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Graph Partitioning problems

Goal:  Divide V(G) into disjoint sets (clusters)

Minimize  edges across clusters, subject to  <constraints>

G(V,E)

Algorithm



Graph Partitioning problems

Goal:  Divide V(G) into disjoint sets (clusters)

Minimize  edges across clusters, subject to  <constraints>

• Balanced Cut 

G(V,E)

Algorithm

• Balanced K-way partitioning
• Sparsest cut
• Multicut
• Small set expansion

Divide V(G) into 
two roughly equal pieces

n=|V|



Graph Partitioning problems

• NP-hard to solve exactly

• Central area of study in approximation algorithms

• Balanced Cut 
• Multicut
• Sparsest cut           
• Small set expansion   

Only poly(log n) approximation algorithms known (worst-case)
Can we do better using Average-case analysis?

[LR88,ARV04]
[GVY93]
[AR95,LLR95,ALN05]
[RST10,BFKMNNS11]

O( log 𝑛)

O( log 𝑛 )

O log 𝑛

O( log 𝑛 )

• No PTAS [Khot02,GVY93,AMS07]
• No constant approximations  assuming  UGC and variants 

General Sparsest cut, Multicut [KV05] , Balanced Cut [RST11]      
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Approximation ratio = max
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝐼

𝐴𝑙𝑔(𝐼)

𝑂𝑃𝑇(𝐼)



Average-case Analysis

Average-case:  Probability Distribution over instances

Average-case approximation ratio 𝛼 w.r.t. distribution 𝒟 :

Prob
𝐼 ←𝒟

𝐶𝑜𝑠𝑡𝐴𝑙𝑔 𝐼

𝐶𝑜𝑠𝑡𝑂𝑃𝑇 𝐼
≤ 𝛼 = 1 − 𝑛−𝜔(1)

Main Challenges

• Modeling Challenge: Rich enough to capture real-world instances     
e.g. uniform distribution  not usually  realistic.  

• Algorithmic Challenge: Want much better than worst-case



Models for Clustering Graphs

Collaboration network in a research lab
[Newman. Nature Physics’12]

Nice clustering of vertices with:
• Many edges inside clusters (related nodes)
• Few edges between clusters (unrelated nodes)

Protein-protein interaction graph
[Palla, Derényi, Farkas and Vicsek. Nature’ 05]

Graph represents similarity information between items (vertices)

Distribution 𝓓 generates such instances 



Goal 1: Approximating Objective

• With ``nice’’ partitioning
• Many edges inside clusters
• Few edges between clusters

Distribution 𝓓 generates instances

RL

G

Planted Partition/Cut: 𝐻(𝐿, 𝑅)

RL

H

Given: Graph 𝐺(𝑉, 𝐸)

Goal: Find a (balanced) partition

Performance of algorithm:
Cost of cut compared to planted cut 𝐸𝐻 = 𝐸𝐺(𝐿, 𝑅)



Goal 2: Learning Probabilistic model

Assumption: Ground truth probabilistic model generating data

Learning goal: Can we learn the probabilistic model i.e. 
recover the communities/planted partition from generated graph?

Analogous to Mixture of 
Gaussians for clustering points

Graph models for 
community detection



A simple random model : SBM

Two communities 𝐿, 𝑅 of equal size 𝑛 (𝐿, 𝑅 not known to us)

𝒒 =
𝒃

𝒏

𝒑 =
𝒂

𝒏

RL 𝒂 > 𝒃

Each edge chosen 
independently at random with 

probability 𝑝 =
𝑎

𝑛
or 𝑞 =

𝑏

𝑛

depending on inside cluster or 
between clusters.

𝐿 = 𝑛 𝑅 = 𝑛

𝒑

Stochastic Block Model (SBM): above model represented as 
SBM(n,2,a,b)

Learning Goal: Recover 𝐿, 𝑅 i.e. the underlying community 
structure in poly(N) time. 



Stochastic Block Model 𝑆𝐵𝑀(𝑛, 𝑘, 𝑎, 𝑏)

𝑘 communities of equal size 𝑛. Number of vertices 𝑁 = 𝑛𝑘.

𝒂 > 𝒃

Every edge chosen independently at random.

