Is Uniform Convergence Necessary?

Definition

A set of functions F has the uniform convergence property with respect to a domain Z
if there is a function mr(e,d) such that for any ¢, > 0, m(e,§) < oo, and for any
distribution D on Z, a sample z;, ..., z,, of size m = mz(e, ) satisfies

1 m
Pr(sup |— f(z;) — Ep[f]| <e€)>1-06.
(fe]-‘mlz_; (zi) — Eplf][ <€)

The general supervised learning scheme:

Let fp, is the loss (error) function for hypothesis h

Let Fy = {fh ’ he H}

Fu has the uniform convergence property = for any distribution D and
hypothesis h{C} we have a good estimate of the error of h

An ERM (Empirical Risk Minimization) algorithm correctly identify an almost best
hypothesis in 7.



Is Uniform Convergence Necessary?

Definition

A set of functions F has the uniform convergence property with respect to a domain Z
if there is a function mz(e,0) such that for any ¢, > 0, m(e, ) < oo, and for any
distribution D on Z, a sample z;, ..., z,, of size m = mz(e,0) satisfies

1 m
Pr(sup |— f(z;) — Ep[f]| <e)>1-04.
(fefm; (zi) — Eplf]| <€)

e We don't need uniform convergence for any distribution D, just for the input
(training set) distribution— Rademacher average.

e We don't need tight estimate for all functions, only for functions in the
neighborhood of the optimal function — local Rademacher average.



Rademacher Complexity

Limitations of the VC-Dimension Approach:

e Hard to compute
e Combinatorial bound - ignores the distribution over the data.

Rademacher Averages:

Incorporates the input distribution

Applies to general functions not just classification

For binary functions always at least as good bound as the VC-dimension

Can be computed from a sample

Still hard to compute



Rademacher Averages - Motivation

e Assume that S; and S are two "uniform convergence” samples, i.e. sufficiently
large for estimating the expectations of any function in . Then, for any f € F,

‘51, > flx > fy) =~ Elf(x)],

x€ESy ‘ 2’ yESS

or

1
Es s su — <e
S e \5112 s )

feF

e Rademacher Variables: Instead of two samples, we can take one sample
S ={z,...,zn} and split it randomly.

o leto=o01,...,0niid Pr(zi=—1) = Pr(z; = 1) = 1/2. The Empirical
Rademacher Average of F is defined as

m

1
Rn(F,S) = E, |sup — oif(z;
G CRL



Rademacher Averages - Motivation |l

e Assume that F is a collection of {—1,1} functions.

e A rich concept class F can approximate (correlate with) any dichotomy -
particular a random one - represented by the random variables 0 = o1, ..

e Thus, the Rademacher Average
1 m
Rn(F,S) = E, [sup — Zaif(z,-)]

m
feF i—1

represents the richness or expressiveness of the set F.

in
S Om.



Rademacher Averages (Complexity)

The Empirical Rademacher Average of F with respect to a sample S = {z1,..., 2z},
is defined as

Rn(F,S) = E, [sup 1 Za,-f(z,-)]
i=1

fer m =

Taking an expectation over the distribution D of the samples:

Definition
The Rademacher Average of F is defined as

Ri(F) = Esp|[Rm(F,S)] = Es~pE, |sup % Za;f(z,-)]

feF i—1




The Major Results

The Rademacher Average indeed captures the expected error in estimating the
expectation of any function in a set of functions 7 (The Generalization Error).

e Let Ep[f(z)] be the true expectation of a function f in distribution D.
e Forasample S = {z,..., 2z} the empirical estimate of Ep[f(z)] using the
sample Siis = > f(z).

m

Theorem

m

1
sup (Epmz)] — f(z,-))

i=1

Es.p < 2Rm(.7:).




Jensen’s Inequality

A function f : R™ — R is said to be convex if, for any xi,x, and 0 < A\ <1,

FOxa + (1= M)xe) < M (x1) + (1 = \)F(x2).

Theorem (Jenssen’s Inequality)

If f is a convex function, then

E[f(X)] = f(E[X]).

In particular
sup E[f] < E[sup f]
feF feF



Proof

/

Pick a second sample S" = {z]. ...,z }.

