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Extracting Information from Data

Data science, machine learning, data mining, pattern recognition,
statistical inference, ”the scientific method”,...

DATA ⇒ ALGORITHM ⇒ MODEL
In CS we focus on the algorithm (efficiency, correctness with
respect to the input)

DATA ⇒ ALGORITHM ⇒ MODEL

but f (garbage) = garbage
In data analysis we need to verify that the information is in the
data:

DATA ⇒ ALGORITHM ⇒ MODEL



Sample Complexity

Sample Complexity addresses the fundamental questions in data
analysis:

• Does the data (training set) contains sufficient information to
make a valid predictions (or fix a model)?

• Is the sample sufficiently large?

• How accurate is a prediction (model) inferred from a sample
of a given size?

Standard statistics/probabilistic techniques do not give adequate
soluions



Outline:

• Motivation: learning a binary classifier, the realizable and
non-realizable case.

• Uniform convergence

• Uniform convergence through VC-dimension

• Applications: binary classification learning, data analysis

• Rademacher complexity

• Applications of Rademacher complexity in data analysis

Take home message:

• Beautiful theory

• Not just theory

• Not just machine learning



Learning a Binary Classifier

• An unknown probability distribution D on a domain U
• An unknown correct classification – a partition c of U to In

and Out sets

• Input:
• Concept class C – a collection of possible classification rules

(partitions of U).
• A training set {(xi , c(xi )) | i = 1, . . . ,m}, where x1, . . . , xm are

sampled from D.

• Goal: With probability 1− δ the algorithm generates a
classification that is correct (on items generated from D) with
probability opt(C)− ε, where opt(C) is the probability of the
best classification in C.



Learning	a	Binary	Classifier	
•  Out	and	In	items,	and	a	concept	class	C	of	
possible	classifica;on	rules	



When does the sample identify the correct rule? -
The realizable case

• The realizable case - the correct classification c ∈ C.

• Algorithm: choose h∗ ∈ C that agrees with all the training set
(there must be at least one).

• For any h ∈ C let ∆(c , h) be the set of items on which the
two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}

• If the sample (training set) intersects every set in

{∆(c , h) | Pr(∆(c , h)) ≥ ε},

then
Pr(∆(c , h∗)) ≤ ε.



Learning	a	Binary	Classifier	
•  Red	and	blue	items,	possible	classifica9on	
rules,	and	the	sample	items	



When does the sample identify the correct rule?
The unrealizable (agnostic) case

• The unrealizable case - c may not be in C.

• For any h ∈ C, let ∆(c, h) be the set of items on which the
two classifiers differ: ∆(c, h) = {x ∈ U | h(x) 6= c(x)}

• For the training set {(xi , c(xi )) | i = 1, . . . ,m}, let

P̃r(∆(c , h)) =
1

m

m∑
i=1

1h(xi )6=c(xi )

• Algorithm: choose h∗ = arg minh∈C P̃r(∆(c , h)).

• If for every set ∆(c , h),

|Pr(∆(c, h))− P̃r(∆(c , h))| ≤ ε,

then
Pr(∆(c , h∗)) ≤ opt(C) + 2ε.



Uniform Convergence [Vapnik – Chervonenkis 1971]

Definition

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mF (ε, δ) such that

• for any ε, δ > 0, m(ε, δ) <∞
• for any distribution D on Z , and a sample z1, . . . , zm of size

m = mF (ε, δ),

Pr(sup
f ∈F
| 1
m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

Let fE (z) = 1z∈E then E[fE (z)] = Pr(E ).



Uniform Convergence and Learning

Definition

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mF (ε, δ) such that

• for any ε, δ > 0, m(ε, δ) <∞
• for any distribution D on Z , and a sample z1, . . . , zm of size

m = mF (ε, δ),

Pr(sup
f ∈F
| 1
m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

• Let FH = {fh | h ∈ H}, where fh is the loss function for
hypothesis h.

• FH has the uniform convergence property ⇒ an ERM
(Empirical Risk Minimization) algorithm ”learns” H.