𝑃𝑖
∗ = 𝑛

𝑃𝑗
∗ = 𝑛

𝑎= 𝔼ሾdegree of a vertex

Most commonly used probabilistic model for clustering graphs

Number of edges

𝑚 ≈
𝑁𝑎

2
+

𝑁 𝑘−1 𝑏

2



Prior Work on Learning SBMs

• Also called Planted Partitioning models in CS
[BCLS 87],[Bop 88], [JS 92], [DI 98], [FK’99], [McS02], [Coj 04]…

• Also been generalized to handle different degrees, intercluster/ 
intra-cluster probabilities etc. [DHM’04, CL’09, CCT’12,AS’15]

• In Statistics, Social Networks, ML... 
[WBB’76], [HLL’83], [SL’90], [NJW’02], [ST’07], [L’07], [DKMZ’09]…

Three broad classes of results:

1. Exact Recovery:

2. Partial Recovery:

3. Weak Recovery:

Classify each vertex correctly. Need 𝑎 = Ω log 𝑛 .        

Classify better than a random partition. 
Sharp results [Mossel-Neeman-Sly , Massoulie].

Classify 1 − 𝛿 fraction of vertices correctly. 
Works in the sparse regime i.e., 𝑎, 𝑏 = 𝑂(1).        



Learning SBMs Exactly

[Bopanna88, McSherry 02,…] Spectral techniques w.h.p. find 
communities when

k=2: 𝑎 − 𝑏 > 𝐶 (𝑎 + 𝑏) log 𝑛 i.e., 𝑎 = Ω log 𝑛

general k: 𝑎 − 𝑏 > 𝐶 (𝑎 + (𝑘 − 1)𝑏) log 𝑛

[MNS15, ABH14, AS15] Gives sharp characterization (in terms of 𝑎, 𝑏) 
for when exact recovery is possible. 

Classify each vertex correctly. Need 𝑎 = Ω log 𝑛 .        



Sparse Regime

[Coj06] Polytime algorithm that w.h.p. finds min. balanced cut if 

𝑎 − 𝑏 > 𝐶 𝑎 + 𝑏

Partial Recovery [MNS14, CRV 15, AS15]:  Polynomial time algorithm 
that w.h.p. recovers communities with at most 1 − 𝛿 𝑁
misclassified vertices when

Focus of this talk: Partial recovery

𝑎 − 𝑏

𝑎
> 𝐶 𝑘 log 1/𝛿

[AS16] show weak recovery for k-communities if 
𝑎−𝑏

𝑎+𝑏(𝑘−1)
> 1

Weak recovery [MNS’12,MNS’14, Mas’14]: Sharp phase transition for 
when we can find w.h.p. a partition with non-trivial correlation

depending on whether  
𝑎−𝑏

𝑎+𝑏
> 1 (for 𝑘 = 2)



Drawbacks: Theory models vs Practice

Theory vs Practice:  Main criticism against theory (SBM)

Algorithms assume that data generated exactly from model (SBM)!

Dealing with Errors: data is always noisy!

e.g. Input errors, Outliers, Mis-specification

Fundamental criterion for judging learning algorithms

• Can we measure robustness of algorithms to errors?

• Develop algorithmic tools that are more robust



How Robust are Usual Approaches?

Spectral clustering: Project and cluster in space spanned by top 
𝑘-eigenvectors. 

Drawback: Spectral methods are not very robust 
Eigenvectors brittle to noise: can add & delete just O(1) edges. 

• Other algorithms based on counting paths, random walks, 
tensor methods are also not robust. 

Maximum Likelihood (ML) estimation: Find the best fit model 
measured in KL divergence (measure of closeness for distributions) 

Drawback: ML estimation is typically NP-hard!

• Heuristics like EM typically get stuck in local optima.



Drawbacks of Random Models

𝒑𝒒 RL

𝒒 > 𝒑

𝐿 = 𝑛/2 𝑅 = 𝑛/2

𝒒

General enough average-case models capturing real-world instances?

