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Risk	– calculable	gamble



Handling	input	risk:
Average	case	analysis



Uncertainty	– incalculable	
unknown

'Symbol of Uncertainty', John Gilbert



Handling	input	uncertainty:
Worst-case	competitive	analysis



Common	complaints

• Competitive	analysis	is	too	pessimistic

• Stochastic	analysis	need	too	detailed	information	



Possible	Responses
• Relax	pessimism:	Add	restrictions	to	worst-case	
input	scenarios	to	reduce	impact

• Temper	optimism:	Make	stochastic	analysis	robust	
to	changes	in	input	distribution

• “Have	it	all”:	Build	algorithms	that	achieve	the	
‘best	of	both	worlds’	and	work	for	both	kinds	of	
inputs

• Interpolate	Model	AND	Performance:	Build	hybrid	
input	models	interpolating	stochastic	and	
adversarial	inputs	to	derive	new	algorithms	that	
deteriorate	smoothly	in	performance



Outline

• Motivation
• Related	work*	(incomplete	and	representative)
• Attempt	at	Specific	Model



Relax	Pessimism:
Restrict	classes	of	inputs
• Better	algorithms	for	bounded	tree-width	inputs

• Better	approximation	algorithms	for	bounded	
genus	graphs



Relax	Pessimism:
Smoothed	Analysis
• [Spielman-Teng 2001]	Uses	distributional	
disturbance	over	given	worst-case	input,	to	smooth	
out	(expected)	performance

• Resulting	running	times	are	polynomial	in	input	and	
perturbation	size

• Goal:	Explain	“unreasonable	effectiveness”	of	
popular	algorithms	(like	Simplex	for	LP)



Temper	optimism:
Stochastic	Programming	Variants

Stochastic Combinatorial Optimization with controllable risk aversion level
So, Zhang & Ye, APPROX ‘06, Math of OR



Temper	Optimism:	Distributionally	
Robust	Optimization
Add	ambiguity	to	risk
• Newsvendor	problem	with	only	mean	and	variance,	
not	distribution	[Scarf	1958]	

• Distributionally	Robust	Stochastic	Optimization	
[Zackova,	Dupacova,	Bertsimas+,	Sim+,	Ye+,…]



Temper	Optimism:
Correlation	Robustness

Correlation gap: Loss in performance by ignoring 
correlations and assuming independence 



Have	it	all:	
Universal	Approximations
One	single	solution	whose	induced	solution	is	good	
for	any	subset	input	 [Bartholdi-Platzman,	Jia+]



Have	it	all:
Robust/Incremental	Solutions
• Matchings	[Hassin-Rubinstein,	SIDMA	2002]	Given	
a	weighted	graph	find	a	single	matching	and	an	
ordering	of	its	edges	such	that	for	every	k,	the	
prefix	of	k	edges	is	near	optimal	maximum	weight	
matching	of	size	k

• Metric	k-median	[Mettu-Plaxton,	SICOMP	2003]	
Find	an	ordering	of	facilities	such	that	for	every	k,	
the	prefix	of	k	facilities	is	a	near	optimal	k-median



Have	it	all	/	Best	of	both:
Trade-off	two	guarantees
Try	to	find	the	best	possible	ratios	with	respect	to	the	
“pessimistic”	and	“optimistic”	extremes

Online Algorithms with Uncertain Information
Mahdian, Nazerzadeh & Saberi, EC ’07, TALG 2012

Note	performance	is	w.r.t.	that	of	the	given	
algorithms	but	not	the	“optimal”	solutions



Best	of	both:
Online	Resource	Allocation



Best	of	both:	AdWords

Maintain	(1	– 1/e)-worst	case	guarantee	in	the	worst	
case	and	do	quantifiably	better	for	random	arrival	
model
“In	this	paper	we	design	algorithms	that	achieve	a	competitive	ratio	better	
than	1	−	1/e	on	average,	while	preserving	a	nearly	optimal	worst	case	
competitive	ratio.	Ideally,	we	want	to	achieve	the	best	of	both	worlds,	i.e,	
to	design	an	algorithm	with	the	optimal	competitive	ratio	in	both	the	
adversarial	and	random	arrival	models.	We	achieve	this	for	unweighted	
graphs,	but	show	that	it	is	not	possible	for	weighted	graphs.”	

