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@ My beautiful regret
© A supposedly fun game I'll play again

© The joy of convex
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Machine learning

Classification/regression tasks

@ Predictive models h mapping data instances X to labels Y
(e.g., binary classifier)

e Training data St = ((Xq,Y1),..., (X1, Y7))
(e.g., email messages with spam vs. nonspam annotations)

@ Learning algorithm A (e.g., Support Vector Machine) maps
training data St to model h = A(St)

Evaluate the risk of the trained model h with respect to a given loss
function
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Two notions of risk

View data as a statistical sample: statistical risk

E[(A(ST), (%,Y)]

trained test
model example

Training set St = ((Xl,Yl), ..., (XT,YT)) and test example (X, Y) drawn
i.i.d. from the same unknown and fixed distribution

v
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Two notions of risk
View data as a statistical sample: statistical risk

E[(A(ST), (%,Y)]

trained test
model example

Training set St = ((X1, Y1), ..., (X, Y7)) and test example (X, Y) drawn
i.i.d. from the same unknown and fixed distribution

View data as an arbltrary sequence: sequential risk

Ze AlSi1), Xu, Y1)
| S

t=1

| N\

trained test
model example

Sequence of models trained on growing prefixes
St = ((X1,Y1),..., (X, Yi)) of the data sequence
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Regrets, I had a few

Learning algorithm A maps datasets to models in a given class H

Variance error in statistical learning

E[@(A(ST),(X,Y))} —higjf{lE[e(h,(Xﬂ))}

compare to expected loss of best model in the class
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Regrets, I had a few

Learning algorithm A maps datasets to models in a given class H

Variance error in statistical learning

JE[e(A(sT),(x,Y))} —higjf{JE[e(h,(X,Y))}

compare to expected loss of best model in the class

Regret in online learning

Ze (Se-1), xt,m)—mfze (Xt Y1)

=1l

compare to cumulative loss of best model in the class
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Incremental model update

A natural blueprint for online learning algorithms

© Apply current model h;_; to next data element (X, Y¢)

@ Update current model: hy_; — hy € H (local optimization)
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Incremental model update

A natural blueprint for online learning algorithms

© Apply current model h;_; to next data element (X, Y¢)

@ Update current model: hy_; — hy € H (local optimization)

Goal: control regret

ZE ht iy Xt,Yt — mf ZE Xt,Yt
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Incremental model update

A natural blueprint for online learning algorithms

© Apply current model h;_; to next data element (X, Y¢)

@ Update current model: hy_; — hy € H (local optimization)

Goal: control regret

ZE ht iy Xt,Yt — mf ZE Xt,Yt

View this as a repeated game between a player generating predlctors
h¢ € H and an opponent generating data (X, Y¢)
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© A supposedly fun game I'll play again
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Theory of repeated games

James Hannan David Blackwell
(1922-2010) (1919-2010)

Learning to play a game (1956)
Play a game repeatedly against a possibly suboptimal opponent
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Zero-sum 2-person games played more than once

1 2 ... M N x M known loss matrix
1]¢1,1) €L2) ... @ Row player (player)
2 14(2,1) €22 ... has N actions
: : : % @ Column player (opponent)
N has M actions

For each gameround t =1,2,...

@ Player chooses action i; and opponent chooses action y

@ The player suffers loss {(i, y¢) (= gain of opponent)

Player can learn from opponent’s history of past choices yy,...,y¢—1
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Prediction with expert advice

t=1 t=2
1] 61 &)
2| t(2) ©(2)

N GN) G(N)

Volodya Vovk Manfred Warmuth

Opponent’s moves yj, Yz, ... define a sequential prediction problem
with a time-varying loss function £(i¢, y¢) = € (it) J
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Playing the experts game

A sequential decision problem

@ N actions

@ Unknown deterministic assignment of losses to actions
€= (Ce(1),...,8(N)) € [0,1]N fort =1,2,...

ONONONONONONONONO
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Playing the experts game

A sequential decision problem

@ N actions

@ Unknown deterministic assignment of losses to actions
€= (Ce(1),...,8(N)) € [0,1]N fort =1,2,...

