Distribution-specific analysis of nearest neighbor search and classification

Sanjoy Dasgupta University of California, San Diego

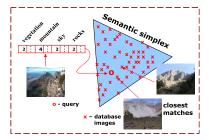
Nearest neighbor

The primeval approach to information retrieval and classification.

Example: image retrieval and classification.

Given a query image, find similar images in a database using NN search.

E.g. Fixed-dimensional "semantic representation":



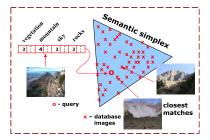
Nearest neighbor

The primeval approach to information retrieval and classification.

Example: image retrieval and classification.

Given a query image, find similar images in a database using NN search.

E.g. Fixed-dimensional "semantic representation":



Basic questions:

- Statistical: error analysis of NN classification
- Algorithmic: finding the NN quickly

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0,1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0, 1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

Classical theory for NN (or k-NN) classifier based on n data points:

• Can we give a non-asymptotic error bound depending only on n, p?

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0,1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

Classical theory for NN (or k-NN) classifier based on n data points:

• Can we give a non-asymptotic error bound depending only on *n*, *p*? No.

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0,1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

Classical theory for NN (or k-NN) classifier based on n data points:

- Can we give a non-asymptotic error bound depending only on *n*, *p*? No.
- Smoothness assumption: η is α -Holder continuous:

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0,1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

Classical theory for NN (or k-NN) classifier based on n data points:

- Can we give a non-asymptotic error bound depending only on *n*, *p*? No.
- Smoothness assumption: η is α -Holder continuous:

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

Then: error bound $O(n^{-\alpha/(2\alpha+p)})$.

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0,1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

Classical theory for NN (or k-NN) classifier based on n data points:

- Can we give a non-asymptotic error bound depending only on *n*, *p*? No.
- Smoothness assumption: η is α -Holder continuous:

$$|\eta(\mathbf{x}) - \eta(\mathbf{x}')| \leq L \|\mathbf{x} - \mathbf{x}'\|^{\alpha}$$

Then: error bound $O(n^{-\alpha/(2\alpha+p)})$.

• This is "optimal".

The data distribution:

- Data points X are drawn from a distribution μ on \mathbb{R}^p
- Labels $Y \in \{0,1\}$ follow $\Pr(Y = 1 | X = x) = \eta(x)$.

Classical theory for NN (or k-NN) classifier based on n data points:

- Can we give a non-asymptotic error bound depending only on *n*, *p*? No.
- Smoothness assumption: η is α -Holder continuous:

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

Then: error bound $O(n^{-\alpha/(2\alpha+p)})$.

• This is "optimal".

There exists a distribution with parameter $\boldsymbol{\alpha}$ for which this bound is achieved.

Goals

What we need for nonparametric estimators like NN:

1 Bounds that hold without any assumptions.

Use these to determine parameters that truly govern the difficulty of the problem.

2 How do we know when the bounds are tight enough? When the lower and upper bounds are comparable for every instance.

The complexity of nearest neighbor search

Given a data set of *n* points in \mathbb{R}^p , build a data structure for efficiently answering subsequent nearest neighbor queries *q*.

- Data structure should take space O(n)
- Query time should be o(n)

The complexity of nearest neighbor search

Given a data set of *n* points in \mathbb{R}^p , build a data structure for efficiently answering subsequent nearest neighbor queries *q*.

- Data structure should take space O(n)
- Query time should be o(n)

Troubling example: exponential dependence on dimension? For any 0 $<\epsilon<$ 1,

- Pick $2^{O(\epsilon^2 p)}$ points uniformly from the unit sphere in \mathbb{R}^p
- With high probability, all interpoint distances are $(1\pm\epsilon)\sqrt{2}$

For data set $S \subset \mathbb{R}^p$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x-q\| \leq c \cdot \min_{z \in S} \|z-q\|.$$

For data set $S \subset \mathbb{R}^p$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x-q\| \leq c \cdot \min_{z \in S} \|z-q\|.$$

Locality-sensitive hashing (Indyk, Motwani, Andoni):

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}

For data set $S \subset \mathbb{R}^p$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x-q\| \leq c \cdot \min_{z \in S} \|z-q\|.$$

Locality-sensitive hashing (Indyk, Motwani, Andoni):

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}

Is "c" a good measure of the hardness of the problem?