Simultaneous Approximations for Adversarial and Stochastic Online 
Budgeted Allocation
Mirrokni, Oveis-Gharan & Zadimoghaddam, SODA ‘12



Best	of	both:
Balanced	guarantees	for	bandits



Audience	Participation:
Other	Related	Work?



Recall	Possible	Responses
• Relax	pessimism:	Add	restrictions	to	worst-case	
input	scenarios	to	reduce	impact

• Temper	optimism:	Make	stochastic	analysis	robust	
to	slight	changes	in	input	distribution

• “Have	it	all”:	Build	algorithms	that	achieve	the	
‘best	of	both	worlds’	and	work	for	both	kinds	of	
inputs

• Interpolate	Model	AND	Performance:	Build	hybrid	
input	models	interpolating	stochastic	and	
adversarial	inputs	to	derive	new	algorithms	that	
deteriorate	smoothly	in	performance



Proposal:	Interpolate
Models	AND	Performance
• Model	interpolation:	Input	model	should	allow	
smooth	interpolation	between	stochastic	optimism	
and	worst-case	pessimism

• Performance	interpolation:	Algorithm	should	have	
performance	ratio	that	interpolates	smoothly	
between	the	better	guarantee	for	stochastic	inputs	
and	the	worse	guarantee	for	the	worst-case



Rest	of	the	talk	
[Joint	with	Guy	Blelloch,	Kedar Dhamdhere &	
Suporn Pongnumkul,	Summer	2004]

• List	Update	Problem:	Competitive	&	Average	Case	
Analysis

• A	Hybrid	Online	Model
• Setup	and	Results	from	a	preliminary	experiment
• Conjecture



List	Update	Problem
Self-organizing	sequential	search

• Unsorted	list

• Received	a	sequence	of	requests

• Cost	of	accessing	the	ith element	of	the	list	is	i.	After	access,	
can	move	it	anywhere	ahead	in	the	list	for	free

• Can	transpose	any	pair	of	adjacent	elements	at	unit	cost

y w z x v uL:



y w z x v uL:

List	Update	Example

Action Cost Total Cost



y w z x v uL:

List	Update	Example

Action Cost Total Cost
Access x



y w z x v uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4



y w z x v uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v



y w z x v uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9



y w z x v uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w



y v w z x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9



y v w z x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9
Access y



y v w z x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9
Access y 1 10



y v w z x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9
Access y 1 10
Access v



y v w z x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9
Access y 1 10
Access v 2 12



y v z w x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9
Access y 1 10
Access v 2 12

Transpose w and z



y v w z x uL:

List	Update	Example

Action Cost Total Cost
Access x 4 4
Access v 5 9

Move v forward to before w 0 9
Access y 1 10
Access v 2 12

Transpose w and z 1 13



Average	Case	Analysis

• Assume	each	request	comes	from	a	fixed	
probability	distribution,	independent	of	previous	
requests.	Suppose	the	ith item	has	probability	pi.	
Design	algorithms	to	minimize	the	expected	cost.	

• Optimal	strategy	is	to	keep	the	list	sorted	in	non-
increasing	order	of	pi.



STAT	=	Static	List

• List	is	sorted	in	non-increasing	order	of	the	
probabilities

• Never	moves	anything

• Good	for	when	we	have	a	good	estimate	of	the	
probability	distribution.



FC:	Frequency	Count	

• If	probability	distribution	is	unknown,	estimate	it	
using	frequency	counts

• Keep	list	sorted	according	to	counts



Competitive	Analysis

• Definition: An	analysis	in	which	the	performance	of	
an	online	algorithm	is	compared	to	the	best	that	
could	have	been	achieved	if	all	the	inputs	had	been	
known	in	advance.	



