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Extracting Information from Data

Data science, machine learning, data mining, pattern recognition,
statistical inference, " the scientific method”,...

DATA = ALGORITHM = MODEL

In CS we focus on the algorithm (efficiency, correctness with
respect to the input)

DATA = ALGORITHM = MODEL
but f(garbage) = garbage

In data analysis we need to verify that the information is in the
data:

= ALGORITHM = MODEL



Sample Complexity

Sample Complexity addresses the fundamental questions in data
analysis:

e Does the data (training set) contains sufficient information to
make a valid predictions (or fix a model)?

e |s the sample sufficiently large?

e How accurate is a prediction (model) inferred from a sample
of a given size?

Standard statistics/probabilistic techniques do not give adequate
soluions



Outline:

e Motivation: learning a binary classifier, the realizable and
non-realizable case.

e Uniform convergence

e Uniform convergence through VC-dimension

e Applications: binary classification learning, data analysis
e Rademacher complexity

e Applications of Rademacher complexity in data analysis

Take home message:
e Beautiful theory
e Not just theory
e Not just machine learning



Learning a Binary Classifier

An unknown probability distribution D on a domain U

An unknown correct classification — a partition ¢ of U to In
and Out sets
Input:
e Concept class C — a collection of possible classification rules
(partitions of U).
e A training set {(x;,c(x;)) | i =1,...,m}, where xq,...,x, are
sampled from D.
Goal: With probability 1 — ¢ the algorithm generates a
classification that is correct (on items generated from D) with
probability opt(C) — ¢, where opt(C) is the probability of the
best classification in C.



Learning a Binary Classifier

* Qut and In items, and a concept class C of
possible classification rules




When does the sample identify the correct rule? -
The realizable case

The realizable case - the correct classification ¢ € C.

Algorithm: choose h* € C that agrees with all the training set
(there must be at least one).

For any h € C let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}
If the sample (training set) intersects every set in

{A(c, h) | Pr(A(c, h)) > €},

then
Pr(A(c, h*)) <e.



Learning a Binary Classifier

* Red and blue items, possible classification
rules, and the sample items (%)




When does the sample identify the correct rule?
The unrealizable (agnostic) case

e The unrealizable case - ¢ may not be in C.

e Forany h € C, let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}
e For the training set {(x;,c(x;)) | i =1,....m}, let

17
PF(A(C, h)) = - Z 1h(x,-)7£c(x,-)
i=1

e Algorithm: choose h* = arg minpec Fsr(A(c, h)).
e If for every set A(c, h),

|Pr(A(c, h)) — Pr(A(c, h))| <e,

then
Pr(A(c, h*)) < opt(C) + 2e.



Uniform Convergence [Vapnik — Chervonenkis 1971]

Definition
A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mz(e, ) such that
e forany €,d >0, m(e,0) < o0
e for any distribution D on Z, and a sample zi, ..., z,, of size

m = m]:(€7 5)1

m

1
Pr(sup |— f(z)— Ep[f]| <e)>1-06.
(sl 3 fla) = E0lfl < 9

Let fe(z) = 1,c¢ then E[fe(z)] = Pr(E).



Uniform Convergence and Learning

Definition
A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mz(e,d) such that
e forany €,d >0, m(¢,0) < o0
e for any distribution D on Z, and a sample zi, ..., z,, of size
m = mg(e, 9),

1 m
Pr(sup |— f(z) — Eplf]l| <€) >1-06.
(fg'm; (zi) — Epl[f]| <€)

o Let 7y = {f, | h € H}, where f} is the loss function for
hypothesis h.

e Fyy has the uniform convergence property = an ERM
(Empirical Risk Minimization) algorithm "learns” .

e The sample complexity of learning # is bounded by mz,, (e, ¢)



Uniform Convergence - 1971,

Definition

A set of functions F has the uniform convergence property with

respect to a domain Z if there is a function my(e,d) such that
e forany €,d >0, m(e,0) < o0

e for any distribution D on Z, and a sample zi, ..., z,, of size
m = mgz(e, 9),

1 m
Pr(sup |— f(z) — Ep[f]| <€) >1-06.
(fef|m,; (zi) — Epl[f]| <€)

o Let 75y = {fy | h € H}, where f, is the loss function for
hypothesis h.

e Fy has the uniform convergence property = an ERM
(Empirical Risk Minimization) algorithm "learns” H.

€,0



Uniform Convergence

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mr(e,d) such that

e for any €,0 > 0, m(e,0) < o0

e for any distribution D on Z, and a sample z, ..., z,, of size
m = mz(e, ),

1 m
Pr(sup |— f(z;) — Eplf]| <e€)>1-06.
(fe}‘|mi§_; (zi) — Ep[f]| <€)

VC-dimension and Rademacher complexity are the two major
techniques to

e prove that a set of functions F has the uniform convergence
property
e charaterize the function mz(e,0)



Some Background

Let zi,..., zy, i.i.d. observation from distribution F(x), and
Fm(x) = £ 3™, 1, (empirical distribution function)
Strong Law of Large Numbers: for a given x,

Fm(x) =as F(x) = Pr(z < x).

Glivenko-Cantelli Theorem (uniform convergence of
{F(x) | x € R}):

sup |Fm(x) — F(x)| —as 0.
x€ER

Dvoretzky-Keifer-Wolfowitz Inequality (Kolmogorov-Smirnov
ditribution)

Pr(sup | Fm(x) — F(x)| > ¢) < 2e2m<.
x€eR

VC-dimension characterizes uniform convergence property for
arbitrary sets of events.



Simplest Uniform Convergence - Union Bound

Theorem

In the realizable case, any concept class C can be learned with
m=1(In|C| + In }) samples.

Proof.

We need a sample that intersects every set in the family of sets

{A(c,c) | Pr(A(c, ') > €}

There are at most |C| such sets, and the probability that a sample
is chosen inside a set is > e.
The probability that m random samples did not intersect with at
least one of the sets is bounded by

C(1— €)™ < |Cle™™ < [Cle~(nICIHn5) < 5,



How Good is This Bound? - Learning an Interval
e A distribution D is defined on universe that is an interval
[A, B].

e The true classification rule is defined by a sub-interval
[a, 6] C [A, B].

e The concept class C is the collection of all intervals,

¢ ={lc.d] | [e.d] C [A,B]}

Theorem

There is a learning algorithm that given a sample from D of size
m = 2 In 2 5, with probability 1 — 0, returns a classification rule
( interval ) [x,y]| that is correct with probability 1 — e.

Note that the sample size is independent of the size of the concept
class |C|, which is infinite.




Learning an Interval

* If the classification error is 2 € then the sample
missed at least one of the the intervals [a,a’]
or [b’,b] each of probability > £/2

€/2 , €/2
A 2 £"3 a a o o D, b f\L” H_B
X Y

Each sample excludes many possible intervals.
The union bound sums over overlapping hypothesis.
Need better characterization of concept's complexity!



Algorithm: Choose the smallest interval [x, y| that includes all the
"In" sample points.
e Clearly a < x < y < b, and the algorithm can only err in
classifying "In" points as " Out” points.
e Fix a < a' and b’ < b such that Pr([a, a']) = ¢/2 and
Pr([b, b']) = €/2.
e If the probability of error when using the classification [x, y| is
> ¢ then either 2’ < x or y < b/ or both.

e The probability that the sample of size m = 2 In 2 did not
intersect with one of these intervals is bounded by

2(1 . %)m < ef%+|n2 <6



e The union bound is far too loose for our applications. It sums
over overlapping hypothesis.

e Each sample excludes many possible intervals.

e Need better characterization of concept’'s complexity!