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

The MNIST data set of handwritten digits:

What % of *c*-approximate nearest neighbors have the wrong label?

						2.0
Error rate (%)	3.1	9.0	18.4	29.3	40.7	51.4

Goals

What we need for nonparametric estimators like NN:

1 Bounds that hold without any assumptions.

Use these to determine parameters that truly govern the difficulty of the problem.

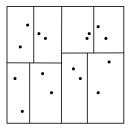
2 How do we know when the bounds are tight enough? When the lower and upper bounds are comparable for every instance.

Talk outline

1 Complexity of NN search

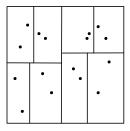
2 Rates of convergence for NN classification

The *k*-d tree: a hierarchical partition of \mathbb{R}^p



Defeatist search: return NN in query point's leaf node.

The *k*-d tree: a hierarchical partition of \mathbb{R}^p



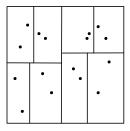
Defeatist search: return NN in query point's leaf node.

Problem: This might fail to return the true NN.

Heuristics for reducing failure probability in high dimension:

- Random split directions (Liu, Moore, Gray, and Kang)
- Overlapping cells (Maneewongvatana and Mount; Liu et al)

The k-d tree: a hierarchical partition of \mathbb{R}^{p}



Defeatist search: return NN in query point's leaf node.

Problem: This might fail to return the true NN.

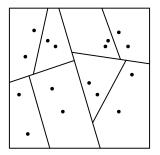
Heuristics for reducing failure probability in high dimension:

- Random split directions (Liu, Moore, Gray, and Kang)
- Overlapping cells (Maneewongvatana and Mount; Liu et al)

Popular option: forests of randomized trees (e.g. FLANN)

Heuristic 1: Random split directions

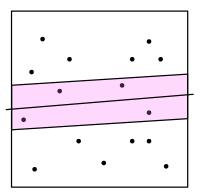
In each cell of the tree, pick split direction uniformly at random from the unit sphere in \mathbb{R}^p



Perturbed split: after projection, pick $\beta \in_R [1/4, 3/4]$ and split at the β -fractile point.

Heuristic 2: Overlapping cells

Overlapping split points: $1/2 - \alpha$ fractile and $1/2 + \alpha$ fractile

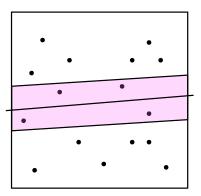


Procedure:

- Route data (to multiple leaves) using overlapping splits
- Route query (to single leaf) using median split

Heuristic 2: Overlapping cells

Overlapping split points: $1/2 - \alpha$ fractile and $1/2 + \alpha$ fractile

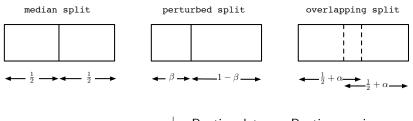


Procedure:

- Route data (to multiple leaves) using overlapping splits
- Route query (to single leaf) using median split

Spill tree has size $n^{1/(1-\lg(1+2\alpha))}$: e.g. $n^{1.159}$ for $\alpha = 0.05$.

Two randomized partition trees



	Routing data	Routing queries
<i>k</i> -d tree	Median split	Median split
Random projection tree	Perturbed split	Perturbed split
Spill tree	Overlapping split	Median split

Failure probability

Pick any data set x_1, \ldots, x_n and any query q.

- Let $x_{(1)}, \ldots, x_{(n)}$ be the ordering of data by distance from q.
- Probability of not returning the NN depends directly on

$$\Phi(q, \{x_1, \ldots, x_n\}) = \frac{1}{n} \sum_{i=2}^n \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

(This probability is over the randomization in tree construction.)

- Spill tree: failure probability $\propto \Phi$
- RP tree: failure probability $\propto \Phi \log 1/\Phi$

• y

Let $q \in \mathbb{R}^p$ be the query, x its nearest neighbor and y some other point:

||q-x|| < ||q-y||.

Bad event: when the data is projected onto a random direction U, point y falls between q and x.

• y

Let $q \in \mathbb{R}^p$ be the query, x its nearest neighbor and y some other point:

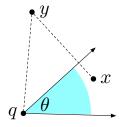
||q-x|| < ||q-y||.

