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Università degli Studi di Milano

N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49



Summary

1 My beautiful regret

2 A supposedly fun game I’ll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI) Online Learning 2 / 49



Summary

1 My beautiful regret

2 A supposedly fun game I’ll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI) Online Learning 3 / 49



Machine learning

Classification/regression tasks

Predictive models hmapping data instances X to labels Y
(e.g., binary classifier)
Training data ST =

(
(X1, Y1), . . . , (XT , YT )

)
(e.g., email messages with spam vs. nonspam annotations)
Learning algorithm A (e.g., Support Vector Machine) maps
training data ST to model h = A(ST )

Evaluate the risk of the trained model h with respect to a given loss
function
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Two notions of risk

View data as a statistical sample: statistical risk

E
[
`
(
A(ST )︸    ︷︷    ︸
trained
model

, (X, Y)︸  ︷︷  ︸
test

example

)]

Training set ST =
(
(X1, Y1), . . . , (XT , YT )

)
and test example (X, Y) drawn

i.i.d. from the same unknown and fixed distribution

View data as an arbitrary sequence: sequential risk
T∑
t=1

`
(
A(St−1)︸      ︷︷      ︸

trained
model

, (Xt, Yt)︸     ︷︷     ︸
test

example

)
Sequence of models trained on growing prefixes
St =

(
(X1, Y1), . . . , (Xt, Yt)

)
of the data sequence
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Regrets, I had a few

Learning algorithm Amaps datasets to models in a given class H

Variance error in statistical learning

E
[
`
(
A(ST ), (X, Y)

)]
− inf
h∈H

E
[
`
(
h, (X, Y)

)]
compare to expected loss of best model in the class

Regret in online learning
T∑
t=1

`
(
A(St−1), (Xt, Yt)

)
− inf
h∈H

T∑
t=1

`
(
h, (Xt, Yt)

)
compare to cumulative loss of best model in the class
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Incremental model update

A natural blueprint for online learning algorithms

For t = 1, 2, . . .
1 Apply current model ht−1 to next data element (Xt, Yt)
2 Update current model: ht−1 → ht ∈ H (local optimization)

Goal: control regret
T∑
t=1

`
(
ht−1, (Xt, Yt)

)
− inf
h∈H

T∑
t=1

`
(
h, (Xt, Yt)

)
View this as a repeated game between a player generating predictors
ht ∈ H and an opponent generating data (Xt, Yt)

N. Cesa-Bianchi (UNIMI) Online Learning 7 / 49



Incremental model update

A natural blueprint for online learning algorithms

For t = 1, 2, . . .
1 Apply current model ht−1 to next data element (Xt, Yt)
2 Update current model: ht−1 → ht ∈ H (local optimization)

Goal: control regret
T∑
t=1

`
(
ht−1, (Xt, Yt)

)
− inf
h∈H

T∑
t=1

`
(
h, (Xt, Yt)

)

View this as a repeated game between a player generating predictors
ht ∈ H and an opponent generating data (Xt, Yt)

N. Cesa-Bianchi (UNIMI) Online Learning 7 / 49



Incremental model update

A natural blueprint for online learning algorithms

For t = 1, 2, . . .
1 Apply current model ht−1 to next data element (Xt, Yt)
2 Update current model: ht−1 → ht ∈ H (local optimization)

Goal: control regret
T∑
t=1

`
(
ht−1, (Xt, Yt)

)
− inf
h∈H

T∑
t=1

`
(
h, (Xt, Yt)

)
View this as a repeated game between a player generating predictors
ht ∈ H and an opponent generating data (Xt, Yt)

N. Cesa-Bianchi (UNIMI) Online Learning 7 / 49



Summary

1 My beautiful regret

2 A supposedly fun game I’ll play again

3 The joy of convex

N. Cesa-Bianchi (UNIMI) Online Learning 8 / 49



Theory of repeated games

James Hannan
(1922–2010)

David Blackwell
(1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent
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Zero-sum 2-person games played more than once

1 2 . . . M

1 `(1, 1) `(1, 2) . . .
2 `(2, 1) `(2, 2) . . .
...

...
...

. . .
N

N×M known loss matrix
Row player (player)
has N actions
Column player (opponent)
hasM actions

For each game round t = 1, 2, . . .

Player chooses action it and opponent chooses action yt

The player suffers loss `(it,yt) (= gain of opponent)

Player can learn from opponent’s history of past choices y1, . . . ,yt−1
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Prediction with expert advice

Volodya Vovk Manfred Warmuth

t = 1 t = 2 . . .
1 `1(1) `2(1) . . .
2 `1(2) `2(2) . . .
...

