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Offline Covering/Packing Problems

Primal (covering) Dual (Packing)

(P): Min 𝑐′𝑥 (D):   Max σ𝑡=1
𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 𝑐′

𝑦 ≥ 0

𝐴 ∈ 𝑅+
𝑇×𝑛, 𝑏 ∈ 𝑅+

𝑇 , 𝑐 ∈ 𝑅+
𝑛

𝑷∗ 𝑫∗

Primal (Min)

solutions

Dual (Max)

solutions

Strong Duality

Captures many (relaxations) of combinatorial 
optimization problems:

• Covering: Covering problems (set-cover, facility 
location), connectivity/cut problems (steiner
tree, shortest path), paging …

• Packing: knapsack , flow problems (Maximum 
multicommodity flow, matching), combinatorial 
auctions .... 



Online Covering/Packing Problems
Primal (covering) Dual (Packing)

(P): Min 𝑐′𝑥 (D):   Max σ𝑡=1
𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 𝑐′

𝑦 ≥ 0

𝐴 ∈ 𝑅+
𝑇×𝑛, 𝑏 ∈ 𝑅+

𝑇 , 𝑐 ∈ 𝑅+
𝑛

• 𝑐 is known in advance.

At time 𝑡 = 1,2,…𝑇:

• The 𝑡th row of A is revealed (and a new dual 𝑦𝑡). 

Covering: Variables 𝑥𝑗 can only be increased to maintain a 

feasible solution.

• Goal: Minimize the total cost.

Packing: New dual variable 𝑦𝑡 should be set immediately.

• Goal: Maintain a feasible solution, Max total profit.



Example 1: Online Set Cover

Online set cover [Alon-Awerbuch-Azar-B-Naor03]:

• 𝐸 = 1,2,…𝑛 , 𝑆𝑖 ⊆ 𝐸 (m sets). 

• Elements arrive one-by-one and should be covered 
upon arrival.

• Sets cannot be unchosen.

Goal: Minimize total cost of sets chosen.

Primal (covering)

(P): Min σ𝑠 𝑥𝑠 Non negative objective function

෍

𝑠| 𝑒∈𝑠

𝑥𝑠 ≥ 1 ∀𝑒 ∈ 𝐸

𝑥 ≥ 0

• 𝑥𝑠: Choose set 𝑠

• Rows (=elements) arrive online 

• 𝑥𝑠 can only be increased over time



Example 2: Virtual Circuits Routing 
Dual (packing)

(D): Max σ𝑖 𝑦𝑟𝑖 Non-negative objective

෍

𝑟𝑖 | 𝑒∈𝑝𝑖

𝑦𝑟𝑖 ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸

𝑦𝑟𝑖 ≤ 1 ∀𝑟𝑖
𝑦 ≥ 0

• Packing constraints for all 𝑒 ∈ 𝐸

• Variables 𝑦𝑟 (= requests) arrive 

online.

• Should be set upon arrival.

Online virtual circuits routing [Awerbuch-Azar-Plotkin93]:

• Graph 𝐺 = 𝑉, 𝐸 , capacities on edges 𝑐𝑒.

• Requests ri = (𝑠𝑖 , 𝑡𝑖 , 𝑝𝑖) arrive one-by-one.

• Should be connected using capacity 1, or rejected.

• Accepted requests cannot be rejected later.

Goal: Maximize number of requests accepted.



Online Covering/Packing problems
Primal (covering) Dual (Packing)

(P): Min 𝑐′𝑥 (D):   Max σ𝑡=1
𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 𝑐′

𝑦 ≥ 0

𝐴 ∈ 𝑅+
𝑇×𝑛, 𝑏 ∈ 𝑅+

𝑇 , 𝑐 ∈ 𝑅+
𝑛

Captures many (relaxations) of online combinatorial 
optimization problems:

• Covering: online set-cover, online connectivity/cut, facility 
location, (weighted) paging, Metrical task systems …

• Packing: routing, matching (ad-auctions), online knapsack, 
online combinatorial auctions. 



Algorithm for the framework

Theorem [B-Naor05, Gupta-Nagarajan12]:

There is an  algorithm that produces solutions 𝑥, 𝑦
such that:
• 𝑥 is 𝑂(log 𝑑)-competitive, 

𝑑 = Maximum row sparsity of A.