Bad event: when the data is projected onto a random direction U, point y falls between q and x.

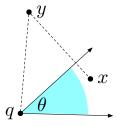
• x What is the probability of this? q• U

This is a 2-d problem, in the plane defined by q, x, y.

- Only care about projection of U on this plane
- Projection of U is a random direction in this plane



Probability that U falls in this bad region is $\theta/2\pi$.



Probability that U falls in this bad region is $\theta/2\pi$.

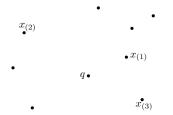
Lemma

Pick any three points $q, x, y \in \mathbb{R}^p$ such that ||q - x|| < ||q - y||. Pick U uniformly at random from the unit sphere S^{p-1} . Then

$$Pr(y \cdot U \text{ falls between } q \cdot U \text{ and } x \cdot U) \leq \frac{1}{2} \frac{\|q - x\|}{\|q - y\|}$$

(Tight within a constant unless the points are almost-collinear)

Random projection of a set of points



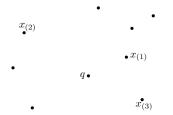
Lemma

Pick any x_1, \ldots, x_n and any query q. Pick $U \in_R S^{p-1}$ and project all points onto direction U. Expected fraction of projected x_i falling between q and $x_{(1)}$ is at most

$$\frac{1}{2n} \sum_{i=2}^{n} \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|} = \frac{1}{2} \Phi$$

Proof: Probability that $x_{(i)}$ falls between q and $x_{(1)}$ is at most $\frac{1}{2} \frac{\|q-x_{(1)}\|}{\|q-x_{(i)}\|}$. Now use linearity of expectation.

Random projection of a set of points



Lemma

Pick any x_1, \ldots, x_n and any query q. Pick $U \in_R S^{p-1}$ and project all points onto direction U. Expected fraction of projected x_i falling between q and $x_{(1)}$ is at most

$$\frac{1}{2n} \sum_{i=2}^{n} \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|} = \frac{1}{2} \Phi$$

Proof: Probability that $x_{(i)}$ falls between q and $x_{(1)}$ is at most $\frac{1}{2} \frac{\|q-x_{(1)}\|}{\|q-x_{(i)}\|}$. Now use linearity of expectation.

Bad event: this fraction is $> \alpha n$. Happens with probability $\leq \Phi/2\alpha$.

Failure probability of NN search

Fix any data points x_1, \ldots, x_n and query q. For $m \leq n$, define

$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

Failure probability of NN search

Fix any data points x_1, \ldots, x_n and query q. For $m \leq n$, define

$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

Theorem

Suppose a randomized spill tree is built for data set x_1, \ldots, x_n with leaf nodes of size n_o . For any query q, the probability that the NN query does not return $x_{(1)}$ is at most

$$\frac{1}{2\alpha}\sum_{i=0}^{\ell}\Phi_{\beta^{i}n}(q,\{x_{1},\ldots,x_{n}\})$$

where $\beta = 1/2 + \alpha$ and $\ell = \log_{1/\beta}(n/n_o)$ is the tree's depth.

- RP tree: same result, with $\beta = 3/4$ and $\Phi \rightarrow \Phi \ln(2e/\Phi)$
- Extension to k nearest neighbors is immediate

Need to bound

$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

What structural assumptions on the data might be suitable?

Need to bound

$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

What structural assumptions on the data might be suitable?

Set $S \subset \mathbb{R}^p$ has doubling dimension k if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^k balls of half the radius.

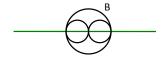
Need to bound

$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

What structural assumptions on the data might be suitable?

Set $S \subset \mathbb{R}^p$ has doubling dimension k if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^k balls of half the radius.

Example: S = line has doubling dimension 1.



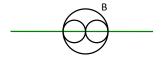
Need to bound

$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

What structural assumptions on the data might be suitable?

Set $S \subset \mathbb{R}^p$ has doubling dimension k if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^k balls of half the radius.

Example: S = line has doubling dimension 1.



Also generalizes k-dimensional flat, k-dimensional Riemannian submanifold of bounded curvature, k-sparse sets.