...
...

. . .
N `1(N) `2(N)

Opponent’s moves y1,y2, . . . define a sequential prediction problem
with a time-varying loss function `(it,yt) = `t(it)
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Playing the experts game

A sequential decision problem

N actions
Unknown deterministic assignment of losses to actions
`t =

(
`t(1), . . . , `t(N)

)
∈ [0, 1]N for t = 1, 2, . . .

? ? ? ? ?? ?? ??

For t = 1, 2, . . .

1 Player picks an action It (possibly using randomization) and
incurs loss `t(It)

2 Player gets feedback information: `t(1), . . . , `t(N)
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Regret analysis

Regret

RT
def
= E

[
T∑
t=1

`t(It)

]
− min
i=1,...,N

T∑
t=1

`t(i)
want
= o(T)

Lower bound using random losses [Experts’ paper, 1997]

`t(i)→ Lt(i) ∈ {0, 1} independent random coin flip

For any player strategy E

[
T∑
t=1

Lt(It)

]
=
T

2

Then the expected regret is

E

[
max
i=1,...,N

T∑
t=1

(
1
2
− Lt(i)

)]
=
(
1 − o(1)

)√T lnN
2

for N, T →∞
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Exponentially weighted forecaster (Hedge)

At time t pick action It = iwith probability proportional to

exp

(
−η

t−1∑
s=1

`s(i)

)

the sum at the exponent is the total loss of action i up to now

Regret bound [Experts’ paper, 1997]

If η =
√
(lnN)/(8T) then RT 6

√
T lnN

2
Matching lower bound including constants

Dynamic choice ηt =
√

(lnN)/(8t) only loses small constants
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The nonstochastic bandit problem

? ? ? ? ?? ?? ??

For t = 1, 2, . . .

1 Player picks an action It (possibly using randomization) and
incurs loss `t(It)

2 Player gets partial information: Only `t(It) is revealed

Player still competing agaist best offline action

RT = E

[
T∑
t=1

`t(It)

]
− min
i=1,...,N

T∑
t=1

`t(i)
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The Exp3 algorithm [Auer et al., 2002]

Hedge with estimated losses

Pt(It = i) ∝ exp

(
−η

t−1∑
s=1

̂̀
s(i)

)
i = 1, . . . ,N

̂̀
t(i) =


`t(i)

Pt
(
`t(i) observed

) if It = i

0 otherwise

Only one non-zero component in ̂̀t

Properties of importance weighting estimator

Et
[̂
`t(i)

]
= `t(i) unbiasedness

Et
[̂
`t(i)

2
]
6

1
Pt
(
`t(i) observed

) variance control

N. Cesa-Bianchi (UNIMI) Online Learning 16 / 49



The Exp3 algorithm [Auer et al., 2002]

Hedge with estimated losses

Pt(It = i) ∝ exp

(
−η

t−1∑
s=1

̂̀
s(i)

)
i = 1, . . . ,N

̂̀
t(i) =


`t(i)

Pt
(
`t(i) observed

) if It = i

0 otherwise

Only one non-zero component in ̂̀t
Properties of importance weighting estimator

Et
[̂
`t(i)

]
= `t(i) unbiasedness

Et
[̂
`t(i)

2
]
6

1
Pt
(
`t(i) observed

) variance control

N. Cesa-Bianchi (UNIMI) Online Learning 16 / 49



Exp3 regret bound

RT 6
lnN
η

+
η

2
E

[
T∑
t=1

N∑
i=1

Pt(It = i)Et
[̂
`t(i)

2
]]

6
lnN
η

+
η

2
E

[
T∑
t=1

N∑
i=1

Pt(It = i)

Pt
(
`t(i) is observed

)]

=
lnN
η

+
η

2
NT =

√
NT lnN lower bound Ω

(√
NT
)

Improved matching upper bound by [Audibért and Bubeck, 2009]

The full information (experts) setting

Player observes vector of losses `t after each play
Pt(`t(i) is observed) = 1
RT 6

√
T lnN
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Nonoblivious opponents

The adaptive adversary

The loss of action i at time t depends on the player’s pastm
actions `t(i)→ `t(It−m, . . . , It−1, i)

Examples: bandits with switching cost

Nonoblivious regret

Rnon
T = E

[
T∑
t=1

`t(It−m, . . . , It−1, It) − min
i=1,...,N

T∑
t=1

`t(It−m, . . . , It−1, i)

]

Policy regret

R
pol
T = E

 T∑
t=1

`t(It−m, . . . , It−1, It) − min
i=1,...,N

T∑
t=1

`t(i, . . . , i︸   ︷︷   ︸
m times

, i)


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Bandits and reactive opponents

Bounds on the nonoblivious regret (even whenm depends on T )

Rnon
T = O

(√
TN lnN

)
Exp3 with biased loss estimates

Is the
√

lnN factor necessary?