O ONONONOMONONONO

@ Player picks an action I; (possibly using randomization) and
incurs loss £ (1)
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Playing the experts game

A sequential decision problem

@ N actions

@ Unknown deterministic assignment of losses to actions
€= (Ce(1),...,8(N)) € [0,1]N fort =1,2,...

OEONOMOMOBONOBONO

@ Player picks an action I; (possibly using randomization) and
incurs loss £ (1)

@ Player gets feedback information: £(1),...,£¢(N)
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Regret analysis

def
Rt € E

I _ . . w%nt
Zﬂt t] i:ml,}f’lNzﬂt(l) o(T)
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Regret analysis

T T
RrEE|Y et(lt)] — min 3 (i) "F o(T)
2 N

Lower bound using random losses [Experts’ paper, 1997]

@ (i) — L¢(i) € {0,1} independent random coin flip

-
T
Z Lt(It)] = E

t=1

e For any player strategy [E

@ Then the expected regret is
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Exponentially weighted forecaster (Hedge)

At time t pick action I; = i with probability proportional to

t—1
exp (—n 5 w)
s=1

the sum at the exponent is the total loss of action i up to now

[Experts” paper, 1997]

Regret bound

TInN

@ Ifn=+/(InN)/(8T)then Rt < >

@ Matching lower bound including constants

@ Dynamic choice n¢= /(InN)/(8t) only loses small constants
s

14 /49
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The nonstochastic bandit problem

O OONONONONONONGO
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The nonstochastic bandit problem

O OONONONONONMONGO,

© Player picks an action I; (possibly using randomization) and
incurs loss £ (1)
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The nonstochastic bandit problem

OO ONONONONMONGO,

© Player picks an action I; (possibly using randomization) and
incurs loss £ (1)

@ Player gets partial information: Only ¢ (1) is revealed
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The nonstochastic bandit problem

O 6 0 0 0 0 o o O

© Player picks an action I; (possibly using randomization) and
incurs loss £ (1)

@ Player gets partial information: Only ¢ (1) is revealed

v

Player still competing agaist best offline action
T
; et(m] — min 3 (i)

Rr =E
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The Exp3 algorithm [Auer et al., 2002]

Hedge with estimated losses

t—1
o Pi(l=1) o exp (—anQi)) i=1,...,N
s=1

_ (D) i1 =i
o ((i) =4 P¢({¢(i) observed) ¢
0 otherwise

Only one non-zero component in ¢
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The Exp3 algorithm [Auer et al., 2002]

Hedge with estimated losses

t—1
o Pi(l=1) o exp <—ans(i)> i=1,...,N
s=1

_ (D) T
o ((i) =4 P¢({¢(i) observed) ¢
0 otherwise

Only one non-zero component in €;

Properties of importance weighting estimator

E¢ [@t(i)} = (¢ (1) unbiasedness
E¢ [/ét(i)Z] < L variance control
Py (Zt(i) observed)

N. Cesa-Bianchi (UNIMI) Online Learning 16 /49



Exp3 regret bound

N
InN 1 . 5 a2
RT S T =+ EIE ZZIPt(It - I)IE’[ |:€t(1) :|]
t=11i=1
T N
In n Pi(Iy =1)
S—+ 3 E
2 [; ; Py (£ (i) is observed)
_InN ANT= VNTIaN  lowerbound O(VNT)

1749
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Exp3 regret bound

N
InN 1 . 5 a2
RT S T =+ EIE ZZIPt(It - I)IE’[ |:€t(1) :|]
t=11i=1
T N
In n Pi(Iy =1)
S—+ 3 E
2 [; ; Py (£ (i) is observed)
_InN ANT= VNTIaN  lowerbound O(VNT)

1749
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Exp3 regret bound

T N
In
R < — + 1%]E Z Z]Pt(lt =1)E; {ft(l)z}]
i t=11i=1
T N
h’l n Il—)t(lt = 1)
<= +2JE
n 2 [; ; Py (£ (i) is observed)
_ lnnN 4 gNT — V/NTInN lower bound Q(v/NT)

