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Graph Partitioning problems

Goal: Divide V(G) into disjoint sets (clusters)
Minimize edges across clusters, subject to <constraints>

G(V,E)

Algorithm



Graph Partitioning problems

Goal: Divide V(G) into disjoint sets (clusters)
Minimize edges across clusters, subject to <constraints>

Algorithm

Balanced Cut

Balanced K-way partitioning Divide V(G) into
Sparsest cut two roughly equal pieces
Multicut

Small set expansion



Graph Partitioning problems

 NP-hard to solve exactly
e Central area of study in approximation algorithms

€| « Balanced Cut LR88,ARV04] O(ylogn)
= : - O( logn )
£ ¢ Multicut GVY93]

S| * Sparsest cut AR95,LLR95,ALNO5] O(Jlogn)
< | « Smallset expansion [RST10,BFKMNNS11] O( logn )

* No PTAS [Khot02,GVY93,AMS07]

* No constant approximations assuming UGC and variants
General Sparsest cut, Multicut [KVO5], Balanced Cut [RST11]

Hardness

Only poly(logn) approximation algorithms known (worst-case)
Can we do better using Average-case analysis?

. . . Alg(I)
Approximation ratio= max
instances 1 OPT(I)




Average-case Analysis

Average-case: Probability Distribution over instances

Average-case approximation ratio a w.r.t. distribution D :

Costyy, (I
Pro Alg( ) <al=1-n"*®
[ <D COStOPT(I)

Main Challenges

* Modeling Challenge: Rich enough to capture real-world instances
e.g. uniform distribution not usually realistic.

* Algorithmic Challenge: Want much better than worst-case



Models for Clustering Graphs

Graph represents similarity information between items (vertices)
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Collaboration network in a research lab
[Newman. Nature Physics’12]

Nice clustering of vertices with:

 Many edges inside clusters (related nodes)
 Few edges between clusters (unrelated nodes)

Distribution D generates such instances
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Proteln -protein interaction graph
[Palla, Derényi, Farkas and Vicsek. Nature’ 05]




Goal 1: Approximating Objective

Distribution D generates instances G
 With nice” partitioning
* Many edges inside clusters
* Few edges between clusters
L R

Planted Partition/Cut: H(L, R)

Given: Graph G(V,E)

Goal: Find a (balanced) partition

Performance of algorithm:
Cost of cut compared to planted cut Eyy; = E; (L, R)




Goal 2: Learning Probabilistic model

Assumption: Ground truth probabilistic model generating data

g A
4

Graph models for Analogous to Mixture of
community detection Gaussians for clustering points

Learning goal: Can we learn the probabilistic model i.e.
recover the communities/planted partition from generated graph?



A simple random model : SBM

Two communities L, R of equal size n (L, R not known to us)

b
"0 %
a %ﬁ '(° %51 Each edge chosen
PF %& N independently at random with
gﬁb/\/* ; probability p = %or q= %
7 T depending on inside cluster or
L a >b R petween clusters.

IL| =n |IR| =n
Stochastic Block Model (SBM): above model represented as
SBM(n,2,a,b)

Learning Goal: Recover L, R i.e. the underlying community
structure in poly(N) time.



Stochastic Block Model SBM(n, k, a, b)

Most commonly used probabilistic model for clustering graphs

k communities of equal size n. Number of vertices N = nk.

Number of edges

Na N (k—1)b
m = ~+ ( )
2 2

b s [P7|=mn

a>Db

Every edge chosen independently at random.



Prior Work on Learning SBMs

* |n Statistics, Social Networks, ML...
[WBB’76], [HLL'83], [SL'90], [NJW’02], [ST’07], [L'07], [DKMZ’09]...
 Also called Planted Partitioning models in CS

[BCLS 87],[Bop 88], [JS 92], [DI 98], [FK'99], [McS02], [Coj 04]...
* Also been generalized to handle different degrees, intercluster/
intra-cluster probabilities etc. [DHM’04, CL'09, CCT’12,AS’15]

Three broad classes of results:

1. Exact Recovery: (lassify each vertex correctly. Need a = Q(log n).

2. Partial Recovery: Classify 1 — & fraction of vertices correctly.
Works in the sparse regime i.e., a,b = 0(1).

3. Weak Recovery: Classify better than a random partition.
Sharp results [Mossel-Neeman-Sly , Massoulie].



Learning SBMs Exactly

Classify each vertex correctly. Need a = Q(log n).