Bounds on the policy regret for any constantm > 1

R
pol
T = O

(
(N lnN)1/3T 2/3

)
Achieved by a very simple player strategy

Optimal up to log factors! [Dekel, Koren, and Peres, 2014]
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Partial monitoring: not observing any loss

Dynamic pricing: Perform as the best fixed price
1 Post a T-shirt price
2 Observe if next customer buys or not
3 Adjust price

Feedback does not reveal the player’s loss

1 2 3 4 5
1 0 1 2 3 4
2 c 0 1 2 3
3 c c 0 1 2
4 c c c 0 1
5 c c c c 0

Loss matrix

1 2 3 4 5
1 1 1 1 1 1
2 0 1 1 1 1
3 0 0 1 1 1
4 0 0 0 1 1
5 0 0 0 0 1

Feedback matrix
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A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pál, Rakhlin and Szepesvári, 2013]

A constructive characterization of the minimax regret for any pair
of loss/feedback matrix
Only three possible rates for nontrivial games:

1 Easy games (e.g., bandits): Θ
(√
T
)

2 Hard games (e.g., revealing action): Θ
(
T 2/3

)
3 Impossible games: Θ(T)
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A game equivalent to prediction with expert advice

Online linear optimization in the simplex
1 Play pt from the N-dimensional simplex ∆N
2 Incur linear loss E

[
`t(It)

]
= p>t `t

3 Observe loss gradient `t

Regret: compete against the best point in the simplex
T∑
t=1

p>t `t − min
q∈∆N

T∑
t=1

q>`t︸               ︷︷               ︸
= min
i=1,...,N

1
T

T∑
t=1

`t(i)
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From game theory to machine learning

O
P

P
O

N
E

N
T

TRUE LABEL

GUESSED

LABEL

UNLABELED

SYSTEM

CLASSIFICATION
DATA

Opponent’s moves yt are viewed as values or labels assigned to
observations xt ∈ Rd (e.g., categories of documents)

A repeated game between the player choosing an elementwt
of a linear space and the opponent choosing a label yt for xt

Regret with respect to best element in the linear space
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Summary

1 My beautiful regret

2 A supposedly fun game I’ll play again

3 The joy of convex
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Online convex optimization [Zinkevich, 2003]

1 Playwt from a convex and compact subset S of a linear space
2 Observe convex loss `t : S→ R and pay `t(wt)
3 Update: wt → wt+1 ∈ S

Example

Regression with square loss: `t(w) =
(
w>xt − yt

)2
yt ∈ R

Classification with hinge loss: `t(w) =
[
1 − ytw

>xt
]
+

yt ∈ {−1,+1}

Regret

RT (u) =

T∑
t=1

`t(wt) −

T∑
t=1

`t(u) u ∈ S
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Finding a good online algorithm

Follow the leader

wt+1 = arginf
w∈S

t∑
s=1

`s(w)

Regret can be linear due to lack of stability

S = [−1,+1] `1(w) =
w

2
`t(w) =

{
−w if t is even
+w if t is odd

Note:
t∑
s=1

`s(w) =

{
−w2 if t is even
+w2 if t is odd

Hence `t+1(wt+1) = 1 for all t = 1, 2 . . .
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Follow the regularized leader
[Shalev-Shwartz, 2007; Abernethy, Hazan and Rakhlin, 2008]

wt+1 = argmin
w∈S

[
η

t∑
s=1

`s(w) +Φ(w)

]
Φ is a strongly convex regularizer and η > 0 is a scale parameter
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Convexity, smoothness, and duality

Strong convexity

Φ : S→ R is β-strongly convex w.r.t. a norm ‖ · ‖ if for all u, v ∈ S

Φ(v) > Φ(u) +∇Φ(u)>(v− u) +
β

2
‖u− v‖2

Smoothness
Φ : S→ R is α-smooth w.r.t. a norm ‖ · ‖ if for all u, v ∈ S

Φ(v) 6 Φ(u) +∇Φ(u)>(v− u) +
α

2
‖u− v‖2

If Φ is β-strongly convex w.r.t. ‖·‖2, then ∇2Φ � βI

If Φ is α-smooth w.r.t. ‖·‖2, then∇2Φ � αI
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Examples