Competitive	Ratio

A:
Our online 
algorithm

CA(s)

OPT:
Optimal 
Offline 

algorithm

COPT(s)

A is c-competitive if $ a
CA(s) ≤ c COPT(s) + a

for all request sequences s



Move-to-Front	(MTF)

[Sleator,	Tarjan,	CACM	1985]	When	an	element	is	
accessed,	move	it	to	the	front	of	the	list.

• Theorem:	MTF	has	competitive	ratio	2	against	
optimal	offline	algorithm.



Performance	Comparison	

• E(FC)	/E(STAT) =	1	[Rivest CACM	1976]
• E(MTF)/E(STAT)	=	𝜋/2 =	1.58…	[Chung,	Hajela,	
Seymour	STOC	85]



TS	timestamp	algorithm
[Albers	SODA	95,	Albers	&	Mitzenmacher
Algorithmica 1998]
Our	work	is	motivated	by	the	goal	to	present	a	
universal	algorithm	that	achieves	a	good	competitive	
ratio	but	also	performs	especially	well	when	requests	
are	generated	by	distributions.	(“Have	it	all”)
TS:	Insert	the	requested	item,	say	x,	in	front	of	the	
first	item	in	the	list	that	has	been	requested	at	most	
once	since	the	last	request	to	x.	If	x	has	not	been	
requested	so	far,	leave	the	position	of	x	unchanged.	
Theorem TS	is	2-competitive

E(TS)/E(STAT)	=	1.5
while	for	some	distribution,	E(MTF)/E(STAT)	>	1.57



New	Hybrid	Interpolating	Model
• Assume	a	fixed	probability	distribution

• For	each	request,	with	probability				,	let	adversary	change	the	
request.

• ó Average	Case	Analysis

• ó Competitive	Analysis

• ó Known	probability	distribution	with				
uncertainty.

),...,,( 21 npppp =!

e
0=e
1=e
10 << e e



Desiderata:	Interpolating	
Algorithm	for	Hybrid	Model

• Takes	as	input	estimates	of	p and	e

• Matches	best	average	case	performance	when	e is	
low,	and	matches	best	competitive	ratio	when	e is	
high,	and	interpolates	in	between.	



Candidate	Algorithm:
Move-From-Back-Epsilon
• List	initially	sorted	in	non-increasing	order	of	
probabilities.

• When	an	element	x is	accessed,	promote	it	past	
others	that	have	probability	up	to	px +	e.



y w z x v uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost

s: v y z y
Prob py = 0.5  pw = 0.2  pz = 0.15  px = 0.1  pv = 0.03 pu = 0.02



y w z x v uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost

s: x v y v
Prob py = 0.5  pw = 0.2  pz = 0.15  px = 0.1 pv = 0.03 pu = 0.02



y w z x v uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w)

s: x v y v
Prob py = 0.5  pw = 0.2  pz = 0.15  px = 0.1 pv = 0.03 pu = 0.02



y x w z v uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4

s: x v y v
Prob py = 0.5   px = 0.1 pw = 0.2  pz = 0.15 pv = 0.03 pu = 0.02



y x w z v uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4

s: x v y v
Prob py = 0.5   px = 0.1   pw = 0.2  pz = 0.15 pv = 0.03 pu = 0.02



y x w z v uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x)

s: x v y v
Prob py = 0.5   px = 0.1   pw = 0.2  pz = 0.15 pv = 0.03 pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

s: x v y v
Prob py = 0.5  pv = 0.03 px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

s: x v y v
Prob py = 0.5 pv = 0.03   px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

Access y

s: x v y v
Prob py = 0.5 pv = 0.03   px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

Access y 1 10

s: x v y v
Prob py = 0.5 pv = 0.03   px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

Access y 1 10

s: x v y v
Prob py = 0.5  pv = 0.03 px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

Access y 1 10
Access v

s: x v y v
Prob py = 0.5  pv = 0.03 px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



y v x w z uL:

MFBE	Example	(e =	0.2)

Request Cost Total Cost
Access x (and move to before w) 4 4
Access v (and move to before x) 5 9