Improved matching upper bound by [Audibért and Bubeck, 2009]

The full information (experts) setting

@ Player observes vector of losses ¢ after each play
@ P ({¢(1) is observed) =1
@ Rr < vTInN
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Nonoblivious opponents

The adaptive adversary

@ The loss of action i at time t depends on the player’s past m
actions £¢ (1) — ¢ (Te—m, ..., Ii—1,1)
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Nonoblivious opponents

The adaptive adversary

@ The loss of action i at time t depends on the player’s past m
actions £¢ (1) — ¢ (Te—m, ..., Ii—1,1)

e Examples: bandits with switching cost
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Nonoblivious opponents
The adaptive adversary

@ The loss of action i at time t depends on the player’s past m
actions et( ) — et(It My es It*ll 1)

e Examples: bandits with switching cost

v

Nonoblivious regret

-
RrTlon:]E Zet(ltfml" S, L) — mln Zet Lt—m, .., L1, 1)

A\
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Nonoblivious opponents
The adaptive adversary

@ The loss of action i at time t depends on the player’s past m
actions £¢ (1) — ¢ (Te—m, ..., Ii—1,1)
e Examples: bandits with switching cost

Nonoblivious regret

T T
RrT1On =E tzl Ce(Temm, oo, Temg, Ie) — HllinN ; Ce(Temm, ..., Te—1,1)

i=1,...,

v

Policy regret

T T
RO — E (T T, 1) — mi Le(i,..., i1
T ; t(Te—m t—1,1¢) lﬁlllnN; t(l- i)
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Bandits and reactive opponents

Bounds on the nonoblivious regret (even when m depends on T)

RM = O(VTNInN)
o Exp3 with biased loss estimates

o Isthe vInN factor necessary?

N. Cesa-Bianchi (UNIMI) Online Learning 19/49



Bandits and reactive opponents

Bounds on the nonoblivious regret (even when m depends on T)

RM = O(VTNInN)
o Exp3 with biased loss estimates

o Isthe vInN factor necessary?

Bounds on the policy regret for any constant m > 1

RE = 0((NInN)/272/3)

@ Achieved by a very simple player strategy
@ Optimal up to log factors! [Dekel, Koren, and Peres, 2014]
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Partial monitoring: not observing any loss
Dynamic pricing: Perform as the best fixed price

@ Post a T-shirt price
@ Observe if next customer buys or not
@ Adjust price

Feedback does not reveal the player’s loss

1 2 3 4 5 1 2 3 4 5
1/0 1 2 3 4 1/1 1 1 1 1
2le O 1 2] 8 210 1.1 1 1
3|c ¢c 0 1 2 3/10 0 1 1 1
4|c ¢c ¢ 0 1 410 0 0 1 1
5/¢c ¢ ¢ ¢ O 5/0 0 0 0 1

Loss matrix Feedback matrix
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A characterization of minimax regret

Multiarmed bandits: loss and feedback matrix are the same \
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A characterization of minimax regret

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pél, Rakhlin and Szepesvari, 2013]

@ A constructive characterization of the minimax regret for any pair
of loss/feedback matrix
@ Only three possible rates for nontrivial games:
@ Easy games (e.g., bandits): ©(/T)
@ Hard games (e.g., revealing action): ©(T%/3)
© Impossible games: O(T)
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A game equivalent to prediction with expert advice
Online linear optimization in the simplex

Q Play p, from the N-dimensional simplex Ay
@ Incur linear loss E[{¢(I)] = p{ &
© Observe loss gradient ¢;

v

Regret: compete against the best point in the simplex
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From game theory to machine learning

GUESSED

LABEL
TRUE LABEL
>
UNLABELED
DATA
CLASSIFICATION

SYSTEM

@ Opponent’s moves y; are viewed as values or labels assigned to
observations x; € R4 (e. g., categories of documents)

o A repeated game between the player choosing an element wy
of a linear space and the opponent choosing a label y for x