NN search in spaces of bounded doubling dimension

Need to bound

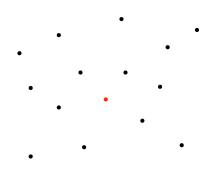
$$\Phi_m(q, \{x_1, \ldots, x_n\}) = \frac{1}{m} \sum_{i=2}^m \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

Suppose:

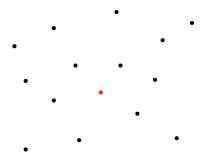
- Pick any n+1 points in \mathbb{R}^p with doubling dimension k
- Randomly pick one of them as q; the rest are x_1,\ldots,x_n Then $\mathbb{E}\Phi_m \leq 1/m^{1/k}$.

For constant expected failure probability, use spill tree with leaf size $n_o = O(k^k)$, and query time $O(n_o + \log n)$.

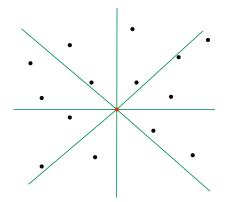
Pick any *n* points in \mathbb{R}^{p} . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor?



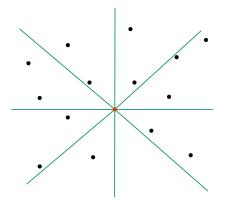
Pick any *n* points in \mathbb{R}^{p} . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor? At most c^{p} , for some constant *c* [Stone].



Pick any *n* points in \mathbb{R}^p . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor? At most c^p , for some constant *c* [Stone].



Pick any *n* points in \mathbb{R}^p . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor? At most c^p , for some constant *c* [Stone].



Can (almost) replace p by the doubling dimension [Clarkson].

Open problems

1 Formalizing helpful structure in data.

What are other types of structure in data for which

$$\Phi(q, \{x_1, \ldots, x_n\}) = \frac{1}{n} \sum_{i=2}^n \frac{\|q - x_{(1)}\|}{\|q - x_{(i)}\|}$$

can be bounded?

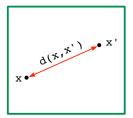
2 Empirical study of Φ .

Is Φ a good predictor of which NN search problems are harder than others?

Talk outline

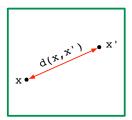
- 1 Complexity of NN search
- 2 Rates of convergence for NN classification

Nearest neighbor classification



Data points lie in a metric space (\mathcal{X}, d) .

Nearest neighbor classification



Data points lie in a metric space (\mathcal{X}, d) .

Given n data points $(x_1, y_1), \ldots, (x_n, y_n)$, how to answer a query x?

- 1-NN returns the label of the nearest neighbor of x amongst the x_i.
- *k*-NN returns the majority vote of the *k* nearest neighbors.
- Often let k grow with n.

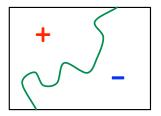
Statistical learning theory setup

Training points come from the same source as future query points:

- Underlying measure μ on $\mathcal X$ from which all points are generated.
- Label Y of X follows distribution $\eta(x) = \Pr(Y = 1 | X = x)$.
- The Bayes-optimal classifier

$$h^*(x) = \left\{ egin{array}{cc} 1 & ext{if } \eta(x) > 1/2 \ 0 & ext{otherwise} \end{array}
ight.$$

has the minimum possible error, $R^* = \mathbb{E}_X \min(\eta(X), 1 - \eta(X))$.



Statistical learning theory setup

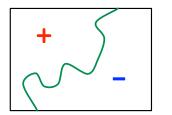
Training points come from the same source as future query points:

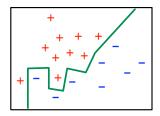
- Underlying measure μ on $\mathcal X$ from which all points are generated.
- Label Y of X follows distribution $\eta(x) = \Pr(Y = 1 | X = x)$.
- The Bayes-optimal classifier

$$h^*(x) = \left\{ egin{array}{cc} 1 & ext{if } \eta(x) > 1/2 \ 0 & ext{otherwise} \end{array}
ight.,$$

has the minimum possible error, $R^* = \mathbb{E}_X \min(\eta(X), 1 - \eta(X))$.

• Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.





Let $h_{n,k}$ be the *k*-NN classifier based on *n* labeled data points. **1** Bounding the error of $h_{n,k}$.

Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.

1 Bounding the error of $h_{n,k}$.

Assumption-free bounds on $Pr(h_{n,k}(X) \neq h^*(X))$.

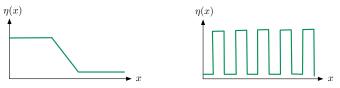
Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.

1 Bounding the error of $h_{n,k}$.

Assumption-free bounds on $Pr(h_{n,k}(X) \neq h^*(X))$.

Smoothness.

The smoothness of $\eta(x) = \Pr(Y = 1 | X = x)$ matters:



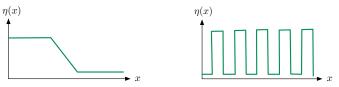
Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.

1 Bounding the error of $h_{n,k}$.

Assumption-free bounds on $Pr(h_{n,k}(X) \neq h^*(X))$.

Smoothness.

The smoothness of $\eta(x) = \Pr(Y = 1 | X = x)$ matters:



• A notion of smoothness tailor-made for NN.

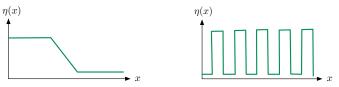
Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.

1 Bounding the error of $h_{n,k}$.

Assumption-free bounds on $Pr(h_{n,k}(X) \neq h^*(X))$.

Smoothness.

The smoothness of $\eta(x) = \Pr(Y = 1 | X = x)$ matters:



- A notion of smoothness tailor-made for NN.
- Upper and lower bounds that are qualitatively similar for **all** distributions in the same smoothness class.

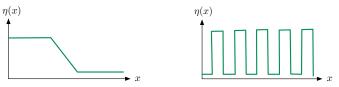
Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.

1 Bounding the error of $h_{n,k}$.

Assumption-free bounds on $Pr(h_{n,k}(X) \neq h^*(X))$.

Smoothness.

The smoothness of $\eta(x) = \Pr(Y = 1 | X = x)$ matters:



- A notion of smoothness tailor-made for NN.
- Upper and lower bounds that are qualitatively similar for **all** distributions in the same smoothness class.

3 Consistency of NN

Earlier work: Universal consistency in \mathbb{R}^p [Stone]

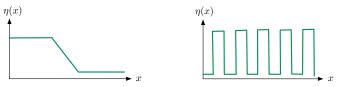
Let $h_{n,k}$ be the k-NN classifier based on n labeled data points.

1 Bounding the error of $h_{n,k}$.

Assumption-free bounds on $Pr(h_{n,k}(X) \neq h^*(X))$.

Smoothness.

The smoothness of $\eta(x) = \Pr(Y = 1 | X = x)$ matters:

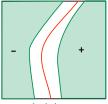


- A notion of smoothness tailor-made for NN.
- Upper and lower bounds that are qualitatively similar for **all** distributions in the same smoothness class.

3 Consistency of NN

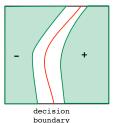
Earlier work: Universal consistency in \mathbb{R}^{p} [Stone] Now: Universal consistency in a richer family of metric spaces.

For sample size *n*, can identify positive and negative regions that will reliably be classified:



decision boundary

For sample size *n*, can identify positive and negative regions that will reliably be classified:

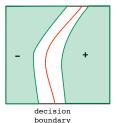


- For any ball *B*, let $\mu(B)$ be its probability mass and $\eta(B)$ its average η -value, i.e. $\eta(B) = \frac{1}{\mu(B)} \int_B \eta \, d\mu$.
- *Probability-radius*: Grow a ball around x until probability mass $\geq p$:

$$r_p(x) = \inf\{r : \mu(B(x,r)) \ge p\}.$$

Probability-radius of interest: p = k/n.

For sample size *n*, can identify positive and negative regions that will reliably be classified:



• For any ball *B*, let $\mu(B)$ be its probability mass and $\eta(B)$ its average η -value, i.e. $\eta(B) = \frac{1}{\mu(B)} \int_B \eta \, d\mu$.

• *Probability-radius*: Grow a ball around x until probability mass $\geq p$:

$$r_p(x) = \inf\{r : \mu(B(x,r)) \ge p\}.$$

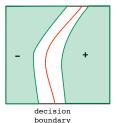
Probability-radius of interest: p = k/n.