[Bopanna88, McSherry 02,...] Spectral techniques w.h.p. find
communities when

k=2: a—b>C(a+b)logn ie, a=Q(ogn)

generalk: a—b>C/(a+ (k—1)b)logn

[MNS15, ABH14, AS15] Gives sharp characterization (in terms of a, b)
for when exact recovery is possible.




Sparse Regime

[Coj06] Polytime algorithm that w.h.p. finds min. balanced cut if

(a—b)>C~a+b

Partial Recovery [MNS14, CRV 15, AS15]: Polynomial time algorithm
that w.h.p. recovers communities with at most (1 — §)N
misclassified vertices when (a — b

( ) > C+\/klog(1/6)

Va
Weak recovery [MNS’12,MNS’14, Mas’14]: Sharp phase transition for
when we can find w.h.p. a partition with non-trivial correlation

depending on whether aa_+bb > 1 (fork = 2)
[AS16] show weak recovery for k-communities if a>
Ja+b(k-1)

Focus of this talk: Partial recovery



Drawbacks: Theory models vs Practice

Theory vs Practice: Main criticism against theory (SBM)
Algorithms assume that data generated exactly from model (SBM)!

Dealing with Errors: data is always noisy! e

e.g. Input errors, Outliers, Mis-specification | -
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Fundamental criterion for judging learning algorithms

 Can we measure robustness of algorithms to errors?




How Robust are Usual Approaches?

Spectral clustering: Project and cluster in space spanned by top
k-eigenvectors.

Drawback: Spectral methods are not very robust
Eigenvectors brittle to noise: can add & delete just O(1) edges.

e Other algorithms based on counting paths, random walks,
tensor methods are also not robust.

Maximum Likelihood (ML) estimation: Find the best fit model
measured in KL divergence (measure of closeness for distributions)

Drawback: ML estimation is typically NP-hard!
* Heuristics like EM typically get stuck in local optima.



Drawbacks of Random Models

L i B\ R Unrealistic properties:
1, \P%/ *\q :
\f NG  Too much independence
N e * Does not have real-world graph properties
LI =n/2 IRl =n/2 — Small cliques, Concentrated degrees
q>rp
Friendship network " ;=
Properties of real-world graphs: --_ e, 8
Heavy-tail degree distributions, dense ,; .l . :
subgraphs, high clustering coefficients -k SR e
[FFF'97, KRRT’00,NBW’06] T i

General enough average-case models capturing real-world instances?



Beyond Simple Random models

1. Realistic average-case models/semi-random models:
[Blum-Spencer, Feige-Kilian] Incorporate some random choices
and some adversarial choices in generating input

2. Handling Modeling errors:
Learning a probabilistic model like SBM,
in the presence of various modeling errors




Monotone Adversaries [Feige-Kilian]

o Pl =n Monotone [Feige-Kilian’99]:

Y
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YZaN Random model + Adversary can

_a /
P~ .i*:—o_,\a/ % 1. delete edges between clusters
[Pi] =n ~ 7 2. add edges inside clusters

SBM(n, Kk, a, b)
Monotone: “Planted” solution is even better

SDPs used to make spectral arguments robust [FK99]:

recoversifa—b > C\/(a + b)logn ie. a>logn

Extensions to k-way partitioning using convex relaxations
[CSX’12,ABKK15]



Monotone Adversaries

Model: Random model + Adversary deletes edges between clusters &
add edges inside clusters

Monotone: “Planted” solution is even better

Lower bounds for monotone adversaries [MPW 2016]:
Give first separation from simple random model (SBM)

Weak-recovery impossible when (a —b) < c'Vva+ b wherec > 1

Open Question. Simple algorithm (non-SDP) e.g. spectral that are
robust to monotone adversaries?

Models still assume lot of independence: essentially, each edge
chosen independently at random



Semi-random model in
[Makarychev-Makarychev-V’12]

Aim: To capture arbitrary correlations inside clusters

Model

1. Inside cluster edges: arbitrary

2. Edges between clusters: random*

Perfect (arbitrary) partitioning + random noise

Theorem. Polytime algorithm finds a balanced cut (S, S) which
w.h.p. cuts O(|Ey |) + n\/logn edgesi.e.,

* O(1) approximation if |[Ey | = () (n,/log n)

*Like [FK99], adversary can also delete some between clusters edges £,



Recovering the Planted Partition

Algorithms give balanced cut (S5, V\S) with cost < C - |Ey|

Recovery : How close is to ground truth (L, R)?