@ Regret with respect to best element in the linear space
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© The joy of convex
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Online convex optimization

@ Play w; from a convex and compact subset S of a linear space
@ Observe convex loss {; : S — R and pay { (wy)
@ Update: wy - w1 €S
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Online convex optimization

@ Play w; from a convex and compact subset S of a linear space
@ Observe convex loss ¢ : S — R and pay { (wy)
@ Update: wy - w1 €S

2
TXt = yt) Yt € R

Txi,

o Regression with square loss: {¢(w) = (

o Classification with hinge loss: {+ (W) = [1 — YW
yt €{-1,+1}
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Online convex optimization [Zinkevich, 2003]

@ Play w; from a convex and compact subset S of a linear space
@ Observe convex loss ¢ : S — R and pay { (wy)
@ Update: wy - w1 €S

| A\

Example

2
TXt _yt) Yt € R

Txi,

o Regression with square loss: {¢(w) = (

o Classification with hinge loss: {+ (W) = [1 — YW
yt €{-1,+1}
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Finding a good online algorithm
Follow the leader

t
Wiy = arginf Z ls(w)

weSs s=1
Regret can be linear due to lack of stability

—w if tiseven

w
S=1[-1,+1] b(w) = 2 +w if tis odd

Lw) = {
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Finding a good online algorithm

Follow the leader
t
Wiy = arginf Z ls(w)
weSs s=1

Regret can be linear due to lack of stability

+w if tisodd

w 3 1
. | —% iftiseven
@ Note: Zlfs(w) = { % if t is odd
S:

@ Hence {;,1(wyq)=1forallt=1,2...
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Follow the regularized leader

Wi = argmin nZﬂ )+ O (w)
weS s=1

® is a strongly convex regularizer and n > 0 is a scale parameter
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Convexity, smoothness, and duality

Strong convexity

® : S — Ris p-strongly convex w.r.t. anorm || - || if forallu,v € S

O(W) > Ou)+VO(u) (v—u)+ % u—v|?
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Convexity, smoothness, and duality

Strong convexity

® : S — Ris p-strongly convex w.r.t. anorm || - || if forallu,v € S

O(W) > Ou)+VO(u) (v—u)+ % u—v|?

®: S — Ris a-smooth w.r.t. anorm || - || if forallu,v € S

OWv) < Ou)+ Vo) (v—u)+ % i —v|?
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Convexity, smoothness, and duality

Strong convexity

® : S — Ris p-strongly convex w.r.t. anorm || - || if forallu,v € S

O(W) > Ou)+VO(u) (v—u)+ g u—v|?

Smoothness
®:S — Ris a-smooth w.r.t. anorm || - || if forallu,v € S

OWv) < Ou)+ Vo) (v—u)+ % i —v|?

o If @ is B-strongly convex w.r.t. |-, then V2@ = BI

o If @ is a-smooth w.r.t. |-, then V2@ < «I
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@ Euclidean norm: ® = % Il ||§ is 1-strongly convex w.r.t. || - |,
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@ Euclidean norm: ® = H ||2 is 1-strongly convex w.r.t. || - |,
@ p-norm: ® = ; |- ||fj is (p — 1)-strongly convex w.r.t. || - ||,
(for1<p <2
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@ Euclidean norm: ® = H ||2 is 1-strongly convex w.r.t. || - |,
@ p-norm: ® = ; |- ||fj is (p — 1)-strongly convex w.r.t. || - ||,
(for1<p <2

d
e Entropy: ®(p) = Z piInp; is 1-strongly convex w.r.t. || - ||;

i=1
(for p in the probz;bility simplex)
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@ Euclidean norm: ® = H ||2 is 1-strongly convex w.r.t. || - |,
@ p-norm: ® = ; |- ||fj is (p — 1)-strongly convex w.r.t. || - ||,
(for1<p <2

d
e Entropy: ©(p) = Z piInp; is 1-strongly convex w.r.t. || - ||;
i=1
(for p in the probability simplex)
@ Power norm: ®(w) = %WTAW is 1-strongly convex w.r.t.