• Reliable positive region:

$$\mathcal{X}^+_{
ho,\Delta} = \{x: \eta(B(x,r)) \geq rac{1}{2} + \Delta ext{ for all } r \leq r_{
ho}(x)\}$$

where $\Delta \approx 1/\sqrt{k}$. Likewise negative region, $\mathcal{X}^{-}_{p,\Delta}$.

For sample size *n*, can identify positive and negative regions that will reliably be classified:



• For any ball *B*, let $\mu(B)$ be its probability mass and $\eta(B)$ its average η -value, i.e. $\eta(B) = \frac{1}{\mu(B)} \int_B \eta \, d\mu$.

• *Probability-radius*: Grow a ball around x until probability mass $\geq p$:

$$r_p(x) = \inf\{r : \mu(B(x,r)) \ge p\}.$$

Probability-radius of interest: p = k/n.

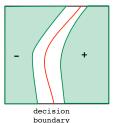
• Reliable positive region:

$$\mathcal{X}^+_{
ho,\Delta} = \{x: \eta(\mathcal{B}(x,r)) \geq rac{1}{2} + \Delta ext{ for all } r \leq r_{
ho}(x)\}$$

where $\Delta \approx 1/\sqrt{k}$. Likewise negative region, $\mathcal{X}^{-}_{p,\Delta}$.

• Effective boundary: $\partial_{p,\Delta} = \mathcal{X} \setminus (\mathcal{X}^+_{p,\Delta} \cup \mathcal{X}^-_{p,\Delta}).$

For sample size *n*, can identify positive and negative regions that will reliably be classified:



- For any ball *B*, let $\mu(B)$ be its probability mass and $\eta(B)$ its average η -value, i.e. $\eta(B) = \frac{1}{\mu(B)} \int_B \eta \, d\mu$.
- *Probability-radius*: Grow a ball around x until probability mass $\geq p$:

$$r_p(x) = \inf\{r : \mu(B(x,r)) \ge p\}.$$

Probability-radius of interest: p = k/n.

Reliable positive region:

$$\mathcal{X}^+_{
ho,\Delta} = \{x: \eta(\mathcal{B}(x,r)) \geq rac{1}{2} + \Delta ext{ for all } r \leq r_{
ho}(x)\}$$

where $\Delta \approx 1/\sqrt{k}$. Likewise negative region, $\mathcal{X}^{-}_{p,\Delta}$.

• Effective boundary: $\partial_{p,\Delta} = \mathcal{X} \setminus (\mathcal{X}^+_{p,\Delta} \cup \mathcal{X}^-_{p,\Delta}).$

Roughly, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \mu(\partial_{p,\Delta}).$

 The usual smoothness condition in ℝ^p: η is α-Holder continuous if for some constant L, for all x, x',

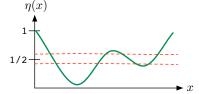
$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}.$$

 The usual smoothness condition in ℝ^p: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

• Mammen-Tsybakov β -margin condition: For some constant C, for any t, we have $\mu(\{x : |\eta(x) - 1/2| \le t\}) \le Ct^{\beta}$.

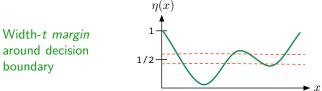
Width-*t margin* around decision boundary



 The usual smoothness condition in ℝ^p: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

 Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have μ({x : |η(x) − 1/2| ≤ t}) ≤ Ct^β.

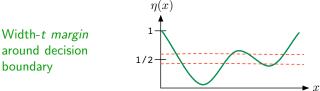


• Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a *regular* set with $0 < \mu_{min} < \mu < \mu_{max}$. Then $\mathbb{E}R_n - R^*$ is $\Omega(n^{-\alpha(\beta+1)/(2\alpha+p)})$.

 The usual smoothness condition in ℝ^p: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

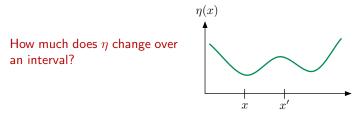
 Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have μ({x : |η(x) − 1/2| ≤ t}) ≤ Ct^β.



• Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a *regular* set with $0 < \mu_{min} < \mu < \mu_{max}$. Then $\mathbb{E}R_n - R^*$ is $\Omega(n^{-\alpha(\beta+1)/(2\alpha+p)})$.

