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Road Map

/° The online primal-dual framework
* A natural extension of the primal
* A natural extension of the dual
* Main results

e Algorithms and analysis ideas




Offline Covering/Packing Problems

Strong Duality

(P): Min c¢’x (D): Max Xf_, vy, A
Ax > 1 y'A<c
B2l y=0 Primal (Min)
A€ RT*™" b eRT,ceR} solutions
/ . . . \ P —+ D*
Captures many (relaxations) of combinatorial
optimization problems: DLkl (¥evg
i . . solutions
* Covering: Covering problems (set-cover, facility
location), connectivity/cut problems (steiner
tree, shortest path), paging ...

e Packing: knapsack , flow problems (Maximum

multicommodity flow, matching), combinatorial
\ auctions .... /




Online Covering/Packing Problems

(P): Min c'x (D): Max Xf_, vy,
Ax > 1 y'A<c
x=0 y=0

A€RT*™ beRY, ceR?

Kc is known in advance. \

Attimet =1,2,..T:
* The tth row of Ais revealed (and a new dual y;).

Covering: Variables x; can only be increased to maintain a
feasible solution.

e @Goal: Minimize the total cost.

Packing: New dual variable y; should be set immediately.
¢ Goal: Maintain a feasible solution, Max total profit. /




Example 1: Online Set Cover

(P): Min )¢ xg Non negative objective function
. : Choose set
z xs=>1 Ve€E s > _ _
* Rows (=elements) arrive online
s| e€s
x=0 * X, can only be increased over time
/Online set cover [Alon-Awerbuch-Azar-B-Naor03]: \

« E={1,2,..n}, S; € E (m sets).

* Elements arrive one-by-one and should be covered
upon arrival.

 Sets cannot be unchosen.

KGoaI: Minimize total cost of sets chosen. /




Example 2: Virtual Circuits Routing

(D): Max ; yr, Non-negative objective

Z Vr; < Co Ve EE

Ti | e€p; :
yr, <1 VT online.
y >0  Should be set upon arrival.

« Packing constraints for all e € E
« Variables y, (= requests) arrive

/Online virtual circuits routing [Awerbuch-Azar-Plotkin93]: \

Graph G = (V, E), capacities on edges c,.
Requests r; = (s;, t;, p;) arrive one-by-one.
Should be connected using capacity 1, or rejected.

Accepted requests cannot be rejected later.

Qoal: Maximize number of requests accepted.

/




Online Covering/Packing problems

(P): Minc’x (D): Max Iy,
Ax > 1 y'A<c
x =0 y=0

A€ RY*™ b eRL,ceR}

/Captures many (relaxations) of online combinatorial \
optimization problems:

* Covering: online set-cover, online connectivity/cut, facility
location, (weighted) paging, Metrical task systems ...

e Packing: routing, matching (ad-auctions), online knapsack,
\ online combinatorial auctions. /




Algorithm for the framework

(P): Min X", cx; (D): Max Yf_, vy,
Ax > 1 y'A<c
x=0 y=0

meorem [B-Naor05, Gupta-Nagarajan12]: \

There is an algorithm that produces solutions x, y
such that:

* xis O(log d)-competitive,
d = Maximum row sparsity of A.

¢ yisO (log (d : a’"“"))-competitive,

Amin

Amax/ Amin- ratio of maximal to minimal (non-zero) entry
in a column of A,

\Results are tight asymptotically. /




A Natural Generalization of Covering

(P): Min X7_; ¢x; (P): Min f(x)
Ax =1 Ax =1
x=0 x=0

K f is a convex monotone function. \
(Monotone: x <y = f(x) < f(¥))
Offline: Problem is polynomially solvable.

Online (same setting):
 Rows of A arrive online.
e Variables should be monotonically increasing.




Example 1: L,,-norm Set Cover

(P): Min ¥¥ . (c/x)P

Zx521 Ve € E

s| e€s
x=0

/ Elements arrive one-by-one and should be covered upon \
arrival.

e Sets cannot be unchosen.

¢+ fx) =X (cx)P

* Special case 1: f(x) = Xj_; CsX; (p =1)

* Special case 2: f(x) = max._;(c/x) (p = logk)

Motivation: combining multiple objectives, makespan, energy
minimization.




The Dual Problem

(P): Min f(x) (D): Max Xi—y:— f"(4"y)
Ax > 1
x =0 y=0
K f*(z) = sup(z'x — f(x)) (conjugate function) \
x=0

* f7 always convex (even if f is not convex).

* [Nice function f]: If f is continuous, convex, monotone,
differentiable and f(0) = 0

=>» " is convex, monotone, non-negative, f*(0) =0and f™ = f

\_ /




The Dual Problem

(P): Min f(x) (D): Max %i_1y: — f*(A"y)
Ax = 1
x =0 y=0
Kf*(z) = sup(z'x — f(x)) (conjugate function) \
xX=0

Proof (weak duality): x, y solutions to primal/dual:

fO) = f() —y'(Ax — 1) ' y>0Ax>1
T : -l -
= ye—(xUTy) - ()
t=1

T T
> Zyt —sup(x'(ATy) — f(x)) = zyt fr(ATy) x>0,
t=1

x=0

\ =1 _Q?flf‘_[t_'_‘?_rl_‘?f_f_/




Natural Extension of Dual Problem

(P): Min f(x) (D): Max Xi_iy: — f*(A"y)

Ax > 1
x>0

\_

fOnIine setting (Dual):

Primal constraint arrive at time t
= New dual variable y;

be changed later on.