L R
G(n,p) :
Can not recover in general !
%VY/ G(n,p) Need assumptions about
: Y. expansion inside the clusters

Partial Recovery [MMV12]. If expansion inside L > C. expansion(L,R),
recover upto accuracy pn vertices w.h.p. if a > (logn)'/?/p

Uses algorithm for semi-random Small Set expansion recursively



Random Permutation Invariant Edges
(PIE) model [Makarychev-Makarychev-V’14]

Model:

1. Inside cluster edges F: arbitrary / worst-case

2. Between cluster edges H:<aB®itrary/ worst-case

A EE-TalVAa aTlldlaTaMTalVi-Tdi-Taldh faWaV-TdaalNLs~L d7aTa TN a aha R
~ But this is worst-case instance !!

) C U
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Advantages of Model

Capturing independence between F and H

* More general than all previous models
* Intra-cluster: worst-case. Inter-cluster: capture complex distributions
* Allows properties of real-world graphs like large cliques, dense

subgraphs, clustering coefficient etc.



Result: Constant factor approximation
algorithms in PIE model

The9rem [IMMV’14]. Polytime algorithm that finds a balanced cut
(S,S) which w.h.p. cuts O(|Ey|) + nlog? n edges

« O(1) approximation if |Ey | = Q(nlog® n)*

Interpretation: Min Balanced Cut is easy on any average-case
model that satisfies the property of permutation invariance.

Open Questions.

1. Similar guarantees for k-way partitioning?

2. Conditions under which we can learn the model (recover planted
partition)?




LEARNING WITH MODELING ERRORS



Learning with Modeling Errors

Dealing with Errors: data is always noisy!

e.g. Input errors, Outliers, Mis-specification

Want to capture the following errors:

« Qutliers or corruptions f' Q |

Uz o ] % ‘ 3

. . e . 1 M’w
 Model misspecification o o %

00000000000000



Outliers or Input Errors Q

Captures up to € fraction of the edges have errors/ corrupted.

Graph G generated as follows: @ o [P =n

1. Gp generated from SBM(n, k,a, b)

2. Adversary picks €,6, = 0 - %’ ff >
suchthate; + €, = € " | ._.\

3. Adversary deletes €,m edges from Gp SBM( k ab)
n K, a,

4. Adversary adds e;m edges to the
remaining graph to get G.

* Corruptions can be very correlated.



Model Misspecification in
KL divergence

* Assumption of Data Analyst: Graph G (V, E)
drawn from model i.e. G~SBM(n, k,a, b)

 What if graph G is drawn from Q, 4 \
a distribution that is close to SBM (n, k,a,b)? . /

KL divergence between probability distributions P, Q:

dg.(Q,P) = 2 Q(0)10g<QEa§)

o€events

* Graph is drawn from any distribution Q that is nm close in KL to SBM,
where m= number of edges.

 Captures upto O(nm) adversarial edge additions.

* Edge draws can be dependent.



Robustness Learning Guarantees

SBM(n,k,a,b): N = nk vertices with k clusters of equal size. No. of edges =m

* Algorithms tolerates outlier errors up to em, model
specification up to nm (think of €,7~0.01).

Theorem[MMV16]. Given instance drawn from any distribution that
is (i) nm close to SBM(n, k,a, b) in KL-divergence with

(ii) em outlier edges (iii) any monotone errors

polytime algorithm to recover communities up to 6N vertices where

5S0<(ﬁ+e)(a+(k—1)b)+Ja+(k—1)b>
a—b \ a—b __J

— -

* Good partial recovery for n,e = (U(1) :
if(a—b)>Cya+ (k—1b, €, K

a—b
a+b(k—-1)




Near Optimal for Edge Outliers (only)

e Can amplify accuracy to match bounds of [Chin-Rao-Vu] for
O-recovery even in noiseless case.

Theorem. Given instance of SBM(n, k, a, b) having m edges with

em outlier edges (adversarial), recovery up to N vertices if
(a—b) (a —b) C

T va CJklOg(l@’ @+ (k—1)b)_ &

\__{—‘ :
Cond Con i GRVT ] (zne nowne)

Lower bound for k = 2 communities: indicates this is correct
dependence for both the terms, up to constants. For -recovery, need

(a—b)
> c+/log(1/6) . (a=b) _¢
Va+b ca+b) 3




Related Work

Deterministic Assumptions about data [Kumar Kannan 10]:

Noise needs to be structured i.e. strong bound on spectral radius

Vertex Outliers: [Cai and Li, Annals of Statistics 2015]

Consider t vertex outliers. Design algorithms based on SDPs.
Fora,b = C log n, they handle O(logn) vertex outliers.
To handle t = en outliers, they need a = ()(n) i.e., dense graph.

Comparison: Edge outliers more general than vertex outliers
when a, b = log n.