Wil = vwTAw

(for A symmetric and positive definite)
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Convex duality

The convex dual of ®is ®*(0) = max <6Tw — (D(w))

wEeS
v

1-dimensional example

@ Convex f: R — IR such that f(0) =0

o f*(0) = max (wx 06— f(w))

@ The maximizer is wy such that f'(wg) = 0

@ This gives f*(0) = wy x f'(wp) — f(wy)

@ As f(0) =0, f*(0) is the error in approximating f(0) with a
first-order expansion around f(wy)
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Convex duallty (thanks to Shai Shalev-Shwartz for the image)
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Convexity, smoothness, and duality

e Euclidean norm: @ = 1 || - ||§ and ®* = @
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Convexity, smoothness, and duality

e Euclidean norm: @ = 1 || - ||§ and ®* = @

op—norm:d):%H-HiandCD*:%H-Hawhere%—i—%zl
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Convexity, smoothness, and duality

e Euclidean norm: @ = 1 || - ||§ and ®* = @

op—norm:d):%H-HiandCD*:%H-Hawhere%—i—%zl

d
e Entropy: ®(p) = Zpi Inp; and ®*(0) = ln(e91 + -+ eed>

i=1
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Convexity, smoothness, and duality

@ Euclidean norm: q):%HH% and ®* = @
_ D=L 1Pand ®* =L |.12 where L + 1 =1
o p-norm: @ = ; || - ||}, an =zl-llqgw ere o + 4 =

d
e Entropy: ®(p) = Zpi Inp; and ®*(0) = ln(e91 + eed>

i=1

@ Power norm: ®(w) = %WTAW and ®*(0) = %GTAAG
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Some useful properties

If ®:S — Ris B-strongly convex w.r.t. || - ||, then

@ Its convex dual ®* is everywhere differentiable and %-smooth
w.rt. || - ||, (the dual norm of | - ||)

e VO*(0) = argmax <6Tw — <D(w)>
wEeS
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Some useful properties

If ®:S — Ris B-strongly convex w.r.t. | - ||, then

@ Its convex dual ®@* is everywhere differentiable and %—smooth
w.rt. || - ||, (the dual norm of | - ||)

e VO*(0) = argmax <6Tw — <D(w)>
wEeS

Recall: Follow the regularized leader (FTRL)

Wi = argmin [n Z!Z )+ @ (w)

weS s=1

® is a strongly convex regularizer and 1 > 0 is a scale parameter
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Using the loss gradient
Linearization of convex losses

Le(wy) — £ (u) < Vi (w )Wt_vet( )U
Hz—’ w—’

Bt et

v

FTRL with linearized losses

t
Wy, 1 = argmin | n ESTW + ®(w) | = argmax GtT w—0(w)
g g +

weS s=il weS

—0¢q1

- Vq’*(etH)

Note: wy 1 € S always holds
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The Mirror Descent algorithm  [Nemirovsky and Yudin, 1983]

t
Recall: w1 = VO*(0¢) = VO* (—n Z V@s(ws)>

s=1

Online Mirror Descent (FTRL with linearized losses)

Parameters: Strongly convex regularizer ® with domain S,n > 0
Initialize: 61 =0 // primal parameter

Fort=1,2,...
Q Use wy = VO*(0y) // dual parameter (via mirror step)
@ Suffer loss {¢ (W)
@ Observe loss gradient Vi (wy)
O Update 041 = 0¢ — Vil (wy) // gradient step
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An equivalent formulation

Under some assumptions on the regularizer ®, OMD can be
equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer @ and learning raten > 0
Initialize: z; = VO®*(0) and wy = argmin Do (W] 21)
wesS

Fort=1,2,...
@ Use w; and suffer loss £ (wy)
@ Observe loss gradient V{ (wy)

© Update z{; = VO~ (V(D(zt) —nV(’,t(wt)> // dgradient step

Q wig :argmian)(sztH) // projection step
wesS

v
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An equivalent formulation

Under some assumptions on the regularizer ®, OMD can be
equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer @ and learning raten > 0
Initialize: z; = VO®*(0) and wy = argmin Do (W] 21)
wesS