Euclidean norm: Φ = 1
2 ‖ · ‖

2
2 is 1-strongly convex w.r.t. ‖ · ‖2

p-norm: Φ = 1
2 ‖ · ‖

2
p is (p− 1)-strongly convex w.r.t. ‖ · ‖p

(for 1 < p 6 2)

Entropy: Φ(p) =

d∑
i=1

pi lnpi is 1-strongly convex w.r.t. ‖ · ‖1

(for p in the probability simplex)

Power norm: Φ(w) = 1
2w
>Aw is 1-strongly convex w.r.t.

‖w‖ =
√
w>Aw

(for A symmetric and positive definite)
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Convex duality

Definition

The convex dual ofΦ is Φ∗(θ) = max
w∈S

(
θ>w−Φ(w)

)
1-dimensional example

Convex f : R→ R such that f(0) = 0
f∗(θ) = max

w∈R

(
w× θ− f(w)

)
The maximizer is w0 such that f ′(w0) = θ

This gives f∗(θ) = w0 × f ′(w0) − f(w0)

As f(0) = 0, f∗(θ) is the error in approximating f(0) with a
first-order expansion around f(w0)
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Convex duality (thanks to Shai Shalev-Shwartz for the image)
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Convexity, smoothness, and duality

Examples

Euclidean norm: Φ = 1
2 ‖ · ‖

2
2 and Φ∗ = Φ

p-norm: Φ = 1
2 ‖ · ‖

2
p andΦ∗ = 1

2 ‖ · ‖
2
q where 1

p + 1
q = 1

Entropy: Φ(p) =

d∑
i=1

pi lnpi and Φ∗(θ) = ln
(
eθ1 + · · ·+ eθd

)
Power norm: Φ(w) = 1

2w
>Aw andΦ∗(θ) = 1

2θ
>A−1θ
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Some useful properties

If Φ : S→ R is β-strongly convex w.r.t. ‖ · ‖, then
Its convex dualΦ∗ is everywhere differentiable and 1

β -smooth
w.r.t. ‖ · ‖∗ (the dual norm of ‖ · ‖)

∇Φ∗(θ) = argmax
w∈S

(
θ>w−Φ(w)

)

Recall: Follow the regularized leader (FTRL)

wt+1 = argmin
w∈S

[
η

t∑
s=1

`s(w) +Φ(w)

]

Φ is a strongly convex regularizer and η > 0 is a scale parameter
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Using the loss gradient

Linearization of convex losses

`t(wt) − `t(u) 6 ∇`t(wt)︸       ︷︷       ︸˜̀
t

>wt −∇`t(wt)︸       ︷︷       ︸˜̀
t

>u

FTRL with linearized losses

wt+1 = argmin
w∈S

(
η

t∑
s=1

˜̀
s︸     ︷︷     ︸

−θt+1

>w+Φ(w)

)
= argmax

w∈S

(
θ>t+1w−Φ(w)

)
= ∇Φ∗

(
θt+1

)
Note: wt+1 ∈ S always holds
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The Mirror Descent algorithm [Nemirovsky and Yudin, 1983]

Recall: wt+1 = ∇Φ∗
(
θt
)
= ∇Φ∗

(
−η

t∑
s=1

∇`s(ws)

)

Online Mirror Descent (FTRL with linearized losses)
Parameters: Strongly convex regularizerΦwith domain S, η > 0
Initialize: θ1 = 0 // primal parameter

For t = 1, 2, . . .
1 Use wt = ∇Φ∗(θt) // dual parameter (via mirror step)

2 Suffer loss `t(wt)
3 Observe loss gradient∇`t(wt)
4 Update θt+1 = θt − η∇`t(wt) // gradient step

N. Cesa-Bianchi (UNIMI) Online Learning 35 / 49



An equivalent formulation

Under some assumptions on the regularizerΦ, OMD can be
equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)
Parameters: Strongly convex regularizerΦ and learning rate η > 0
Initialize: z1 = ∇Φ∗

(
0
)

andw1 = argmin
w∈S

DΦ
(
w‖z1

)
For t = 1, 2, . . .