Our algorithms handle em outliers even in sparse regime a, b =
0(1)



ALGORITHM OVERVIEW:
LEARNING SBM WITH ERRORS



Algorithm Overview: Relax and Cluster

e Write down a SDP Relaxation for ~ Vectors given by SDP solution
Balanced k-way partitioning (this RN
is the ML estimator) u

* Treat the SDP vectors as points in RY
for representing vertices.

* Use a simple greedy clustering
algorithm to partition the vertices



SDP Relaxations

. 1
SDP: min ) w7l
(uwv)EE
st. Vvuev, ||lull,=1,vVu,veV (uv) =0

Suver; 10— ol = n2k(k —1)/2

1
dspp(w,v) = 17— 71| €[0,1]

* Intended solution: d¢pp(u, v) = 0 if u, v in same cluster
= 1 if u, v in different clusters

* dspp(u,v) intuitive notion of “distance” (no triangle inequalities)



Intracluster & Intercluster Distances

Intracluster distance @ = Avgy, ,eyxy),, dspp (U, V)

SDP solution

* (V xV);,: pairs of vertices inside
the communities P, P5,.., P;,

Intercluster distance f = Avgy yewxv),,,dspp (U, V)

o (V XV),ye: pairs of vertices in different communities



Geometrical Clustering of SDP

Theorem. In SBM(n, k, a, b), suppose a + (k — 1)b = C;, then with
probability at least 1 — exp(—2N) pr

= \ Rn

(1) Average Intra-cluster distance
_ cJa+ (k—1)b . e(a+ (k —1)b)

v a—>b a—>b ~0.01 .B,'
(2) Average Inter-cluster distance
8> 1 CZ\/CI +(k—-1b €e(a+ (k—1)b) 0.01 SDP
=" (a-b)(k-1)  (a—-b)(k—1) k-1 P olution

SDP vectors geometrically clustered acc. to communities:

* Points in same cluster are very closei.e.a = 0(1)
0(1)

* Points in different clusters are fari.e. [ = P



The Algorithm

SDP vectors geometrically clustered acc. to communities:
SDP solution

* Points in same cluster are very close ~ 0(1) P
¥~
. ] L 1
* Points in different clusters are far ~1 — g

b

Simple Algorithm for k = 2 communities:

1. Pick a random vertex (or guess).

2. Cut out a ball of radius % P;
3. Geometric clustering of points = o(n) vertices misclassified.



Clustering Algorithm for k communities

Pj*
; T G n
 Can’t guess centers for k clusters \ R
* Since kis large, random centers

also doesn’t quite work ! '

Simple, greedy geometric clustering: p
l

SDP solution

while (exist active vertices A C V(G) )
* u=argmax,e, |Ball(v,0.1) N A|
 (ClusterC = Ball(u,0.1)nA4; A=A\C



Distance concentration

* a = AVEyvewxv);, dspp (w,v), B = AVgu,vE(VxV)OutdSDP (u,v)

. " k
Average # of edges inside communities = an?
nk(k—1)

between communities = b

Lemma: In SBM(n, k,a, b), with m edges and with em edge outliers,

then with probability at least 1 — exp(—2nk)
ank bnk(k — 1)

> 7 — — — —
sdp > « > + B > céﬂa+(k 1)bﬂ
Tor

* Uses Grothendieck inequality for sparse graphs: uses ideas from
[Guedon-Vershynin 14]

* For m = Q(nlog n), spectral expansion/ JL+ e-net suffice
[KMM11,MMV12] '




Takeaways and Future Directions

* More realistic average-case models for Graph Partitioning that
are more general than simple random models

* Algorithms for learning in the presence of various modeling
errors e.g. outlier errors or corruptions, monotone errors,
model misspecification (in KL divergence).

Future Directions

e Other natural properties of average-case models (like
permutation invariance) that enables tractability?

e Simpler algorithms e.g. spectral algorithms with similar
guarantees?

* Unsupervised learning of other probabilistic models with errors
(similar to [Lai et al, Diakonikolas et al. 16])?



Thank you!

Questions?



Drawbacks of Worst-Case Analysis

Limited by Worst-case analysis ?

£ w;a Jas V12

Real-world instances are not worst-case instances !!

Capturing Smart Heuristics

» Differentiating smart vs trivial heuristics

» Systematically comparing heuristics



The Realistic Average-Case

Main Challenges

Modeling Challenge: Rich enough to capture real-world instances
e.g. uniform distribution not usually realistic.

Algorithmic Challenge: Want good guarantees
e.g. constant factor approximations

This talk: More Realistic Average-Case models

Examples: Semi-random models [Blum-Spencer, Feige-Kilian]