Fort=1,2,...
@ Use w; and suffer loss £ (wy)
@ Observe loss gradient V{ (wy)

© Update z{; = VO~ (V(D(zt) —nV(’,t(wt)> // dgradient step

Q wig :argmian)(sztH) // projection step
wesS

).v

D¢ is the Bregman divergence induced by ®
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Some examples

Online Gradient Descent (OGD)

1 1
o O(w) = 5 [w]? p-norm version: @ (w) = 5 HWH%)

o Update: W' =w —Vi(wy)  wyyq =arginf|[w —w’||,
weS
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Some examples

Online Gradient Descent (OGD) [Zinkevich, 2003; Gentile, 2003]

1 1
o O(w) = 5 [w]? p-norm version: ®(w) = 5 HWH%)

o Update: W' =w —Vi(wy)  wyyq =arginf|[w —w’||,
weS

Exponentiated gradient (EG) [Kivinen and Warmuth, 1997]

d
e O(p) = Zpilnpi p € S = simplex
i=1

pt iefnvet(pt)i

® Pt41,i = =g
’ NV (Py);
) j=1Ptje t(P);

Note: when losses are linear this is Hedge
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Regret analysis

Regret bound [Kakade, Shalev-Shwartz and Tewari, 2012]

D (u) — miny,,ecs ©(w n HVBt
n T2 g

forallu € S, where {1, {5, ... are arbitrary convex losses

@ Ry(u) < GDVTforallu €S when 1 is tuned w.r.t.

weS u,weSs

sup |[Ve(W)|, <G \/ sup (d)(u) — (D(w)) <D

@ Boundedness of gradients of ¢y w.r.t. ||-||, equivalent to
Lipschitzess of {; w.r.t. ||-||

@ Regret bound optimal for general convex losses £
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Analysis relies on smoothness of @~

* * * 1
O*(8141) — ©*(81) < VO (0)T (8141 =8¢ ) + - 0141 — 042

Wi NV (wy)
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Analysis relies on smoothness of @~

1
O*(8141) — ©*(81) < VO (0)T (8141 =8¢ ) + - 0141 — 042
Wy —MnVie (we)
.
D~ Vi(wy) — () =ul 01y — O(u)
t=1

N

®*(0711)  Fenchel-Young inequality

=3 (0°(001) — 0*(01)) + @ o)

T 2
< 3 (-l Vtwa) + 2 96 w0 ) + 0710
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Analysis relies on smoothness of @~

1
O*(8141) — ©*(81) < VO (0)T (8141 =8¢ ) + - 0141 — 042
Wy —MnVie (we)
.
D~ Vi(wy) — () =ul 01y — O(u)
t=1

N

®*(0711)  Fenchel-Young inequality

=3 (0°(001) — 0*(01)) + @ o)

D*(0) = ma>S<<WTO — CD(W)) = — min O(w)
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Some examples

et(W) — Et (WTXt) maXig |€{| <L maXig thH‘p < X-p
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Some examples

T

et(W) — Et (W Xt) maXig |€1,:| <L maXig thH‘p < X-p

Bounds for OGD with convex losses
RT(u) < BLXp VT = O(dL V)

for all u such that |lul[, <B
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Some examples

T

et(W) — Et (W Xt) maXig |€1,:| <L maXig HXth < X-p

Bounds for OGD with convex losses
RT(u) < BLX, VT = O(dL VT)

for all u such that |lul[, <B

Bounds logarithmic in the dimension

| A\

@ Regret bound for EG run in the simplex, S = Aq4

RT(q) € Xeo /I AT = O(L/(Ind)T)  p € Aqg

1
@ Same bound for p-norm regularizer with p = m (ril d 1
o If losses are linear with [0, 1] coefficients then we recover the

bound for Hedge
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Exploiting curvature: minimization of SVM objective

e Training set (x1,y1), ... (xm,ym) e R4 x {—1,+1}

1 ?\
@ SVM objective F(w = 2 [1—yew xt] E lw|* over R4

hinge loss h (w)

@ Rewrite F(w Z L (w where {{(w) = hy(w) + % ||wH2

@ Each loss {; is ?\—strongly convex
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Exploiting curvature: minimization of SVM objective

e Training set (x1,y1), ... (xm,ym) e R4 x {—1,+1}

1 ?\
@ SVM objective F(w = 2 1 — Y w xt] 5 HW||2 over R4

hinge loss h (w)
@ Rewrite F(w Z Le(w where {(w) =hy(w)+ 2 lw|?