~

* Value of y; should be set immediately and cannot

Goal: Maximize profit Y., y, minus cost f*(ATy).

J




Example 2: Virtual Circuits Routing

(D): Max 2; v, — f*(2)

z Vr; =Z¢ Ve EE

ri| e€p;

y=0

Gnline virtual circuits routing (with capacity costs): \

 Requests arrive online as before and should be
accepted/rejected immediately.

* Capacity should be bought at cost f*(z).

0 z,<c, VeeE }
o'e) Otherwise

& Special case 2: f*(2) = Y ocr 9e(Z0) /

* Specialcase 1: f*(z) = {




Extending the Basic Framework

(P): Min X", cjx; (D): Max Xf_ vy,
Ax >1 y'A<c
x=0 y=0
(P): Min f(x) (D): Max ¥, y: — f*(A"y)
Ax =1 y=0
x=0

K f(x): Non-negative monotone convex function (+ Vf is monotone). \

(Vf(x),x)
Llet p =
ML TeS

* Covering competitive ratio: O(p - log d)P

(Intuition: f(x) is a polynomial of degree p)

p
* Packing competitive ratio: O (p .log (d a’"“"))

Amin

 d—row sparsity of matrix A
Amax/ Amin- ratio of maximal to minimal (non-zero) entry in a column of A. /




Our Results (cont.)

e Matches the best bounds for the linear case. \
Theorem (lower bound):

There exists an instance with f =polynomial of degree p
such that any online algorithm for the primal problem is

Q(plog d)P-competitive.

Rounding (Integral solutions)
p3
log p
algorithm for L,,-norm set cover

* Example: There exists a ( log d log n)-competitive

(n: num. of elements, d: max num. of sets containing an element)

* Other applications: scheduling, facility location ...




Previous Results (Primal)
[Azar, Bhaskar, Fleischer, Panigrahi, 2013]

/ Online Mixed Packing and Covering \

(P): Min Maxi, {c/x}

Ax > 1
x =0

0, (log k-log (d , Zmax C’"“"))—competitive algorithm.

Amin Cmin

(Amaxr Amins Cmax> Cmin: Max / min (non-zero) coordinate)

Our result (for this case): O(log k log d)-competitive (best

{ossible)




Previous Results (Dual)
[Blum, Gupta, Mansour, Sharma, 11], [Huang, Kim, 15]

Maximizing social welfare with (separable) production c@
* nitem types, buyers arrive online. For each bundle S:

> V; ¢: value of bundle S to buyer i
» ajs: number of items of type j in bundle S
* Y;s:allocate bundle S to buyer i

* z;: how many items of type j to produce.
(D)i Max Z?Q 2s Vis Yis — ?:1 fj*(Zj)

z Vis <1 foreachbuyeri
S

m
Z 2 ajsyis = zj foreachitem type j

i=1 S

y=0
Qc*is separable (separate cost for each item type). /




Algorithm for the framework ¢

(P): Min f(x) (D): Max Xi—1y: — f*(ATy)
Ax =1
x=0 y=0

Klnitially setx = 0. \

* When tt" row of A arrives (and new y;).
* While tt" constraint is unsatisfied:
* Increase y; at rate 0
(... depends on parameters of the problem).
* Increase each x; with a;; > 0 with rate:
ﬁ _agxjt+1/d

dy; B V]f(x)

d (< n) = Maximum row sparsity seen so far.

(Intuition: linear case, V;f (x) = c;) /




Algorithm for the framework ¢

)

(P): Min f(x) (D): Max %i—1y: — f*(ATy)
Ax = 1
x=0 y=0

/Theorem: Algorithm produces a monotone primal solution P\
and a monotone dual solution D such that:

P < 0 (plog (d%2)) D

Amin

=>» (Weak duality):
p
P,D are O (p log (d amaX)) -competitive.

\_ - /




Analysis: Main ldeas

Update rule:
Increase y; atrate §

Mingysq,xs0lf ()} Maxyzo{z ye = (A"y)} dxj _ agxj+1/d

dyt Vif(x)

/Bounding the “profit”: \

Assume yt isincreased atrate 1 (notd < 1)

1
of ~af(x) ax, agxj + g 1
Iy L ox = ), U@ Vf() = ), (“”’x"+d)sz

j=1 jlagj>0 Jlag;>0

= f(x) < 62,; 1 V¢, X:final value of x.

oYl _ 1y, > f(x) (=» Profit is large compared to primal cost)

\_ /




Analysis: Main ldeas

Update rule:
Increase y; at rate 6

T
Mingysq xs0lf (%)} MaXyZO{z ye — fFATY)} | axj _ aexit1/d
t=1

dyt Vif(x)