• The sample complexity of learning H is bounded by mFH(ε, δ)



Uniform Convergence - 1971, PAC Learning - 1984

Definition

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mF (ε, δ) such that

• for any ε, δ > 0, m(ε, δ) <∞
• for any distribution D on Z , and a sample z1, . . . , zm of size

m = mF (ε, δ),

Pr(sup
f ∈F
| 1
m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

• Let FH = {fh | h ∈ H}, where fh is the loss function for
hypothesis h.

• FH has the uniform convergence property ⇒ an ERM
(Empirical Risk Minimization) algorithm ”learns” H. PAC
efficiently learnable if there a polynomial time
ε, δ-approximation for minimum ERM.

• The sample complexity of learning H is bounded by mFH(ε, δ)



Uniform Convergence

Definition

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mF (ε, δ) such that

• for any ε, δ > 0, m(ε, δ) <∞
• for any distribution D on Z , and a sample z1, . . . , zm of size

m = mF (ε, δ),

Pr(sup
f ∈F
| 1
m

m∑
i=1

f (zi )− ED[f ]| ≤ ε) ≥ 1− δ.

VC-dimension and Rademacher complexity are the two major
techniques to

• prove that a set of functions F has the uniform convergence
property

• charaterize the function mF (ε, δ)



Some Background

• Let z1, . . . , zm i.i.d. observation from distribution F (x), and
Fm(x) = 1

m

∑m
i=1 1zi≤x (empirical distribution function)

• Strong Law of Large Numbers: for a given x ,

Fm(x)→a.s F (x) = Pr(z ≤ x).

• Glivenko-Cantelli Theorem (uniform convergence of
{F (x) | x ∈ R}):

sup
x∈R
|Fm(x)− F (x)| →a.s 0.

• Dvoretzky-Keifer-Wolfowitz Inequality (Kolmogorov-Smirnov
ditribution)

Pr(sup
x∈R
|Fm(x)− F (x)| ≥ ε) ≤ 2e−2mε

2
.

• VC-dimension characterizes uniform convergence property for
arbitrary sets of events.



Simplest Uniform Convergence - Union Bound

Theorem

In the realizable case, any concept class C can be learned with
m = 1

ε (ln |C|+ ln 1
δ ) samples.

Proof.

We need a sample that intersects every set in the family of sets

{∆(c , c ′) | Pr(∆(c , c ′)) ≥ ε}.

There are at most |C| such sets, and the probability that a sample
is chosen inside a set is ≥ ε.
The probability that m random samples did not intersect with at
least one of the sets is bounded by

|C|(1− ε)m ≤ |C|e−εm ≤ |C|e−(ln |C|+ln 1
δ
) ≤ δ.



How Good is This Bound? - Learning an Interval

• A distribution D is defined on universe that is an interval
[A,B].

• The true classification rule is defined by a sub-interval
[a, b] ⊆ [A,B].

• The concept class C is the collection of all intervals,

C = {[c , d ] | [c , d ] ⊆ [A,B]}

Theorem

There is a learning algorithm that given a sample from D of size
m = 2

ε ln 2
δ , with probability 1− δ, returns a classification rule

(interval) [x , y ] that is correct with probability 1− ε.

Note that the sample size is independent of the size of the concept
class |C|, which is infinite.



Learning	
  an	
  Interval	
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Proof.

Algorithm: Choose the smallest interval [x , y ] that includes all the
”In” sample points.

• Clearly a ≤ x < y ≤ b, and the algorithm can only err in
classifying ”In” points as ”Out” points.

• Fix a < a′ and b′ < b such that Pr([a, a′]) = ε/2 and
Pr([b, b′]) = ε/2.

• If the probability of error when using the classification [x , y ] is
≥ ε then either a′ ≤ x or y ≤ b′ or both.

• The probability that the sample of size m = 2
ε ln 2

δ did not
intersect with one of these intervals is bounded by

2(1− ε

2
)m ≤ e−

εm
2
+ln 2 ≤ δ



• The union bound is far too loose for our applications. It sums
over overlapping hypothesis.

• Each sample excludes many possible intervals.

• Need better characterization of concept’s complexity!