• 𝑦 is 𝑂 log 𝑑 ⋅
𝑎𝑚𝑎𝑥

𝑎min
-competitive,

𝑎max/𝑎min- ratio of maximal to minimal (non-zero) entry 
in a column of A.

• Results are tight asymptotically.

Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 𝑐′
𝑦 ≥ 0



A Natural Generalization of Covering

Primal (covering)

(P): Min 𝑓(𝑥)

𝐴𝑥 ≥ 1
𝑥 ≥ 0

• 𝑓 is a convex monotone function.

(Monotone: 𝑥 ≤ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦))

Offline: Problem is polynomially solvable.

Online (same setting): 

• Rows of  𝐴 arrive online.

• Variables should be monotonically increasing.

Primal (covering)

(P): Min σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗

𝐴𝑥 ≥ 1
𝑥 ≥ 0



Example 1: 𝑳𝒑-norm Set Cover

• Elements arrive one-by-one and should be covered upon 
arrival. 

• Sets cannot be unchosen.

• 𝑓 𝑥 = σ𝑖=1
𝑘 𝑐𝑖

′𝑥 𝑝

• Special case 1: 𝑓 𝑥 = σ𝑗=1
𝑛 𝑐𝑠𝑥𝑠 (𝑝 = 1)

• Special case 2: 𝑓 𝑥 = max𝑖=1
𝑘 (𝑐𝑖

′𝑥) (𝑝 ≈ log 𝑘)

Motivation: combining multiple objectives, makespan, energy 
minimization.

Primal (covering)

(P): Min σ𝑖=1
𝑘 𝑐𝑖

′𝑥 𝑝

෍

𝑠| 𝑒∈𝑠

𝑥𝑠 ≥ 1 ∀𝑒 ∈ 𝐸

𝑥 ≥ 0



The Dual Problem 
Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0

• 𝑓∗ z = sup
x≥0

(z′x − f x ) (conjugate function)

• 𝑓∗ always convex (even if 𝑓 is not convex).

• [Nice function 𝑓]:  if 𝑓 is continuous, convex, monotone, 
differentiable and 𝑓 0 = 0

 𝑓∗ is convex, monotone, non-negative, 𝑓∗ 0 = 0 and 𝑓∗∗ = 𝑓.



The Dual Problem 
Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0

• 𝑓∗ z = sup
x≥0

(z′x − f x ) (conjugate function)

Proof (weak duality): 𝑥, 𝑦 solutions to primal/dual:

𝑓 𝑥 ≥ 𝑓 𝑥 − 𝑦′ 𝐴𝑥 − 1

=෍

𝑡=1

𝑇

𝑦𝑡 − 𝑥′(𝐴𝑇𝑦) − 𝑓 𝑥

≥෍

𝑡=1

𝑇

𝑦𝑡 −sup
𝑥≥0

𝑥′(𝐴𝑇𝑦) − 𝑓 𝑥 =෍

𝑡=1

𝑇

𝑦𝑡 −𝑓∗(𝐴𝑇𝑦)

𝒚 ≥ 𝟎,𝐀𝐱 ≥ 𝟏

𝒙 ≥ 𝟎, 

definition of 𝒇∗



Natural Extension of Dual Problem

Online setting (Dual):

• Primal constraint arrive at time 𝑡

⇒ New dual variable 𝑦𝑡
• Value of 𝑦𝑡 should be set immediately and cannot 

be changed later on.

Goal: Maximize profit σ𝑡=1
𝑇 𝑦𝑡 minus cost 𝑓∗(𝐴𝑇𝑦).

Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0



Example 2: Virtual Circuits Routing 
Dual (packing)

(D): Max σ𝑖 𝑦𝑟𝑖 − 𝑓∗(z) 

෍

𝑟𝑖 | 𝑒∈𝑝𝑖

𝑦𝑟𝑖 = 𝑧𝑒 ∀𝑒 ∈ 𝐸

𝑦𝑟𝑖 ≤ 1 ∀𝑟𝑖
𝑦 ≥ 0

Online virtual circuits routing (with capacity costs):

• Requests arrive online as before and should be 
accepted/rejected immediately.