ﬂ)unding the “production cost”:

Ltes; Atj'Y
< 1 tES] tj' e _ . .
Claim: x; > " : [exp( 57,7 ) 1] , S; € {t lag; > 0}

Proof: Solving differential equation of update rule + Vf is monotone.

x; < —— (at this value all constraints are feasible)

{gisr]!{atj}

> (A"y)j = Yies; A ye < SV;if (%) - 0 (‘Og (d Zmax))

min

=>» (By prop. of f*+ bound on “convexity” of f) bound on f*(4"y)
Wally, optimizing the value §. /




Analysis: Main ldeas

(P): Min f(x) (D): Max Xi—1y: — f*(ATy)
Ax =1
x=0 y=0

meorem: The algorithm produces a monotone prinm

solution P and a monotone dual solution D such that:
14
P<O (p log (d amaX)) D

Amin

How to remove the a,,,,,./a,in term?

There exists a feasible solution D’ such that:

P <O(plog(d))? - D’

Qis not monotone! /




Maintaining D’: The Linear Case

(P): Min X% x; (D): Max XI_,y,
Ax =1 y'A<1
x=0 y=0

mhy we must decrease dual variables?

(P) Min X1 (D) Max V1 + Myz + szg + ...
x121 y1+y2+y3+S1
x; = M?

Aiming towards constant competitive ratio ‘c’:

Y1 = 1/C; Vo = 1/C,y3 = 1/C
wt dual constraint should be satisfied!

/




Maintaining D’: The Linear Case

A\
N

(P): Min X% x; (D): Max XI_,y,
Ax =1 y'A<1
x=>0 y =0

Observation: D’ is feasible.

e When tth row off The change in the dual constraint at most:
° i th at i

. While t* co a6 — ag: - Js =0
Primal update: Inc J A

Dual update for D’: Increase y; at rate 6.

If for j = 1, ..., n the dual constraint X.%,_, ajVe = 1:

* Let tf = argmaxtrst{aujb’u >0}

atj

* Decrease y;: at rate —— J.
t*
]




Maintaining D’: The Linear Case

(P): Min X% x; (D): Max XI_,y,
Ax =1 y'A<1
x=0 y=0

ﬁrimal update as before:

Increase each x; with a;; > 0 with rate:

4%; +1/d
— = A+ X
d}’t tj*]

Change in the primal objective function:

ap_ Z +1 -3
ayt— Az jX; 7)S

]l Cltj>0

wain question: Does the Dual D' increase enough?




Maintaining D’: The Linear Case

N
N
N

(P): Min X% x; (D): Max XI_,y,
Ax =1 y'A<1
x=0 y=0

Gml update: Increase y, at rate §. \

If for j = 1, ...,n the dual constraint Y§,_; Az jyer = 1:

* as+;
* Let¢ = argmaxtrst{at,ﬂyt, > 0} . Decrease Ve; at rate —a—”5.

k
tj

Change in the dual objective function:

aD At At
RSN TR (S
0y a; a;

dual of jis tight tJ dual of jis tight t]

° ° a j 1 .
Q\al claim: ) ; tl-ghta—ti < 5 (so dualincrease 25 /2) /
t*
J




Maintaining D’: The Linear Case

(P): Min X¥%_; x; (D): Max XI_,y,
Ax =1 y'A<1
x=0 y=0
. . . QAtj 1
mal claim: ¥ ; tight o <: \

J
2tes; Atj YVt

. im-ox >—r J _ . _
Claim: x; = Emar(ar) [exp( S > 1] , S € {t lag; > O}
]

Ltes; Atjy
1 tesS; Yty Jt
¢ 5= {t lag; > 0,y > O}: X = da, [exp( ]5 >— 1]

J

Y..-a.ix; < 1+ dual constraints of variables j are tight
J Ut J

> 2] is tight Atj (d - [exp( ) o 1]) = Z At jXj <1

J

J a.«
t

Q(Pluggmga = 1/(log(1 +2d)) ): ;2L < 2 /




Questions @

UNDER

CONSTRUCTION)
(P): Min f(x) (D): Max X{—y: — f*(A"y)
Ax > 1
x=0 y=0

K f(x): Non-negative monotone convex function (+ Vf is monotone). \

_ (Vf(x)x)
etp = U

(Intuition: f(x) is a polynomial of degree p)

* Covering competitive ratio: O(p - log d)P

b
* Packing competitive ratio: O (p -log (d —amax)>

Amin
* d—row sparsity of matrix A
K Amax/ Amin- ratio of maximal to minimal (non-zero) entry in a column of A. j




Questions ®

UNDER
CONSTRUCTION)
(P): Min f(x) (D): Max Xi—;y: — f*(ATy)
Ax > 1
x =0 y=0

K Is'd’ (row sparsity) the right parameter? Is there a \
more refined parameter?

(adding € noise doesn’t change problem, but makes d = n)
 More applications.
 Additional extensions of the framework.

* Handling non-covering constraints (paying for
changing x).

\ Connections to learning. /




Thank you