1 Usewt and suffer loss `t(wt)
2 Observe loss gradient∇`t(wt)

3 Update zt+1 = ∇Φ∗
(
∇Φ(zt) − η∇`t(wt)

)
// gradient step

4 wt+1 = argmin
w∈S

DΦ
(
w‖zt+1

)
// projection step

DΦ is the Bregman divergence induced byΦ
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Some examples

Online Gradient Descent (OGD) [Zinkevich, 2003; Gentile, 2003]

Φ(w) =
1
2
‖w‖2 p-norm version: Φ(w) =

1
2
‖w‖2

p

Update: w ′ = wt − η∇`t(wt) wt+1 = arginf
w∈S

∥∥w−w ′
∥∥

2

Exponentiated gradient (EG) [Kivinen and Warmuth, 1997]

Φ(p) =

d∑
i=1

pi lnpi p ∈ S ≡ simplex

pt+1,i =
pt,ie

−η∇`t(pt)i∑d
j=1 pt,je

−η∇`t(pt)j

Note: when losses are linear this is Hedge
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Regret analysis

Regret bound [Kakade, Shalev-Shwartz and Tewari, 2012]

RT (u) 6
Φ(u) − minw∈SΦ(w)

η
+
η

2

T∑
t=1

‖∇`t(wt)‖2
∗

β

for all u ∈ S, where `1, `2, . . . are arbitrary convex losses

RT (u) 6 GD
√
T for all u ∈ S when η is tuned w.r.t.

sup
w∈S

‖∇`t(w)‖∗ 6 G
√

sup
u,w∈S

(
Φ(u) −Φ(w)

)
6 D

Boundedness of gradients of `t w.r.t. ‖·‖∗ equivalent to
Lipschitzess of `t w.r.t. ‖·‖
Regret bound optimal for general convex losses `t
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Analysis relies on smoothness ofΦ∗

Φ∗(θt+1) −Φ
∗(θt) 6 ∇Φ∗(θt)︸       ︷︷       ︸

wt

>
(
θt+1 − θt︸        ︷︷        ︸
−η∇`t(wt)

)
+

1
2β
‖θt+1 − θt‖2

∗

T∑
t=1

− ηu>∇`t(wt) −Φ(u) = u>θT+1 −Φ(u)

6 Φ∗
(
θT+1

)
Fenchel-Young inequality

=

T∑
t=1

(
Φ∗
(
θt+1

)
−Φ∗

(
θt
))

+Φ∗
(
θ1
)

6
T∑
t=1

(
−ηw>t ∇`t(wt) +

η2

2β
‖∇`t(wt)‖2

∗

)
+Φ∗(0)

Φ∗(0) = max
w∈S

(
w>0 −Φ(w)

)
= − min

w∈S
Φ(w)
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Some examples

`t(w)→ `t
(
w>xt

)
maxt |` ′t| 6 L maxt ‖xt‖p 6 Xp

Bounds for OGD with convex losses

RT (u) 6 BLX2
√
T = O

(
dL
√
T
)

for all u such that ‖u‖2 6 B

Bounds logarithmic in the dimension

Regret bound for EG run in the simplex, S = ∆d

RT (q) 6 LX∞√(lnd)T = O
(
L
√
(lnd)T

)
p ∈ ∆d

Same bound for p-norm regularizer with p =
lnd

lnd− 1
If losses are linear with [0, 1] coefficients then we recover the
bound for Hedge
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Exploiting curvature: minimization of SVM objective

Training set (x1,y1), . . . , (xm,ym) ∈ Rd × {−1,+1}

SVM objective F(w) =
1
m

m∑
t=1

[
1 − ytw

>xt
]
+︸                 ︷︷                 ︸

hinge loss ht(w)

+
λ

2
‖w‖2 over Rd

Rewrite F(w) =
1
m

m∑
t=1

`t(w) where `t(w) = ht(w) + λ
2 ‖w‖

2

Each loss `t is λ-strongly convex

The Pegasos algorithm

Run OGD on random sequence of T training examples

E

[
F

(
1
T

T∑
t=1

wt

)]
6 min
w∈Rd

F(w) +
G2

2λ
ln T + 1
T

O(ln T) rates hold for any sequence of strongly convex losses
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Exp-concave losses

Exp-concavity (strong convexity along the gradient direction)

A convex ` : S→ R is α-exp-concave when g(w) = e−α`(w) is
concave
For twice-differentiable losses:
∇2`(w) � α∇`(w)∇`(w)> for allw ∈ S
`t(w) = − ln

(
w>xt

)
is exp-concave
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Online Newton Step [Hazan, Agarwal and Kale, 2007]