Under these conditions, for suitable (k_n) , this rate is achieved by k_n -NN.

A better smoothness condition for NN



- The usual notions relate this to |x x'|.
- For NN: more sensible to relate to $\mu([x, x'])$.

A better smoothness condition for NN

How much does η change over an interval?

- The usual notions relate this to |x x'|.
- For NN: more sensible to relate to μ([x, x']).

We will say η is α -smooth in metric measure space (\mathcal{X}, d, μ) if for some constant *L*, for all $x \in \mathcal{X}$ and r > 0,

 $|\eta(x) - \eta(B(x,r))| \leq L \mu(B(x,r))^{\alpha},$

where $\eta(B) = \text{average } \eta \text{ in ball } B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

A better smoothness condition for NN

How much does η change over an interval?

- The usual notions relate this to |x x'|.
- For NN: more sensible to relate to μ([x, x']).

We will say η is α -smooth in metric measure space (\mathcal{X}, d, μ) if for some constant *L*, for all $x \in \mathcal{X}$ and r > 0,

$$|\eta(x) - \eta(B(x,r))| \leq L \mu(B(x,r))^{lpha},$$

where $\eta(B) = \text{average } \eta \text{ in ball } B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

 η is α -Holder continuous in \mathbb{R}^p , μ bounded below $\Rightarrow \eta$ is (α/p) -smooth.

Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on n training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α -smooth in (\mathcal{X}, d, μ) . Then for any n, k,

1 For any $\delta > 0$, with probability at least $1 - \delta$ over the training set, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1\sqrt{\frac{1}{k}\ln\frac{1}{\delta}}\})$ under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.

2
$$\mathbb{E}_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_3 \sqrt{\frac{1}{k}}\}).$$

Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on n training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α -smooth in (\mathcal{X}, d, μ) . Then for any n, k,

1 For any $\delta > 0$, with probability at least $1 - \delta$ over the training set, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1 \sqrt{\frac{1}{k} \ln \frac{1}{\delta}}\})$ under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.

2
$$\mathbb{E}_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_3 \sqrt{\frac{1}{k}}\}).$$

These upper and lower bounds are qualitatively similar for *all* smooth conditional probability functions:

the probability mass of the width- $\frac{1}{\sqrt{k}}$ margin around the decision boundary.

Universal consistency in metric spaces

- Let R_n be error of k-NN classifier and R^* the Bayes-optimal error.
- Universal consistency: $R_n \rightarrow R^*$ (for a suitable schedule of k), no matter what the distribution.
- Stone (1977): universal consistency in \mathbb{R}^{p} .

Universal consistency in metric spaces

- Let R_n be error of k-NN classifier and R^* the Bayes-optimal error.
- Universal consistency: $R_n \rightarrow R^*$ (for a suitable schedule of k), no matter what the distribution.
- Stone (1977): universal consistency in \mathbb{R}^{p} .

Let (\mathcal{X}, d, μ) be a metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$\lim_{r\downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu = f(x)$$

for almost all (μ -a.e.) $x \in \mathcal{X}$.

- If $k_n \to \infty$ and $k_n/n \to 0$, then $R_n \to R^*$ in probability.
- If in addition $k_n/\log n \to \infty$, then $R_n \to R^*$ almost surely.

Universal consistency in metric spaces

- Let R_n be error of k-NN classifier and R^* the Bayes-optimal error.
- Universal consistency: $R_n \rightarrow R^*$ (for a suitable schedule of k), no matter what the distribution.
- Stone (1977): universal consistency in \mathbb{R}^{p} .

Let (\mathcal{X}, d, μ) be a metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$\lim_{r\downarrow 0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}f\ d\mu = f(x)$$

for almost all (μ -a.e.) $x \in \mathcal{X}$.

- If $k_n \to \infty$ and $k_n/n \to 0$, then $R_n \to R^*$ in probability.
- If in addition $k_n/\log n \to \infty$, then $R_n \to R^*$ almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling metric measure spaces.

Open problems

() Are there metric spaces in which k-NN fails to be consistent?

Open problems

Are there metric spaces in which *k*-NN fails to be consistent?
 Consistency in more general distance spaces.