Uniform Convergence for Learning Binary
Classifcation

Given a concept class C, and a training set sampled from D,
{(xi,e(x)) | i=1,...,m}.

For any h € C, let A(c, h) be the set of items on which the
two classifiers differ: A(c,h) = {x € U | h(x) # c(x)}

For the realizable case we need a training set (sample) that
with probability 1 — § intersects every set in

{A(c, h) | Pr(A(c, h)) > €} (e-net)

For the unrealizable case we need a training set that with
probability 1 — ¢ estimates, within additive error ¢, every set in

Ac,h) ={x e U| h(x) #c(x)} (e-sample).

Under what conditions can a finite sample achieve these
requirements?
e What sample size is needed?



Uniform Convergence Sets

Given a collection R of sets in a universe X, under what conditions
a finite sample V from an arbitrary distribution D over X, satisfies
with probability 1 — ¢,
o
Vr e R, FZ’)r(r) >e= rNN#0 (enet)

® for any r € R,
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Fg(r) W

<e (e-sample)




Vapnik—Chervonenkis (VC) - Dimension

(X, R) is called a "range space":
e X = finite or infinite set (the set of objects to learn)

e R is a family of subsets of X, R C 2%,

e For a finite set S C X, |S| = m, define the projection of R on
S,
Nr(S)={rNS|reR}.

If [Mg(S)| = 2™ we say that R shatters S.

The VC-dimension of (X, R) is the maximum size of S C X
that is shattered by R. If there is no maximum, the
VC-dimension is oo.



The VC-Dimension of a Collection of
Intervals

C = collections of intervals in [A,B] — can shatter 2 point
but not 3. No interval includes only the two red points

o PS

 ————————
——

The VC-dimension of Cis 2



Collection of Half Spaces in the Plane

C - all half space partitions in the plane. Any 3
points can be shattered:
° O
O ® O
O O
* Cannot partition the red from the blue points
* The VC-dimension of half spaces on the plane is 3

* The VC-dimension of half spaces in d-dimension
space is d+1



Axis-parallel rectangles on the plane

4 points that define a convex hull can be shattered.

No five points can be shattered since one of the points @
must be in the convex hull of the other four. @



Convex Bodies in the Plane

* C—all convex bodies on the plane

Any subset of the point can be included in a convex body.
The VC-dimension of Cis oo



A Few Examples

C = set of intervals on the line. Any two points can be
shattered, no three points can be shattered.

C = set of linear half spaces in the plane. Any three points
can be shattered but no set of 4 points. If the 4 points define
a convex hull let one diagonal be 0 and the other diagonal be
1. If one point is in the convex hull of the other three, let the
interior point be 1 and the remaining 3 points be 0.

C = set of axis-parallel rectangles on the plane. 4 points that
define a convex hull can be shattered. No five points can be
shattered since one of the points must be in the convex hull of
the other four.

C = all convex sets in R?. Let S be a set of n points on a
boundary of a cycle. Any subset Y C S defines a convex set
that doesn’t include S\ Y.



Estimating Probabilities - e-sample

Definition

An e-sample for a range space (X, R), with respect to a probability
distribution D defined on X, is a subset N C X such that, for any
r e R,

NNl

I%r(r) W]

<e

Let (X, R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < €,0 < 1/2, there is an

d d 1. 1

such that a random sample from D of size greater than or equal to
m is an e-sample for X with with probability at least 1 — 0.



Sauer's Lemma

For a finite set S C X, s = |S]|, define the projection of R on S,

Nr(S)={rnS|reR.

Theorem

Let (X, R) be a range space with VC-dimension d, for S C X, such
that |S| = m,

Ne(s) <3 (7).

i=0

For m = d, |Mg(S)| =29, and for m > d > 2, [Mg(S)| < m?.



Proof

By induction on d and (for each d) on n, obvious for d = 0,1
with any n.

Assume that the claim holds for all |S'| < n—1 and

d <d-1andlet |S| = n.

Fix x € S and let " = S — {x}.

Mr(S)I = HrnS|reRj}
Nr(S) = KrnS"|reR}
Nrx)(S) = HrnS'|reRand x¢rand ru{x}ec R}

FornnNS#mnnSwehaven NS =rnnS iff n=rnU{x},
or o =r U{x}. Thus,

NR(S)I = [Mr(S)] + Mg (S)]



Fix x € Sand let S’ =S — {x}.