Update: w ′ = A−1
t ∇`t(wt) wt+1 = argmin

w∈S

∥∥w−w ′
∥∥
At

Where At = εI+

t∑
s=1

∇`s(ws)∇`s(ws)>

Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

RT (u) 6 5d
(

1
α
+GD

)
ln(T + 1) u ∈ S

Extension of ONS to convex losses [Luo, Agarwal, C-B, Langford, 2016]

`t(w)→ `t
(
w>xt

)
maxt |` ′t| 6 L

RT (u) 6 Õ
(
CL
√
dT
)

for all u s.t.
∣∣u>xt∣∣ 6 C

Invariance to linear transformations of the data
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Online Ridge Regression [Vovk, 2001; Azoury and Warmuth, 2001]

Logarithmic regret for square loss

`t(u) =
(
u>xt − yt

)2
Y = max

t=1,...,T
|yt| X = max

t=1,...,T
‖xt‖

OMD with adaptive regularizerΦt(w) =
1
2
‖w‖2

At

Where At = I+
t∑
s=1

xs x
>
s and θt =

t∑
s=1

−ysxs

Regret bound (oracle inequality)
T∑
t=1

`t(wt) 6 inf
u∈Rd

(
T∑
t=1

`t(u) + ‖u‖2

)
+ dY2 ln

(
1 +

TX2

d

)

Parameterless
Scale-free: unbounded comparison set
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Scale free algorithm for convex losses [Orabona and Pál, 2015]

Scale free algorithm for convex losses

OMD with adaptive regularizer

Φt(w) = Φ0(w)

√√√√t−1∑
s=1

‖∇`s(ws)‖2
∗

Φ0 is a β-strongly convex base regularizer
Regret bound (oracle inequality) for convex loss functions `t

T∑
t=1

`t(wt) 6 inf
u∈Rd

T∑
t=1

`t(u) +

(
Φ0(u) +

1
β
+ max

t
‖∇`t(wt)‖∗

) √
T
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Regularization via stochastic smoothing

wt+1 = EZ

[
argmin
w∈S

t∑
s=1

(
η∇`s(ws) + Z

)>
w

]

The distribution of Zmust be “stable” (small variance and small
average sensitivity)
Regret bound similar to FTRL/OMD
For some choices of Z, FPL becomes equivalent to OMD
[Abernethy, Lee, Sinha and Tewari, 2014]

Linear losses: Follow the Perturbed Leader algorithm
[Kalai and Vempala, 2005]
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Shifting regret [Herbster and Warmuth, 2001]

Nonstationarity

If data source is not fitted well by any model in the class, then
comparing to the best model u ∈ S is trivial

Compare instead to the best sequence u1,u2, · · · ∈ S of models

Shifting Regret for OMD [Zinkevich, 2003]

T∑
t=1

`t(wt)︸         ︷︷         ︸
cumulative loss

6 inf
u1,...,uT∈S

T∑
t=1

`t(ut)︸        ︷︷        ︸
model fit

+

T∑
t=1

‖ut − ut−1‖︸                 ︷︷                 ︸
shifting model cost

+ diam(S) + 2
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Strongly adaptive regret [Daniely, Gonen, Shalev-Shwartz, 2015]

Definition
For all intervals I = {r, . . . , s} with 1 6 r < s 6 T

RT ,I(u) =
∑
t∈I

`t(wt) −
∑
t∈I

`t(u)

Regret bound for strongly adaptive OGD

RT ,I(u) 6
(
BLX2 + ln(T + 1)

)√
|I| for all u such that ‖u‖2 6 B

Remarks
Generic black-box reduction applicable to any online learning
algorithm
It runs a logarithmic number of instances of the base learner
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Online bandit convex optimization

1 Playwt from a convex and compact subset S of a linear space
2 Observe `t(wt), where ` : S→ R is unobserved convex loss
3 Update: wt → wt+1 ∈ S

Regret: RT (u) =

T∑
t=1

`t(wt) −

T∑
t=1

`t(u) u ∈ S

Results

Linear losses: Ω
(
d
√
T
)

[Dani, Hayes, and Kakade, 2008]

Linear losses: Õ
(
d
√
T
)

[Bubeck, C-B, and Kakade, 2012]

Strongly convex and smooth losses: Õ
(
d3/2

√
T
)

[Hazan and Levy, 2014]

Convex losses: Õ
(
d9.5
√
T
)

[Bubeck, Eldan, and Lee, 2016]
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(
d3/2

√
T
)

[Hazan and Levy, 2014]

Convex losses: Õ
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