Unrealistic properties:

• Too much independence

• Does not have real-world graph properties
– Small cliques, Concentrated degrees

Properties of real-world graphs:
Heavy-tail degree distributions, dense 
subgraphs, high clustering coefficients 
[FFF’97, KRRT’00,NBW’06]

Friendship network



Beyond Simple Random models

1. Realistic average-case models/semi-random models:
[Blum-Spencer, Feige-Kilian]  Incorporate some random choices    

and some adversarial choices in generating input

2. Handling Modeling errors:
Learning a probabilistic model like SBM, 
in the presence of various modeling errors



Monotone Adversaries [Feige-Kilian]

Monotone  [Feige-Kilian’99]:   

Random model + Adversary can      

1. delete edges between clusters

2. add edges inside clusters

𝒂 > 𝒃

𝑃𝑖
∗ = 𝑛

𝑃𝑗
∗ = 𝑛

𝐒𝐁𝐌(𝐧, 𝐤, 𝐚, 𝐛)

Monotone: “Planted” solution is even better

SDPs used to make spectral arguments robust [FK99]:

recovers if 𝑎 − 𝑏 > 𝐶 (𝑎 + 𝑏) log 𝑛 i.e. a > log 𝑛

Extensions to k-way partitioning using convex relaxations 
[CSX’12,ABKK15]



Monotone Adversaries

Model:  Random model + Adversary deletes edges between clusters & 
add edges inside clusters

Models still assume lot of independence: essentially, each edge 
chosen independently at random

Lower bounds for monotone adversaries [MPW 2016]:
Give first separation from simple random model (SBM)

Weak-recovery impossible when  𝑎 − 𝑏 < 𝑐′ 𝑎 + 𝑏 where 𝑐’ > 1

Open Question. Simple algorithm (non-SDP) e.g. spectral that are 
robust to monotone adversaries? 

Monotone: “Planted” solution is even better



Semi-random model in 
[Makarychev-Makarychev-V’12]

1. Inside cluster edges: arbitrary

Perfect (arbitrary) partitioning + random noise

RL 𝒑

2. Edges between clusters: random*

Model

Aim: To capture arbitrary correlations inside clusters 

*Like [FK99], adversary can also delete some between clusters edges 𝐸𝐻

Theorem.  Polytime algorithm finds a balanced cut (𝑆, ҧ𝑆) which 

w.h.p. cuts  O 𝐸𝐻 + 𝑛 log 𝑛 edges i.e.,  

• O(1) approximation if 𝐸𝐻 = Ω 𝑛 log 𝑛

H



Recovering the Planted Partition

Algorithms give balanced cut (𝑆, 𝑉\𝑆) with cost ≤ 𝐶 ⋅ |𝐸𝐻|

Recovery : How close is to ground truth 𝑳, 𝑹 ?

Can not recover in general !
Need assumptions about 

expansion inside the clusters 

G(n,p)

G(n,p)

L R

S

p

Partial Recovery [MMV12].  If  expansion inside L > C. expansion(L,R), 

recover upto accuracy 𝜌𝑛 vertices w.h.p.  if   𝑎 > log 𝑛 Τ1 2/𝜌

Uses algorithm for semi-random Small Set expansion recursively



Random Permutation Invariant Edges  
(PIE) model   [Makarychev-Makarychev-V’14]

G H

+=

Model: 

1. Inside cluster edges F: arbitrary / worst-case 

2. Between cluster edges H: arbitrary/ worst-case

But this is worst-case instance !!

2. Between cluster edges H ← 𝓓 ,
𝓓 : any distribution invariant to permutations of L and R

F

RL RLRL

(or) 𝒟 is symmetric w.r.t. vertices in L, and vertices in R



Advantages of Model

H

+=

F

RL RLR

• More general than all previous models

• Intra-cluster: worst-case. Inter-cluster: capture complex distributions

• Allows properties of real-world graphs like large cliques, dense 

subgraphs, clustering coefficient etc.

L

Capturing independence between F and H

G



Result: Constant factor approximation 
algorithms in PIE model

Theorem [MMV’14]. Polytime algorithm that finds a balanced cut 
(𝑆, ҧ𝑆) which w.h.p.  cuts   𝑂 𝐸𝐻 + 𝑛 log2 𝑛 edges 

• O(1) approximation if 𝐸𝐻 = Ω(𝑛 log2 𝑛)*

Interpretation: Min Balanced Cut is easy on any average-case 
model that satisfies the property of permutation invariance. 

Open Questions. 
1. Similar guarantees for 𝑘-way partitioning?
2. Conditions under which we can learn the model (recover planted 

partition)?



