# Learning as a Tool for Algorithm Design and Beyond-Worst-Case Analysis



Kevin Leyton-Brown

Computer Science Department University of British Columbia

# THIS TALK SUVEYS 15 YEARS OF WORK WITH/BY MANY COLLABORATORS, NOTABLY:



Holger Hoos UBC Frank Hutter UBC Eugene Nudelman Stanford/Google Yoav Shoham Stanford Lin Xu UBC

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Nudelman, L-B, Hoos, Devkar, Shoham: CP 2004]
[Xu, Hoos, L-B: CP 2007; AAAI 2012]
[Hutter, Xu, Hoos, L-B: CACM 2014; AIJ 2015]

# Intractability

Problems are intractable when they "can be solved, but not fast enough for the solution to be usable" [Hopcroft, Motwani & Ullman, 2007]

- NP-complete problems are commonly said to be intractable, but the reality is more complex
- The best available methods tend to
  - offer no interesting theoretical guarantees
  - work astoundingly well in practice
  - exhibit exponentially varying performance
     (e.g., milliseconds to days) even on fixed-size problems

### **Motivating Question**

"How hard is it to solve a given problem in practice, using the best available methods?"

Even in settings where formal analysis seems hopeless:
algorithms are complex black boxes
instance distributions are heterogeneous or richly structured
...it is possible to apply rigorous statistical methods to
answer such questions with high levels of confidence.

### **EMPIRICAL HARDNESS MODELS:** Learning the Performance of Algorithms for NP-Complete Problems

#### [L-B, Nudelman, Shoham: CP 2002; JACM 2009] [Hutter, Xu, Hoos, L-B, INFORMS 2006; CACM 2014; AIJ 2015] [Hutter, Xu, Hoos, L-B: CACM 2014]

### **Empirical Hardness Models**

- Predict how long an algorithm will take to run, given:
  - A set of instances D
  - For each instance  $i \in D$ , a vector  $\mathbf{x}_i$  of feature values
  - For each instance  $i \in D$ , a runtime observation  $y_i$
- We want a mapping  $f(x) \rightarrow y$  that accurately predicts  $y_i$  given  $x_i$
- This is a **regression** problem
  - We've tried about a dozen different methods over the years
  - This choice can matter, but features are more important
  - Overall, we recommend random forests of regression trees

### **Overall View**

We've found that EHMs work consistently, across:

- 4 problem domains (with new features in each domain)
  - Satisfiability (SAT)
  - Mixed Integer Programming (MIP)
  - Travelling Salesman Problem (TSP)
  - Combinatorial Auctions
- dozens of **solvers**, including:
  - state of the art solvers in each domain
  - black-box, commercial solvers
- dozens of **instance distributions**, including:
  - major benchmarks (SAT competitions; MIPLIB; ...)
  - real-world data (hardware verification, computational sustainability, ...)

### **Examples: EHMs for SAT, MIP**

SAT Competition (Random + Handmade + Industrial) data, MINISAT solver Random Forest (RMSE=0.47)

**Actual Runtime** 

SAT: IBM hardware verification data, SPEAR solver Random Forest (RMSE=0.38)



Actual Runtime

# **Modeling Algorithm Families**

- So far we've considered single, black box algorithms
- What about parameterized algorithm families?
- Models can be extended to the sets of algorithms described by solvers with parameters that are:
  - continuous or discrete
  - ordinal or categorical
  - potentially conditional on the values of other parameters
- We call full parameter instantiations (i.e., runnable algorithms) configurations





# ALGORITHM DESIGN: CONFIGURATION

[Hutter, Hoos, L-B, LION 2011] [Hutter, Hamadi, Hoos, L-B, CP 2006] [Hutter, Hoos, L-B, Murphy, GECCO 2009] [Hutter, Bartz-Beielstein, Hoos, L-B, Murphy, LION 2010] [Hutter, Hoos, L-B, CPAIOR 2010; AMAI 2010]

### Recent, enormous increases in compute power

Approaches that might have seemed crazy in 2000 can make a lot of sense in 2016...





Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist \*Maximum safe power consumption

### **Deep Optimization**

### Machine learning

- Classical approach
  - Features based on expert insight
  - Model family selected by hand
  - Manual tuning of hyperparameters

#### • Deep learning

- Very highly parameterized models, using expert knowledge to identify appropriate invariances and model biases (e.g., convolutional structure)
  - "deep": many layers of nodes, each depending on the last
- Use lots of data (plus "dropout" regularization) to avoid overfitting
- Computationally intensive search replaces human design

### **Discrete Optimization**

#### Classical approach

- Expert designs a heuristic algorithm
- Iteratively conducts small experiments to improve the design

#### Deep optimization

- Very highly parameterized algorithms express a combinatorial space of heuristic design choices that make sense to an expert
  - "deep": many layers of parameters, each depending on the last
- Use lots of data to characterize the distribution of interest
- Computationally intensive search replaces human design

# **Algorithm Configuration**

- Our input: **parameters** encoding each design choice considered by the author of our heuristic algorithm
- Our task: the stochastic optimization problem of finding a parameter configuration with good performance.
- An interesting black-box function optimization problem



- design dimensions can be continuous; ordinal; categorical
- extra design dimension: which instance do I test?
- objective function to be minimized is the same as the cost of evaluating a given point
- censored sampling: long runs can be terminated
- Best current methods for solving this problem are based on EHMs

### **Visualizing Sequential Model-Based Optimization**



Slide credit: Frank Hutter

### **Visualizing Sequential Model-Based Optimization**



Slide credit: Frank Hutter

#### **Sequential Model-based Algorithm Configuration (SMAC)**



Initialize with a single run for the default configuration

#### repeat

- Learn a random forest model  $m: \Theta \times \Pi \to \mathbb{R}$  from data so far
- Marginalize out instance features:  $f(\theta) = \mathbb{E}_{\pi}[m(\theta, \pi)]$
- Find  $\theta$  that maximizes expected improvement in  $f(\theta)$  over incumbent Compare  $\theta$  to the incumbent, updating if it's better.

until time budget exhausted

### **Applications of Algorithm Configuration**



# ALGORITHM DESIGN: PORTFOLIOS

[Nudelman, L-B, Andrew, Gomes, McFadden, Selman, Shoham, 2003]
[Nudelman, L-B, Hoos, Devkar, Shoham, CP 2004]
[Xu, Hutter, Hoos, L-B, JAIR 2008]
[L-B, Nudelman, Andrew, McFadden, Shoham, IJCAI 2003; CP 2003]
[L-B, Nudelman, Shoham; JACM 2009]
[Xu, Hoos, L-B, AAAI 2010; Xu, Hutter, Hoos, L-B, workshop 2011]
[Lindauer, Hoos, L-B, Schaub, AIJ 2016]

# **Is Algorithm Configuration Enough?**

- There's not (yet) a "best" SAT solver
  - different solvers perform well on different instances
  - performance differences between them are typically very large
- The effectiveness of EHMs suggests a straightforward solution
  - given a new problem instance, predict the runtime of each SAT solvers from an algorithm portfolio
  - run the one predicted to be fastest
- **SATzilla**: a portfolio-based algorithm selector for SAT (2003-present)



### **Algorithm Selection**

- Since proposing it, we've improved the approach to:
  - allow randomized and incomplete algorithms as component solvers
  - include presolvers that run for a short, fixed time
  - optimize for complex scoring functions beyond runtime
  - automate the construction of the selector given data
    - e.g., pre-solver selection; component solver selection
    - again, "deep optimization"
- We can also improve by moving to a different ML framework
  - cost-sensitive classification directly selects best-performing solver
  - doesn't need to predict runtime
- Or, just run all algorithms in the portfolio together in parallel