Mr(S)I = {rnS|reR}
Ne(SH = H{rnS"|reR}
NMrx)(S) = {rnS | reRand x¢rand ru{x}eR}

e The VC-dimension of (S,z(S)) is no more than the
VC-dimension of (X, R), which is d.

e The VC-dimension of the range space (S, Mg(S’)) is no more
than the VC-dimension of (S, Mz(S)) and |S'| = n— 1, thus
by the induction hypothesis [[r(S')| < 37, (";1).

e For each r € lNk(,)(S') the range set IMs(R) has two sets: r
and r U {x}. If B is shattered by (5',Mg((S’)) then BU {x}
is shattered by (X, R), thus (S',g(,)(S')) has VC-dimension

bounded by d — 1, and [z, (5')] < 27;01 (HTI)-



INr(S)| = INr(S)| + INgx)(S)

NR(S)| < i(”f)ﬁl(”jl)

We use (1) + (") = iy G+ 1) = ()]

The number of distinct concepts on n elements grows polynomially
in the VC-dimension!



e-sample

Definition

An e-sample for a range space (X, R), with respect to a probability
distribution D defined on X, is a subset N C X such that, for any
r e R,

<e

NNl
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Let (X, R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < €,0 < 1/2, there is an

d d 1. 1

such that a random sample from D of size greater than or equal to
m is an e-sample for X with with probability at least 1 — 0.



Proof of the e-Sample Theorem

Let NV be a set of m independent samples from X according to D.

Let
> 5}.

Choose another set T of m independent samples from X according
to D. Let

[N N
m

E = {Hr € R s.t. ’ — Pr(r)

We want to show that Pr(E;) < 6.

VA

TN
EQ{ErERs.t. ’ Pr(r)| >¢ A Pr(r)—u

<</2)

m

Pr(Ez) S Pr(El) S 2PF(E2)



Lemma

Pr(Ey) < Pr(Ep) < 2Pr(E).

N
Ei = {Elre R s.t. ‘| nrl Pr(r)

m

> <

NO TN
Ez_{ErGRs.t, ’r‘_Pr(r) >e A ‘M—Pr(r)
m m

< 5/2}

Formz%“,

PrEe) _ PUBDER)_pgim) = Pt b <c2)
- =rr r(|——— — Pr(r

Pr(E1) Pr(E;) 21F1) = <e
> 1-2e 12> 1/2



Instead of bounding the probability of

|TNrl
m

N
EQ{EreRs.t. ‘”'_
m

pr(n) > < A [0 = < <12

we bound the probability of

Ej={3reR||raN—|rn T[> gm}.
Since

lrON|—|rO Tl > HrﬂN\—mI%r(r)|—Hrﬂ T|—mF;r(r)] >

N ™



Lemma

Pr(E1) < 2Pr(E) <2Pr(E}) < 2(2m)de*62m/8,

e Since NV and T are random samples, we can first choose a
random sample of 2m elements Z = 71, ..., z>,, and then
partition it randomly into two sets of size m each.

e Since Z is a random sample, any partition that is independent
of the actual values of the elements generates two random
samples.

e We will use the following partition: for each pair of sampled
items zp;_1 and z;, i = 1,..., m, with probability 1/2

(independent of other choices) we place zp;—1 in T and z; in
N, otherwise we place zp; 1 in N and z; in T.



For r € R, let B, be the event

B,:{|\m/v|—|m THZ%m}. g=J8
rer

The event B, depends only on the random partition of Z into N
and T. Its doesn't depend on the selection of Z.

o If zo;_1,20; € r or zpj_1,z0; & r they don't contribute to the
value of [[rNN| —|r0 T||.

e If just one of the pair zp;_1 and zp; is in r then their
contribution is +1 or —1 with equal probabilities.

e There are at least em/2 pairs that contribute +1 or —1 with
equal probabilities. Applying the Chernoff bound we have

Pr(E,) < e—<m/8,



Pr(E,) < e ™8,

Ey={3reR||IraN—[r0T|>5m}={]B.

rer
Since the projection of R on T U N has no more than (2m)¢
different ranges, we have

Pr(E1) < 2Pr(Ey) < 2(2m)%e=<"m/8,

To complete the proof we need to show that for

m>%ln%+gln1
T €2 €2 e

we have ,
(2m)de=m/® <5,



To complete the proof we show that for

32d . 64d 16 1
—2| In

m > Nt 2 s
- €2 e 4§

€

we have ,
(2m)de—m/8 <5,

Equivalently, we require

e2m/8 > In(1/8) + d In(2m).

Clearly ¢2m/16 > In(1/5), since m > % In 3.

To show that €2m/16 > d In(2m) we use:



Ify > xInx > e, thenl%zx.

Proof

For y = xInx we have Iny = Inx 4+ Inlnx < 2Inx. Thus

27)/ - 2x In x

Iny = 2Inx

Differentiating 7(y) = "2’—;’ we find that f(y) is monotonically

decreasing when y > xInx > e, and hence I% is monotonically
increasing on the same interval, proving the lemma. [
Let y =2m > %9 1n %2 and x = ¢, we have > 04d oo

In (2m) €’

Ei—g” > dIn(2m) as required.



Application: Unrealizable (Agnostic) Learning

We are given a training set {(x1, c(x1)), ..., (xm, c(xm))}, and
a concept class C
No hypothesis in the concept class C is consistent with all the
training set (¢ & C).
Relaxed goal: Let ¢ be the correct concept. Find ¢’ € C such
that

PDr(c’(x) # c(x)) < inf Pr(h(x) # c(x)) + €.