LEARNING WITH MODELING ERRORS



Learning with Modeling Errors

Want to capture the following errors:

• Outliers or corruptions

• Model misspecification

Dealing with Errors: data is always noisy!

e.g. Input errors, Outliers, Mis-specification



Outliers or Input Errors

𝒂 > 𝒃

𝑃𝑖
∗ = 𝑛

𝑃𝑗
∗ = 𝑛

𝐒𝐁𝐌(𝐧, 𝐤, 𝐚, 𝐛)

Graph G generated as follows:

1. 𝐺𝑅 generated from 𝑆𝐵𝑀 𝑛, 𝑘, 𝑎, 𝑏

2. Adversary picks 𝜖1, 𝜖2 ≥ 0

such that 𝜖1 + 𝜖2 = ϵ

3.  Adversary deletes 𝜖2𝑚 edges from 𝐺𝑅
4.  Adversary adds 𝜖1𝑚 edges to the    

remaining graph to get G.

Captures up to 𝜖 fraction of the edges have errors/ corrupted.

• Corruptions can be very correlated.



Model Misspecification in 
KL divergence

• Assumption of Data Analyst: Graph 𝐺(𝑉, 𝐸)
drawn from model i.e.  𝐺~𝑆𝐵𝑀(𝑛, 𝑘, 𝑎, 𝑏)

• What if graph 𝐺 is drawn from 𝑄,

a distribution that is close to 𝑆𝐵𝑀(𝑛, 𝑘, 𝑎, 𝑏)?

KL divergence between probability distributions 𝑃, 𝑄:

𝑑𝐾𝐿 𝑄, 𝑃 = ෍

𝜎∈𝑒𝑣𝑒𝑛𝑡𝑠

𝑄 𝜎 log
𝑃 𝜎

𝑄 𝜎

• Graph is drawn from any distribution Q that is 𝜂𝑚 close in KL to SBM, 
where 𝑚= number of edges. 

• Captures upto 𝑂 𝜂𝑚 adversarial edge additions.
• Edge draws can be dependent.



Robustness Learning Guarantees

• Algorithms tolerates outlier errors up to 𝜖𝑚, model 
specification up to 𝜂𝑚 (think of 𝜖, 𝜂~0.01). 

Theorem[MMV16]. Given instance drawn from any distribution that 
is (i) 𝜂𝑚 close to 𝑆𝐵𝑀 𝑛, 𝑘, 𝑎, 𝑏 in KL-divergence with
(ii) 𝜖𝑚 outlier edges (iii) any monotone errors
polytime algorithm to recover communities up to 𝛿𝑁 vertices where 

𝛿 ≤ 𝑂
( 𝜂 + 𝜖) 𝑎 + 𝑘 − 1 𝑏

𝑎 − 𝑏
+

𝑎 + 𝑘 − 1 𝑏

𝑎 − 𝑏

• Good partial recovery for  𝜂, 𝜖 = Ω(1) : 

if a − 𝑏 > 𝐶 𝑎 + (𝑘 − 1)𝑏,  𝜖, 𝜂 ≪
𝑎−𝑏

𝑎+𝑏(𝑘−1)

𝑆𝐵𝑀(𝑛, 𝑘, 𝑎, 𝑏): 𝑁 = 𝑛𝑘 vertices with 𝑘 clusters of equal size. No. of edges = 𝑚



Near Optimal for Edge Outliers (only) 

• Can amplify accuracy to match bounds of [Chin-Rao-Vu] for   
𝛿-recovery even in noiseless case. 

Theorem. Given instance of 𝑆𝐵𝑀 𝑛, 𝑘, 𝑎, 𝑏 having 𝑚 edges with 
𝜖𝑚 outlier edges (adversarial) , recovery up to 𝛿𝑁 vertices if

𝑎 − 𝑏

𝑎
> 𝐶 𝑘log 1/𝛿 ,

(𝑎 − 𝑏)

𝜖(𝑎 + 𝑘 − 1 𝑏)
>

𝐶

𝛿

Lower bound for 𝒌 = 𝟐 communities: indicates this is correct 
dependence for both the terms, up to constants. For 𝛿-recovery, need

𝑎 − 𝑏

𝑎 + 𝑏
> 𝑐 log Τ1 𝛿 𝑎 − 𝑏

𝜖(𝑎 + 𝑏)
>
𝑐

𝛿



Related Work

Deterministic Assumptions about data [Kumar Kannan 10]:

Noise needs to be structured i.e. strong bound on spectral radius

Vertex Outliers: [Cai and Li, Annals of Statistics 2015]

• Consider 𝑡 vertex outliers. Design algorithms based on  SDPs.