@ Each loss {; is ?\—strongly convex

The Pegasos algorithm

@ Run OGD on random sequence of T training examples

-
1 . G2InT+1
— < P

F(T E wt>] < min F(w) + AT

weRd

@ O(InT) rates hold for any sequence of strongly convex losses
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Exp-concave losses

Exp-concavity (strong convexity along the gradient direction)

@ A convex {:S — Ris x-exp-concave when g(w) = e—*tw) jg
concave

@ For twice-differentiable losses:
V2(w) = aVELW)VL(wW) T forallw € S

T

o {¢(w)=—In(w'xy) is exp-concave
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Online Newton Step

o Update: w’'=A['Vl(w¢) Wi, =argmin|w —w’HAt
weS

t
@ Where Ai=cl+ Z Vi (wys) V()fs(Ws)T
s=1

Note: Not an instance of OMD

N. Cesa-Bianchi (UNIMI) Online Learning 43 /49



Online Newton Step

o Update: w'=A{'Vl(wi)  wiyq=argmin|w—w’|,
weS

t
@ Where Ai=cl+ Z Vi (wys) V()fs(Ws)T

s=1

Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

1
Ry(u) < 5d ((x + GD> In(T+1) ues
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Online Newton Step [Hazan, Agarwal and Kale,

o Update: w'=A{'Vl(wi)  wiyq=argmin|w—w’|,
weS

t
@ Where A{=c¢cl+ Z Vi (wys) V()fs(Ws)T
s=1

Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

|

Ry(u) < 5d (a + GD) In(T+1) ues

Extension of ONS to convex losses  [Luo, Agarwal, C-B, Langford, 2016]

et(W) — ft (WTXt) maXg |€{| <L
Rr(u) < O(CLVAT) forallust. [u'x¢|<C

Invariance to linear transformations of the data
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Online Ridge Regression [Vovk, 2001; Azoury and Warmuth, 2001]

Logarithmic regret for square loss
te(u) = (u'x¢ —yq) Y= L lytl X = B [[x¢]]
1 2

w) = > ||W||At

N
H
._|

e OMD with adaptive regularizer ®(

t t
@ Where A; =1+ sz x;r and 0 = Z—ysxs

s=1 s=1
@ Regret bound (oracle inequality)
T
X2
tZ_let(wt) < 1nf (Z 0 (u) + Hu|]2> +dY? In (1 + d)

@ Parameterless

@ Scale-free: unbounded comparison set
44/ 49
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Scale free algorithm for convex losses [Orabona and Pal, 2015]

Scale free algorithm for convex losses

e OMD with adaptive regularizer

t—1
O (W) = Do(w) 4| Y_ Ve (ws)|2
s=1

e @ is a B-strongly convex base regularizer
@ Regret bound (oracle inequality) for convex loss functions £

T

.
D t(w) < inf Y f(uw)+ <(D0(U) + [15 +meHV€t(Wt)||*> VT
t=1

d
ueR p—
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Regularization via stochastic smoothing

t
argminZ (nVES (ws) + Z) TW

weS

Wi =Ez

s=1

@ The distribution of Z must be “stable” (small variance and small
average sensitivity)

@ Regret bound similar to FTRL/OMD

@ For some choices of Z, FPL becomes equivalent to OMD
[Abernethy, Lee, Sinha and Tewari, 2014]

@ Linear losses: Follow the Perturbed Leader algorithm
[Kalai and Vempala, 2005]
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Shlftmg regret [Herbster and Warmuth, 2001]