" heC D

An ¢/2-sample of the range space (X, A(c, c)) gives enough
information to identify an hypothesis that is within ¢ of the
best hypothesis in the concept class.

The range spaces (X,C) and (X, A(c, c’)) have the same
VC-dimension.



Uniform Convergence

Definition

A range space (X, R) has the uniform convergence property if for
every ¢,0 > 0 there is a sample size m = m(e, d) such that for
every distribution D over X, if S is a random sample from D of
size m then, with probability at least 1 — 0, S is an e-sample for X
with respect to D.

Theorem

The following three conditions are equivalent:
@ A concept class C over a domain X is agnostic PAC learnable.
@® The range space (X,C) has the uniform convergence property.
© The range space (X,C) has a finite VC dimension.



Is VC-Dimension "Just a Theory"?

Two issues:
e Hard to prove an efficient bound on VC-dimension
e VC-dimension is a "worst case" bound
A quick example:
e Very easy to compute bound on VC-dimension
e Better than union bound

e Not a machine learning problem



Frequent Itemsets Mining (FIM)

Frequent Itemsets Mining: classic data mining problem with many
applications. Settings:

Each line is a transaction, made of items from an

Dataset D alphabet 7

bread, milk An itemset is a subset of Z. E.g., the itemset

bread {bread,milk}

milk, eggs The frequency fp(A) of A C Z in D is the fraction of

bread, milk, apple transactions of D that A is a subset of.
bread, milk, eggs  E.g., fp({bread,milk}) =3/5=10.6

Problem: Frequent Itemsets Mining (FIM)

Given ¢ € [0, 1] find (i.e., mine) all itemsets A C 7 with
fp(A) > 0

l.e., compute the set FI(D,0) = {ACZ : fp(A) >0}
FI mining algorithms (Apriori, FP-Growth, ...) require significant
computation time and space (> quadratic in number of
transactions). What can be done with a sample?



What can we get with a Union Bound?

For any itemset A, the number of transactions that include A is
distributed
|S|fs(A) ~ Binomial(|S|, fp(A))

Applying Chernoff bound

Pr(|fs(A) — fp(A)] > £/2) < 2¢~I1SI*/12

We then apply the union bound over all the itemsets to obtain
uniform convergence
There are 2/Z| itemsets, a priori. We need

2e"5|€2/12 < 5/2\I|

Thus 0 )



Assume that we have a bound ¢ on the maximum transaction size.

There are 3", (') < |Z|* possible itemsets. We need

26—\3\52/12 < 6/‘Z|/

Thus,

12 1
5 (EIog]I +1In2+1In 5>

3

S| >

The sample size still depends on |Z|, which can be very large - all
products sold by Amazon, all the pages on the Web, ...

Can we have a smaller sample size?



How do we get a smaller sample size?
[Riondato and U. 2014, 2015]: Let's use VC-dimension!

e The domain is the dataset D (set of transactions)

e For each itemset A C 27 we have the set of transactions that
contain A

Ta={reD : ACT}
e We we need to estimate the probabilities (sizes) of all ranges
in the range space

(D, {Ta, A C 2%})

We need an efficient-to-compute upper bound to the VC-dimension



How do we bound the VC-dimension?

Definition

The d-index of a dataset D is the maximum integer d such that D
contains at least d different transactions with at least d items

Example: The following dataset has d-index 3

bread beer milk  coffee
chips coke pasta

bread coke  chips

milk  coffee

pasta milk

It can be computed easily with a single scan of the dataset

Theorem
The VC-dimension of D is bounded by the d-index of D



How do we prove the bound?

Theorem: The VC-dimension is less or equal to the d-index d of D

Proof:

Let ¢ > d and assume it is possible shatter a set T C D with
|T|=¢.

Then any 7 € T appears in at least 2~ ranges T, (there are
2/=1 subsets of T containing 7)

But any 7 only appears in the ranges 7, such that A C 7. So
it appears in 2/7l — 1 ranges

From the definition of d, T must contain a transaction 7" of
length |77 < ¢

This implies 2I7"1 —1 < 271 so0 7* can not appear in 2~1
ranges

Then T can not be shattered.



How good is the bound?

Definition
The d-index of a dataset D is the maximum integer d such that D
contains at least d different transactions with at least d items

If all transactions have exactly ¢ elements , then d = /.

If we have n transactions, the largest transaction has ¢ elements,
and the number of elements in a transaction follows a power law
distribution

Pr(X > x) ~cx™ @, fora>1,

then d satisfies Pr(X > d) ~ %, and / satisfies Pr(X > () ~ 1,
which gives,

@

d ~ ,€1+a




Frequent Itemset Estimation Using VC-dimension

The VC-dimension is bounded by the maximum d such that D
contains at least d different transactions with at least d items.

d d 1 1
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Figure: Frequent itemsets: Sample size based on VC-dimension vs. union
bound