• For 𝑎, 𝑏 = 𝐶 log 𝑛, they handle O(log 𝑛) vertex outliers.    

• To handle 𝑡 = 𝜖𝑛 outliers, they need 𝑎 = Ω(𝑛) i.e., dense graph. 

o Comparison: Edge outliers more general than vertex outliers 
when 𝑎, 𝑏 ≥ log 𝑛. 

o Our algorithms handle 𝜖𝑚 outliers even in sparse regime 𝑎, 𝑏 =
𝑂(1)



ALGORITHM OVERVIEW: 
LEARNING SBM WITH ERRORS



Algorithm Overview: Relax and Cluster

• Write down a SDP Relaxation for 
Balanced k-way partitioning (this 
is the ML estimator)

• Treat the SDP vectors as points in ℝ𝑁

for representing  vertices. 

• Use a simple greedy clustering 
algorithm to partition the vertices 

𝑃𝑖
∗

ℝ𝑁

Vectors given by SDP solution

𝑃𝑗
∗

𝑢

𝑣



SDP Relaxations

𝒎𝒊𝒏 ෍

(𝒖,𝒗)∈𝑬

𝟏

𝟐
ഥ𝒖 − ഥ𝒗 𝟐

s.t. ∀𝑢 ∈ 𝑉, ത𝑢 2 = 1, ∀𝑢, 𝑣 ∈ 𝑉 ത𝑢, ҧ𝑣 ≥ 0

σ𝑢,𝑣∈𝑉
1

2
ത𝑢 − ҧ𝑣 2 ≥ 𝑛2𝑘(𝑘 − 1)/2

SDP:

u

v

ℝ𝑁

• Intended solution: 𝑑𝑆𝐷𝑃 𝑢, 𝑣 = 0 if 𝑢, 𝑣 in same cluster
= 1 if 𝑢, 𝑣 in different clusters

• 𝑑𝑆𝐷𝑃(𝑢, 𝑣) intuitive notion of “distance”    (no triangle inequalities)

𝑑𝑆𝐷𝑃 𝑢, 𝑣 =
𝟏

𝟐
ത𝑢 − ҧ𝑣 𝟐 ∈ ሾ𝟎, 𝟏]



Intracluster & Intercluster Distances

Intracluster distance 𝛼 = Avg𝑢,𝑣∈ 𝑉×𝑉 𝑖𝑛
𝑑𝑆𝐷𝑃(𝑢, 𝑣)

• 𝑉 × V 𝑖𝑛: pairs of vertices inside

the communities 𝑃1
∗, 𝑃2

∗,.., 𝑃𝑘
∗

Intercluster distance 𝛽 = Avg𝑢,𝑣∈ 𝑉×𝑉 𝑜𝑢𝑡
𝑑𝑆𝐷𝑃(𝑢, 𝑣)

• 𝑉 × 𝑉 𝑜𝑢𝑡: pairs of vertices in different communities

𝑃𝑖
∗

ℝ𝑁

SDP solution
𝑃𝑗
∗

𝛼

𝛽



Geometrical Clustering of SDP

Theorem. In 𝑆𝐵𝑀(𝑛, 𝑘, 𝑎, 𝑏), suppose 𝑎 + 𝑘 − 1 𝑏 ≥ C1, then with 
probability at least 1 − exp(−2𝑁)

(1) Average Intra-cluster distance 

𝛼 ≤
𝑐2 𝑎 + 𝑘 − 1 𝑏

𝑎 − 𝑏
+

𝜖 𝑎 + 𝑘 − 1 𝑏

𝑎 − 𝑏
~0.01

(2) Average Inter-cluster distance

𝛽 ≥ 1 −
𝑐2 𝑎 + 𝑘 − 1 𝑏

𝑎 − 𝑏 𝑘 − 1
−

𝜖 𝑎 + 𝑘 − 1 𝑏

𝑎 − 𝑏 𝑘 − 1
~ 1 −

0.01

𝑘 − 1 𝑃𝑖
∗

ℝ𝑛

SDP 
solution

𝑃𝑗
∗

𝛼

𝛽

SDP vectors geometrically clustered acc. to communities:
• Points in same cluster are very close i.e. 𝛼 ≈ 𝑜(1)