### **Success of SATzilla**

- 2003 SAT Competition
  - placed second and third in several categories
- 2007 and 2009 SAT Competitions
  - winning five medals each time
- 2012 SAT Challenge
  - eligible to enter four categories
  - placed first, first, first, second
- Then, portfolios **banned** from competitions 🙂
- SATzilla's success demonstrates the effectiveness of automated, statistical methods for combining solvers
  - including "uncompetitive" solvers with poor average performance
- Our approach is entirely general
  - likely to work well for other problems with high runtime variation
  - caveat: each domain needs instance features



### Hydra: Automatic Portfolio Synthesis

- So far we've assumed that we start out with a manageable set of relatively uncorrelated solvers
  - what if all we start out with is a huge, deep parameter space?
    - top level parameter may encode for which of many different solvers to use
  - want a "deep optimization" approach that works entirely automatically
- Hydra: augment an additional portfolio *P* by targeting instances on which *P* performs poorly
- Give SMAC a dynamic performance metric:
  - performance of alg s when s outperforms P;
     performance of P otherwise
  - Intuitively: s scored for marginal contribution to P



### ALGORITHM DESIGN: A Case Study on Spectrum Repacking

[Frechette, Newman, L-B, AAAI 2016; ongoing work]

Empirical Hardness Models

### FCC's "Incentive Auction"



Empirical Hardness Models

#### Thanks to all those who helped make this work possible!

Student leads on the project:



**Alexandre Fréchette** 



*Further students who made contributions to software:* Nick Arnosti; Emily Chen; Ricky Chen; Paul Cernek; Guillaume Saulnier Comte; Alim Virani

#### Others (then) at UBC:

- Chris Cameron
- Holger Hoos
- Frank Hutter
- Ashiqur Khudabukhsh
- Steve Ramage
- James Wright
- Lin Xu

#### Auctionomics:

- Ulrich Gall
- Jon Levin
- Paul Milgrom
- Ilya Segal
- Karen Wrege

#### FCC & associates:

- Melissa Dunford
- Gary Epstein
- Karla Hoffman
- Sasha Javid
- Evan Kwerel
- Rory Molinari
- Brett Tarnutzer
- Venkat Veeramneni

Funding from: Auctionomics; Compute Canada; NSERC Discovery; NSERC E.W.R. Steacie

### Building (& Evaluating) a Feasibility Tester

- Data generated Nov 2015 Feb 2016 using
  - the FCC's Nov 2015 interference constraints
  - the FCC's "smoothed ladder" simulator
  - varying simulation assumptions:
    - how much spectrum is cleared: 126 MHz; 108 MHz; 84 MHz
    - which stations opt to participate
    - these stations' valuations
    - the timeout given to SATFC in the simulation (1; 5; 10; 60 min)
- 128 auctions  $\Rightarrow$  1.4 M instances
  - 6,128 17,764 instances per auction
    - all not solvable by directly augmenting the previous solution
    - about 20% of the problems encountered in full simulations
  - split auctions 102/26 into training/test sets
- Our goal: solve problems within a **one-minute cutoff**

### **Feasibility Testing via MIP Encoding**



### **Feasibility Testing via SAT Encoding**



### **Best Configured Solver**



### **Performance of the Algorithm Portfolio**



### BEYOND WORST-CASE COMPLEXITY: A Case Study on Characterizing SAT Solver Performance On Uniform Random 3-SAT: Beyond the Clauses-to-Variables Ratio

[L-B, Nudelman, Shoham: CP 2002; JACM 2009]
[Nudelman, L-B, Hoos, Devkar, Shoham: CP 2004]
[Xu, Hoos, L-B: CP 2007; AAAI 2012]
[Hutter, Xu, Hoos, L-B: CACM 2014]

lest Solution (mean, CV)

### **SAT Instance Features**

- Problem Size (clauses, variables, clauses/variables, ...)
- Syntactic properties (e.g., positive/negative clause ratio)

