
(solvable in a day). 
– Does prediction accuracy fall to random guessing on larger 

problems?
– If not, can we identify an easily comprehensible model that 

would offer theoretical insight?

• Restrict models in three ways:
– train only on 100-variable instances
– consider only decision trees with at most two decision nodes
– omit all probing features

• disproportionately effective on small instances
• based on complex, heuristic algorithms
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A Simple Model Beats Random Guessing

Predictive accuracies for instances falling into the three regions were between 
60% and 70% [A]; a bit more than 50% [B]; and between 70% and 80% [C].

This model was trained only on 100-variable problems.
No evidence that accuracy falls with size (pairwise Mann-Whitney U tests)
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A Simple Model Beats Random Guessing
LPSLACK_coeff_variation
• based on SAT’s LP relaxation 
• for each 𝑖𝑖 with LP solution value 𝑆𝑆𝑖𝑖 ∈ [0,1], 

LPSLACK𝑖𝑖 is defined as min 1 − 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖
• LPSLACK_coeff_variation is the coefficient 

of variation (standard deviation divided by 
mean) of the vector LPSLACK

POSNEG_ratio_var_mean
• For each variable 𝑖𝑖 with 𝑃𝑃𝑖𝑖 positive 

occurrences and 𝑁𝑁𝑖𝑖 negative occurrences, 
POSNEG _ ratio _ var𝑖𝑖 is 0.5 − 𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖+𝑁𝑁𝑖𝑖
.

• POSNEG_ratio_var_mean is then the 
average over elements of the vector

Both features normalized to have mean 0, standard deviation 1 on the training set.
To evaluate on a test set instance of a new size:
• randomly sampled many instances of that size
• estimated new normalization factors
• used these factors to compute the features for the test instance
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Conclusions
• Empirical Hardness Models

– a statistically rigorous approach to characterizing the difficulty 
of solving a given family of problems using available methods

– surprisingly effective in practice, across various domains

• EHMs are also useful for algorithm design
– model-based algorithm configuration
– automatic design of algorithm portfolios

• Analysis of learned models can open avenues for 
theoretical investigations beyond the worst case
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