• Points in different clusters are far i.e.  𝛽 ≈ 1 −
𝑜 1

𝑘−1



The Algorithm

Simple Algorithm for 𝑘 = 2 communities:

1. Pick a random vertex (or guess).

2. Cut out a ball of radius ½

3. Geometric clustering of points  o(n) vertices misclassified. 

SDP vectors geometrically clustered acc. to communities:

• Points in same cluster are very close ~ 𝑜(1)

• Points in different clusters are far ~1 −
𝑜 1

𝑘−1

𝑃𝑖
∗

ℝ𝑛

SDP solution
𝑃𝑗
∗

𝛼

𝛽



Clustering Algorithm for k communities

while (exist active vertices 𝐴 ⊂ 𝑉(𝐺) )
• 𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∈𝐴 |𝐵𝑎𝑙𝑙 𝑣, 0.1 ∩ 𝐴|
• Cluster 𝐶 = 𝐵𝑎𝑙𝑙 𝑢, 0.1 ∩ 𝐴; 𝐴 = 𝐴 ∖ 𝐶

Simple, greedy geometric clustering:
𝑃𝑖
∗

ℝ𝑛

SDP solution

𝑃𝑗
∗

𝛼

𝛽

• Can’t guess centers for k clusters
• Since k is large, random centers 

also doesn’t quite work



Distance concentration

Lemma: In 𝑆𝐵𝑀 𝑛, 𝑘, 𝑎, 𝑏 , with 𝑚 edges and with 𝜖𝑚 edge outliers, 
then with probability at least 1 − exp(−2𝑛𝑘)

𝑠𝑑𝑝 ≥ 𝛼
𝑎𝑛𝑘

2
+ 𝛽

𝑏𝑛𝑘 𝑘 − 1

2
− c2𝑛𝑘 𝑎 + 𝑘 − 1 𝑏 − 𝜖𝑚

• 𝛼 = Avg𝑢,𝑣∈ 𝑉×𝑉 𝑖𝑛
𝑑𝑆𝐷𝑃(𝑢, 𝑣), 𝛽 = Avg𝑢,𝑣∈ 𝑉×𝑉 𝑜𝑢𝑡

𝑑𝑆𝐷𝑃(𝑢, 𝑣)

Average # of edges       inside communities = 𝑎
𝑛𝑘

2

between communities = 𝑏
𝑛𝑘 𝑘−1

2

• Uses Grothendieck inequality for sparse graphs: uses ideas from 
[Guedon-Vershynin 14]

• For m = Ω 𝑛log 𝑛 , spectral expansion/ JL+ 𝜖-net suffice 
[KMM11,MMV12] 



Takeaways and Future Directions

• Other natural properties of average-case models (like 
permutation invariance) that enables tractability?

• Simpler algorithms e.g.  spectral algorithms with similar 
guarantees?

• Unsupervised learning of other probabilistic models with errors 
(similar to [Lai et al, Diakonikolas et al. 16])?

Future Directions

• More realistic average-case models for Graph Partitioning that 
are more general than simple random models 

• Algorithms for learning in the presence of various modeling 
errors e.g. outlier errors or corruptions, monotone errors, 
model misspecification (in KL divergence). 



Thank you!

Questions?



Drawbacks of Worst-Case Analysis

Limited by Worst-case analysis ?

Real-world instances are not worst-case instances  !!

Capturing Smart Heuristics

• Differentiating  smart vs trivial heuristics 

• Systematically comparing heuristics



The Realistic Average-Case

Examples: Semi-random models [Blum-Spencer, Feige-Kilian]

Main Challenges

• Modeling Challenge: Rich enough to capture real-world instances     
e.g. uniform distribution  not usually  realistic.  

• Algorithmic Challenge: Want good guarantees

e.g. constant factor approximations

This talk:  More Realistic Average-Case models