Access y 1 10
Access v 2 12

s: x v y v
Prob py = 0.5  pv = 0.03 px = 0.1   pw = 0.2  pz = 0.15  pu = 0.02



Difficulties	in	Proving	
Properties	of	MFBE
• Must	compare	with	OPT	rather	than	STAT
• OPT	can	be	computed	by	Dynamic	programming	

• Trivial	way	=	O((n!)2m)
• Improvement	=	O((2n)(n!)m)

[Reingold,	Westbrook,	1996]

• Hard	to	derive	useful	properties	of	OPT



Experiments	
(Pongnumkul ALADDIN	REU	2004)
• Motivation:	To	see	the	behavior	of	algorithms	in	
our	hybrid	model.

• Measurement:	We	measure	the	performance	of	an	
online	algorithm	by	the	average	competitive	ratio.



Our	Experiment

• Variables	in	our	experiment
• Type	of	List	Update	Algorithm	
(MTF,	STAT,	MFBE)

• Type	of	Probability	Distribution
• Type	of	Adversary

• Epsilon:		e



Our	Experiment

• We	generate	a	request	sequence	of	length	100,	
with	a	chosen	probability	distribution

• Then,	with	probability	e change	the	request	
sequence adverserially



Our	Experiment
• Record	the	cost	incurred	by	the	online	algorithm	=	
CostA(s)

• Use	Dynamic	Programming	to	find	optimum	cost	of	
that	request	sequence	=	CostOPT(s).

• Competitive	Ratio	=	CostA(s)/CostOPT(s)

• Repeat	this	100	times	to	find	the	average	competitive	
ratio.



Distribution

• Geometric	Distribution:	
• P[i]	/ 1/2i

• Uniform	Distribution:
• P[i]	=	1/n,	n	=	length	of	the	list

• Zipfian	Distribution	(Zipf(2)):
• P[i]	/ 1/i2



Cruel	Adversary

• This	is	an	adaptive	adversary

• Looks	at	the	current	list	and	request	the	last	item	in	
the	list.

y w z x v uL:



Cruel	Adversary,	Geometric	
Distribution,	n=6
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Cruel	Adversary,	Geometric	
Distribution,	n=6	(zoomed	in)
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Other	Adversaries

• Geometric	adversary	chooses	elements	randomly,	
according	to	the	geometric	distribution	on	the	
reversed	STAT	order

• Uniform	adversary	requests	elements	from	the	list	
uniformly	at	random

• Oblivious	Adversary	doesn’t	look	at	the	current	list



Uniform	Adversary,	Zipfian2	
Distribution,	n=6

Average Competitive Ratio
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Reversed	Geometric	Adversary,	
Geometric	Distribution,	n=6

Average Competitive Ratio
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Observations

• The	performance	of	any	algorithm	in	this	hybrid	
model	depends	heavily	on	the	type	of	adversary.

• MFBE	seems	better	than	the	worse	of	STAT	and	
MTF.	



Conjecture

(Not	the	worst)	The	average	competitive	ratio	of	
MFBE	is	dominated	by	the	maximum	of	the	average	
competitive	ratios	of	STAT	and	MTF.

• (Best	of	all)	What	we	wanted	but	probably	not	
true:	Avg competitive	ratio	of	MFBE	is	at	most	the	
minimum	of	the	average	competitive	ratios	of	STAT	
and	MTF.



Interpolate	Model	AND	Performance:	Build	hybrid	
input	models	interpolating	stochastic	and	adversarial	
inputs	to	derive	new	algorithms	that	deteriorate	
smoothly	in	performance
• Prove/disprove	“MFBE	is	not	the	worst”
• Find	a	setting	where	the	hybrid	model	interpolates	
stochastic	and	worst-case	inputs,	and	the	algorithm	
interpolates	the	performance	of	average	case	and	
worst	case	algorithms

• Are	there	more	effective	approaches	to	trade-off	
stochastic	optimism	and	worst-case	pessimism?	

Summary