Nonstationarity

o If data source is not fitted well by any model in the class, then
comparing to the best model u € S is trivial

o Compare instead to the best sequence uy, uy, - - - € S of models

Shifting Regret for OMD [Zinkevich, 2003]

T T T
4 < inf — U i
; w) < inf ;et(ut) + 2 llue — ]| + diam(s) + O

S, UWT E
1 T t—1

cumulative loss model fit shifting model cost
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Strongly adaptive regret

Definition
For allintervals I ={r,...,s}with1 <r<s<T

Rr1(u th Wy) Zet(u
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Strongly adaptive regret

Definition
For allintervals I ={r,...,s}with1 <r<s<T

Rt 1(u Z Le(wy) Z le(u)

Regret bound for strongly adaptive OGD

Rr1(u) < (BLX2 +1In(T + 1)> |1 for all u such that |ju|, < B
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Strongly adaptive regret  [Daniely, Gonen, Shalev-Shwartz, 2015]

Definition
For allintervals I ={r,...,s}with1 <r<s<T

Ry 1(u Z e (W) Z C(u)
Regret bound for strongly adaptive OGD

Rr1(u) < (BLX2 +1In(T + 1)) |1 for all u such that |ju|, < B

v
Remarks

@ Generic black-box reduction applicable to any online learning
algorithm
@ It runs a logarithmic number of instances of the base learner

48 /49
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Online bandit convex optimization

Q Play w, from a convex and compact subset S of a linear space
@ Observe {;(w¢), where £ : S — R is unobserved convex loss
@ Update: wy - w1 €S

T T
Regret: Rr(u)=) l(wg)—) &(u) ues
t=1 t=1
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Online bandit convex optimization

Q Play w, from a convex and compact subset S of a linear space
@ Observe {;(w¢), where £ : S — R is unobserved convex loss
@ Update: wy - w1 €S

T T
Regret: Rr(u)=) l(wg)—) &(u) ues
t=1 t=1

| A

Results
@ Linear losses: _O_(d VT ) [Dani, Hayes, and Kakade, 2008]
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Online bandit convex optimization

Q Play w, from a convex and compact subset S of a linear space
@ Observe {;(w¢), where £ : S — R is unobserved convex loss
@ Update: wy - w1 €S

T T
Regret: Rr(u)=) l(wg)—) &(u) ues
t=1 t=1

Results
@ Linear losses: _O_(d VT [Dani, Hayes, and Kakade, 2008]
o Linear losses: O (d VT ) [Bubeck, C-B, and Kakade, 2012]

|
A\
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Online bandit convex optimization

Q Play w, from a convex and compact subset S of a linear space
@ Observe {;(w¢), where £ : S — R is unobserved convex loss
@ Update: wy - w1 €S

T T
Regret: Rr(u)=) l(wg)—) &(u) ues
t=1 t=1

| A

Results
@ Linear losses: _O_(d VT ) [Dani, Hayes, and Kakade, 2008]
o Linear losses: O (d VT ) [Bubeck, C-B, and Kakade, 2012]

@ Strongly convex and smooth losses: O(d>/2/T)
[Hazan and Levy, 2014]
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Online bandit convex optimization

Q Play w, from a convex and compact subset S of a linear space
@ Observe {;(w¢), where £ : S — R is unobserved convex loss
@ Update: wy - w1 €S

T T
Regret: Rr(u)=) l(wg)—) &(u) ues
t=1 t=1

| A

Results
@ Linear losses: _O_(d VT ) [Dani, Hayes, and Kakade, 2008]
o Linear losses: O (d VT ) [Bubeck, C-B, and Kakade, 2012]

@ Strongly convex and smooth losses: O(d>/2/T)
[Hazan and Levy, 2014]

@ Convex losses: O (d9'5 \ﬁ) [Bubeck, Eldan, and Lee, 2016]

N. Cesa-Bianchi (UNIMI) Online Learning 49 /49



	My beautiful regret
	A supposedly fun game I'll play again
	The joy of convex