Var

Var

- Statistics of various constraint graphs
  - factor graph
  - clause–clause graph
  - variable-variable graph
- Knuth's search space size estimate
- Cumulative number of unit propagations at different depths (SATz heuristic)
- Local search probing
- Linear programming relaxation







Var

Var

Var

### **Example: Uniform-Random 3-SAT at Phase Transition**



Clauses-to-Variables Ratio

**Beyond Worst Case Analysis** 

### **Fixed Ratio Prediction (Kcnfs)**



### **Feature Importance – Fixed Ratio**

| Variable                             | Cost of<br>Omission |
|--------------------------------------|---------------------|
| SapsBestSolMean <sup>2</sup>         | 100                 |
| SapsBestSolMean · MeanDPLLDepth      | 74                  |
| GsatBestSolCV · MeanDPLLDepth        | 21                  |
| VCGClauseMean · GsatFirstLMRatioMean | 9                   |

### Feature Importance – Fixed Ratio



### **Feature Importance – Fixed Ratio**



### Uniform-Random 3-SAT, Variable Ratio



Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio

### **Hierarchical Hardness Models**

- Conditioning on satisfiability of the instance: clauses/variables unimportant; single-feature models become sufficient
  - Satisfiable: local search probing
  - Unsatisfiable: search space size
- Hierarchical hardness model [Xu, Hoos, Leyton-Brown, 2007]:
  - 1. Predict satisfiability status
  - 2. Use this prediction as a feature to combine the predictions of SAT-only and UNSAT-only models
- Not necessarily easy: SAT-only and UNSAT-only models can make large errors when given wrong data



### **Empirical Performance of HHMs**



Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio

### Predicting Satisfiability Status (fixed-ratio 3-SAT)



### **Can We Really Predict Satisfiability Status?**

- Consider phase-transition instances varying from 100 variables (solvable in milliseconds) to 600 variables (solvable in a day).
  - Does prediction accuracy fall to random guessing on larger problems?
  - If not, can we identify an easily comprehensible model that would offer theoretical insight?
- **Restrict models** in three ways:
  - train only on **100-variable** instances
  - consider only decision trees with at most two decision nodes
  - omit all probing features
    - disproportionately effective on small instances
    - based on complex, heuristic algorithms

### **A Simple Model Beats Random Guessing**



**Predictive accuracies** for instances falling into the three regions were between 60% and 70% [A]; a bit more than 50% [B]; and between 70% and 80% [C].

This model was trained only on 100-variable problems. No evidence that accuracy falls with size (pairwise Mann-Whitney U tests)

### **A Simple Model Beats Random Guessing**



#### LPSLACK\_coeff\_variation

- based on SAT's LP relaxation
- for each i with LP solution value  $S_i \in [0,1]$ , LPSLACK<sub>i</sub> is defined as min $\{1 - S_i, S_i\}$
- LPSLACK\_coeff\_variation is the coefficient of variation (standard deviation divided by mean) of the vector LPSLACK

#### POSNEG\_ratio\_var\_mean

- For each variable *i* with  $P_i$  positive occurrences and  $N_i$  negative occurrences, POSNEG \_ ratio \_ var<sub>i</sub> is  $\left| 0.5 \frac{P_i}{P_i + N_i} \right|$ .
- POSNEG\_ratio\_var\_mean is then the average over elements of the vector

Both features normalized to have mean 0, standard deviation 1 on the training set.

To evaluate on a test set instance of a new size:

- randomly sampled many instances of that size
- estimated new normalization factors
- used these factors to compute the features for the test instance

### Conclusions

- Empirical Hardness Models
  - a statistically rigorous approach to characterizing the difficulty of solving a given family of problems using available methods
  - surprisingly effective in practice, across various domains
- EHMs are also useful for algorithm design
  - model-based algorithm configuration
  - automatic design of algorithm portfolios
- Analysis of learned models can open avenues for theoretical investigations beyond the worst case