• Capacity should be bought at cost 𝑓∗(𝑧).

• Special case 1: 𝑓∗ 𝑧 =
0 𝑧𝑒 ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸
∞ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Special case 2: 𝑓∗ 𝑧 = σ𝑒∈𝐸 𝑔𝑒(𝑧𝑒)



Extending the Basic Framework
Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑐𝑗𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 𝑐′
𝑦 ≥ 0

(P):  Min 𝑓(𝑥) (D): Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦 ≥ 0

• f(𝑥): Non-negative monotone convex function (+ 𝛻𝑓 is monotone). 

Let 𝑝 = sup
𝑥≥0

𝛻𝑓 𝑥 ,𝑥

𝑓(𝑥)
(Intuition: 𝑓 𝑥 is a polynomial of degree 𝑝)

• Covering competitive ratio: 𝑂 𝑝 ⋅ 𝑙𝑜𝑔 𝑑 𝑝

• Packing competitive ratio: 𝑂 𝑝 ⋅ 𝑙𝑜𝑔 𝑑
𝑎𝑚𝑎𝑥

𝑎min

𝑝

• 𝑑 – row sparsity of matrix 𝐴
• 𝑎max/𝑎min- ratio of maximal to minimal (non-zero) entry in a column of 𝐴.



Our Results (cont.)

• Matches the best bounds for the linear case.

Theorem (lower bound): 

There exists an instance with 𝑓 =polynomial of degree 𝑝
such that any online algorithm for the primal problem is

Ω 𝑝log 𝑑 𝑝-competitive.

Rounding (Integral solutions)

• Example: There exists a (
𝑝3

log 𝑝
log 𝑑 log 𝑛)-competitive 

algorithm for 𝐿𝑝-norm set cover 

(𝑛: num. of elements, 𝑑: max num. of sets containing an element)

• Other applications: scheduling, facility location …



Previous Results (Primal) 
[Azar, Bhaskar, Fleischer, Panigrahi, 2013]

Online Mixed Packing and Covering 

(P):   Min Maxi=1
k 𝑐𝑖

′𝑥

𝐴𝑥 ≥ 1
𝑥 ≥ 0

• 𝑂 𝑙𝑜𝑔 𝑘 ⋅ 𝑙𝑜𝑔 𝑑 ⋅
𝑎𝑚𝑎𝑥

𝑎𝑚𝑖𝑛
⋅
𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
-competitive algorithm.

(𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 , 𝑐𝑚𝑖𝑛: max / min (non-zero) coordinate) 

Our result (for this case): 𝑂 log 𝑘 log 𝑑 -competitive (best 
possible)



Previous Results (Dual) 
[Blum, Gupta, Mansour, Sharma, 11], [Huang, Kim, 15] 

Maximizing social welfare with (separable) production costs 

• n item types, buyers arrive online. For each bundle 𝑆:

 𝑣𝑖,𝑆: value of bundle 𝑆 to buyer 𝑖

 𝑎𝑗,𝑆: number of items of type 𝑗 in bundle 𝑆

• 𝑦𝑖,𝑆: allocate bundle 𝑆 to buyer 𝑖

• 𝑧𝑗:  how many items of type 𝑗 to produce.

(D):   Max σ𝑖=1
𝑚 σ𝑆 𝑣𝑖,𝑆 ⋅ 𝑦𝑖,𝑆 − σ𝑗=1

𝑛 𝑓𝑗
∗(𝑧𝑗)

෍

𝑆

𝑦𝑖,𝑆 ≤ 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑢𝑦𝑒𝑟 𝑖

෍

𝑖=1

𝑚

෍

𝑆

𝑎𝑗,𝑆𝑦𝑖,𝑆 = 𝑧𝑗 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑚 𝑡𝑦𝑝𝑒 𝑗

𝑦 ≥ 0

 𝑓∗is separable (separate cost for each item type). 



Algorithm for the framework

• Initially set 𝑥 = 0.
• When 𝑡th row of A arrives (and new 𝑦𝑡).

• While 𝑡th constraint is unsatisfied:
• Increase 𝑦𝑡 at rate 𝛿
(… depends on parameters of the problem). 
• Increase each 𝑥𝑗 with 𝒂𝒕𝒋 > 𝟎 with rate:

𝑑𝑥𝑗
𝑑𝑦𝑡

=
𝑎𝑡𝑗𝑥𝑗 + 1/𝑑

𝛻𝑗𝑓(𝑥)

𝑑 (≤ 𝑛) = Maximum row sparsity seen so far.

(Intuition: linear case, 𝛻𝑗𝑓 𝑥 = 𝑐𝑗)

Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0



Algorithm for the framework

Theorem: Algorithm produces a monotone primal solution 𝑃
and a monotone dual solution 𝐷 such that:

𝑃 ≤ 𝑂 𝑝 log (𝑑
𝑎max

𝑎min
)

𝑝
D

(Weak duality):

𝑃,𝐷 are𝑂 𝑝 log (𝑑
𝑎max

𝑎min
)

𝑝
-competitive.

Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0



Analysis: Main Ideas

Bounding the “profit”:
Assume 𝑦𝑡 is increased at rate 1 (not 𝛿 < 1)

𝜕𝑓

𝜕𝑦𝑡
=෍

𝑗=1

𝑛
𝜕𝑓(𝑥)

𝜕𝑥𝑗
⋅
𝜕𝑥𝑗

𝜕𝑦𝑡
= ෍

𝑗|𝑎𝑡𝑗>0

𝛻𝑗𝑓 𝑥 ⋅
𝑎𝑡𝑗𝑥𝑗 +

1
𝑑

𝛻𝑗𝑓 𝑥
= ෍

𝑗|𝑎𝑡𝑗>0

𝑎𝑡𝑗𝑥𝑗 +
1

𝑑
≤ 2

⇒ 𝑓 ҧ𝑥 ≤
2

𝛿
σ𝑡=1
𝑇 𝑦𝑡,    ҧ𝑥: final value of 𝑥.

Or, σ𝑡=1
𝑇 𝑦𝑡 ≥

𝛿

2
𝑓( ҧ𝑥) ( Profit is large compared to primal cost)

(P): Primal (D): Dual

𝑀𝑖𝑛𝐴𝑥≥1,𝑥≥0{𝑓 𝑥 } Maxy≥0{෍

𝑡=1

𝑇

𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)}

Update rule:

Increase 𝑦𝑡 at rate 𝛿
𝑑𝑥𝑗

𝑑𝑦𝑡
=

𝑎𝑡𝑗𝑥𝑗+1/𝑑

𝛻𝑗𝑓(𝑥)



Analysis: Main Ideas

Bounding the “production cost”:

Claim: 𝑥𝑗 ≥
1

d⋅max
𝑡∈𝑆𝑗

{𝑎𝑡𝑗}
𝑒𝑥𝑝

σ𝑡∈𝑆𝑗
𝑎𝑡𝑗⋅𝑦𝑡

𝛿𝛻𝑗𝑓 ҧ𝑥
− 1 ,  𝑆𝑗 ⊆ 𝑡 |𝑎𝑡𝑗 > 0

Proof: Solving differential equation of update rule + 𝛻𝑓 is monotone.

𝑥𝑗 ≤
1

min
𝑡∈𝑆𝑗

𝑎𝑡𝑗
(at this value all constraints are feasible)

 𝐴𝑇𝑦 𝑗 = σ𝑡∈𝑆𝑗
𝑎𝑡𝑗 ⋅ 𝑦𝑡 ≤ 𝛿𝛻𝑗𝑓 ҧ𝑥 ⋅ 𝑂 log 𝑑

𝑎𝑚𝑎𝑥

𝑎𝑚𝑖𝑛

 (By prop. of 𝑓∗+ bound on “convexity” of 𝑓) bound on 𝑓∗ 𝐴𝑇𝑦

Finally, optimizing the value 𝛿.

(P): Primal (D): Dual

𝑀𝑖𝑛𝐴𝑥≥1,𝑥≥0{𝑓 𝑥 } Maxy≥0{෍

𝑡=1

𝑇

𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)}

Update rule:

Increase yt at rate δ
𝑑𝑥𝑗

𝑑𝑦𝑡
=

𝑎𝑡𝑗𝑥𝑗+1/𝑑

𝛻𝑗𝑓(𝑥)



Analysis: Main Ideas

Theorem: The algorithm produces a monotone primal 
solution 𝑃 and a monotone dual solution 𝐷 such that:

𝑃 ≤ 𝑂 𝑝 log (𝑑
𝑎max

𝑎min
)

𝑝
D

How to remove the 𝒂𝒎𝒂𝒙/𝒂𝒎𝒊𝒏 term?

There exists a feasible solution 𝐷′ such that: 

𝑃 ≤ 𝑂 𝑝 log 𝑑 𝑝 ⋅ 𝐷′

𝐷′ is not monotone!

Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0



Maintaining D’: The Linear Case

Why we must decrease dual variables?

Aiming towards constant competitive ratio ‘𝑐’:

𝑦1 = 1/𝑐, 𝑦2= 1/𝑐, 𝑦3 = 1/𝑐 …

But dual constraint should be satisfied!

Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 1
𝑦 ≥ 0

Primal (covering) Dual (Packing)

(P):  Min 𝑥1 (D):   Max 𝑦1 +𝑀𝑦2 +𝑀2𝑦3 + …

𝑥1 ≥ 1
𝑥1 ≥ 𝑀
𝑥1 ≥ 𝑀2

…

(𝑀 ≫ 1)

𝑦1 + 𝑦2 + 𝑦3 + … ≤ 1
𝑦 ≥ 0



Maintaining D’: The Linear Case

• When 𝑡th row of A arrives (and new 𝑦𝑡).
• While 𝑡th constraint is unsatisfied:

Primal update: Increase each 𝑥𝑗 with 𝒂𝒕𝒋 > 𝟎 with rate:
𝑑𝑥𝑗

𝑑𝑦𝑡
= 𝑎𝑡𝑗𝑥𝑗 + 1/𝑑

Dual update for D’: Increase 𝑦𝑡 at rate 𝛿.

If for 𝑗 = 1,… , 𝑛 the dual constraint σ𝑡′=1
𝑡 𝑎𝑡′𝑗𝑦𝑡′ = 1: 

• Let 𝑡𝑗
∗ = argmax𝑡′≤𝑡 𝑎𝑡′𝑗 𝑦𝑡′ > 0 }

• Decrease 𝑦𝑡𝑗
∗ at rate −

𝑎𝑡𝑗

𝑎𝑡𝑗
∗
𝛿.

Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 1
𝑦 ≥ 0

Observation: D’ is feasible.
The change in the dual constraint at most:

𝑎𝑡𝑗𝛿 − 𝑎𝑡𝑗
∗ ⋅
𝑎𝑡𝑗

𝑎𝑡𝑗
∗
𝛿 = 0



Maintaining D’: The Linear Case

Primal update as before:

Increase each 𝑥𝑗 with 𝒂𝒕𝒋 > 𝟎 with rate:
𝑑𝑥𝑗

𝑑𝑦𝑡
= 𝑎𝑡𝑗𝑥𝑗 + 1/𝑑

Change in the primal objective function:

𝜕𝑃

𝜕𝑦𝑡
= ෍

𝑗| 𝑎𝑡𝑗>0

𝑎𝑡𝑗𝑥𝑗 +
1

𝑑
≤ 2

Main question: Does the Dual 𝐷′ increase enough?

Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 1
𝑦 ≥ 0



Maintaining D’: The Linear Case

Dual update: Increase 𝑦𝑡 at rate 𝛿.

If for 𝑗 = 1,… , 𝑛 the dual constraint σ𝑡′=1
𝑡 𝑎𝑡′𝑗𝑦𝑡′ = 1: 

• Let 𝑡𝑗
∗ = argmax𝑡′≤𝑡 𝑎𝑡′𝑗 𝑦𝑡′ > 0 } . Decrease 𝑦𝑡𝑗∗ at rate −

𝑎𝑡𝑗

𝑎𝑡𝑗
∗
𝛿.

Change in the dual objective function:

𝜕𝐷

𝜕𝑦𝑡
= 𝛿 − ෍

𝑑𝑢𝑎𝑙 𝑜𝑓 𝑗 𝑖𝑠 𝑡𝑖𝑔ℎ𝑡

𝑎𝑡𝑗

𝑎𝑡𝑗
∗
𝛿 = 𝛿 ⋅ 1 − ෍

𝑑𝑢𝑎𝑙 𝑜𝑓 𝑗 𝑖𝑠 𝑡𝑖𝑔ℎ𝑡

𝑎𝑡𝑗

𝑎𝑡𝑗
∗

Final claim: σ𝑗 𝑖𝑠 𝑡𝑖𝑔ℎ𝑡
𝑎𝑡𝑗

𝑎𝑡𝑗
∗
≤

1

2
(so dual increase ≥𝛿/2)

Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 1
𝑦 ≥ 0



Maintaining D’: The Linear Case

Final claim: σ𝑗 𝑖𝑠 𝑡𝑖𝑔ℎ𝑡
𝑎𝑡𝑗

𝑎𝑡𝑗
∗
≤

1

2

• Claim: 𝑥𝑗 ≥
1

d⋅max
𝑡∈𝑆𝑗

𝑎𝑡𝑗
𝑒𝑥𝑝

σ𝑡∈𝑆𝑗
𝑎𝑡𝑗⋅𝑦𝑡

𝛿
− 1 ,  𝑆𝑗 ⊆ 𝑡 |𝑎𝑡𝑗 > 0

• 𝑆𝑗 = 𝑡 |𝑎𝑡𝑗 > 0, 𝑦𝑡 > 0 : 𝑥𝑗 ≥
1

𝑑⋅𝑎𝑡𝑗
∗
𝑒𝑥𝑝

σ𝑡∈𝑆𝑗
𝑎𝑡𝑗⋅𝑦𝑡

𝛿
− 1

• σ𝑗 𝑎𝑡𝑗𝑥𝑗 ≤ 1 + dual constraints of variables 𝑗 are tight

 σ𝑗 𝑖𝑠 𝑡𝑖𝑔ℎ𝑡 𝑎𝑡𝑗
1

𝑑⋅𝑎𝑡𝑗
∗
𝑒𝑥𝑝

1

𝛿
− 1 ≤ σ𝑗 𝑎𝑡𝑗𝑥𝑗 ≤ 1

 (Plugging 𝛿 = 1/(log 1 + 2𝑑 ) ): σ𝑗
𝑎𝑡𝑗

𝑎𝑡𝑗
∗
≤

1

2

Primal (covering) Dual (Packing)

(P):  Min σ𝑗=1
𝑛 𝑥𝑗 (D):   Max σ𝑡=1

𝑇 𝑦𝑡

𝐴𝑥 ≥ 1
𝑥 ≥ 0

𝑦′𝐴 ≤ 1
𝑦 ≥ 0



Questions

Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0

• f(𝑥): Non-negative monotone convex function (+ 𝛻𝑓 is monotone). 

Let 𝑝 = sup
𝑥≥0

𝛻𝑓 𝑥 ,𝑥

𝑓(𝑥)
(Intuition: 𝑓 𝑥 is a polynomial of degree 𝑝)

• Covering competitive ratio: 𝑂 𝑝 ⋅ 𝑙𝑜𝑔 𝑑 𝑝

• Packing competitive ratio: 𝑂 𝑝 ⋅ 𝑙𝑜𝑔 𝑑
𝑎𝑚𝑎𝑥

𝑎min

𝑝

• 𝑑 – row sparsity of matrix 𝐴
• 𝑎max/𝑎min- ratio of maximal to minimal (non-zero) entry in a column of 𝐴.



Questions

• Is ′𝑑′ (row sparsity) the right parameter? Is there a 
more refined parameter?

(adding 𝜖 noise doesn’t change problem, but makes 𝑑 = 𝑛)

• More applications.

• Additional extensions of the framework.

• Handling non-covering  constraints (paying for 
changing x).

• Connections to learning.

Primal (covering) Dual (Packing)

(P): Min 𝑓(𝑥) (D):   Max σ𝑡=1
𝑇 𝑦𝑡 − 𝑓∗(𝐴𝑇𝑦)

𝐴𝑥 ≥ 1
𝑥 ≥ 0 𝑦 ≥ 0



Thank you