IN

Es.p

1 m
sup (Ep[f(Z)] - > f(zi)>]

i=1

1 1 &
Es.p |sup | Esrep— Y f(Z))— =) f(z
AR W VB
Essiwp |sup * z’": f(z) — * Zm: f(zi) Jensen’s Inequlity
T e \mm T mm

1 m
Essi o |sup | — oi(f(z) — f()
fer \'M-.-H

1 m
sup — oi(f(z
sup 1, > o (z)

2Rm(F)

ES,U




Deviation Bounds

Theorem

Let S ={zi,...,z,} be a sample from D and let § € (0,1). If all f € F satisfy
Ar < f(z) < Ar + ¢, then

@® Bounding the estimate error using the Rademacher complexity:

Pr(sup(Eplf(2)] = - 3 f(z) = 2Rn(F) + ) < &2/
< =1l

® Bounding the estimate error using the empirical Rademacher complexity:

Pr(sup(Ep[f(2)] - %Z F(2i)) > 2Rm(F) + 2¢) < 26727/

Applying Azuma inequality to Doob’s martingale



McDiarmid’s Inequality

Applying Azuma inequality to Doob’s martingale:

Theorem

Let Xi,..., X, be independent random variables and let h(xi,....x,) be a function

such that a change in variable x; can change the value of the function by no more than
Ci,
X,

sup  |h(x1y ey Xiy ey Xn) — (X1, X xn)] < G

X17'“7Xn¢X,'/

For any ¢ > 0

Pr(h(X1, ..., Xn) — E[A(X1, ..., Xn)]| =€) < e 2/ X,



Proof

e The generalization error

sup(Enlf(2)] — > ()
i=1

feF

) )

that function by no more than ¢/m.

is a function of z,.. ., Zm, and a change in one of the z; changes the value of

e The Empirical Rademacher Average

Rm(F,S) = E, [sup 1 zm:aif(zl')]

m
feF i1

is a function of m random variables, zi, ..., z,, and any change in one of these
variables can change the value of R,,(F,S) by no more than ¢/m.



Applications

e A bound on the sample size as a function of the Rademacher complexity (and
error parameters ¢ and ¢):

m

Z 7)) > 2Rn(F) +€) < 27/ < §

Pr(;g;(ED[f(

3\'—‘

e Approximating the Rademacher complexity using the empirical Rademacher
complexity:

Pr (SUP(ED[f( )] -— Zf ) > 2Rn(F) + 2¢) < 2e72m€/€ < 5
i=1



Estimating the Rademacher Complexity

Theorem (Massart's Bound)

Assume that |F| is finite. Let S = {zi,...,zy} be a sample, and let

then




Hoeffding's Inequality
Large deviation bound for more general random variables:
Theorem (Hoeffding's Inequality)

Let Xi,..., X, be independent random variables such that for all 1 < i < n, E[X;| = p
and Pr(a < X; < b) =1. Then

FZX |l >e€) <2e” 2 lo=alf

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that Pr(X € [a, b]) =1 and
E[X] = 0. Then for every A > 0,

E[E)\X] < eAZ(a—b)2/8_



Proof of Hoeffding's Lemma

Since f(x) = ™ is a convex function, for any o € (0,1) and x € [a, b],

f(X) <af(a)+ (1 —a)f(b).

Thus, for a = 2% € (0, 1),

b— x X—a
e/\X § e/\a + e/\b

b—a b—a

Taking expectation, and using E[X] = 0, we have

E[e’\X] < bﬁae)\a + biaexb < N(b-a)?/8



Proof of Hoeffding's Bound

Let Z = X; —E[X;]and Z =137 | X;.

A2(b—a)?

PHZ 2 ) < e E[e] < e [[ E[eM/7] < e 5
i=1

Set A = (bA'_”;)Q gives

1 n
Pr(l-d Xi—pl =) =Pr(Z=¢) < D¢~ 20/ (b=a)’
i=1



For any s > 0,

estm(]-',S)
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Proof of Massart’'s Bound

eSEo [suprer 2oy oif (2)]

E, [ess“pfef L "’f(zf)} Jensen’s Inequlity

€, [sup (572 1) |



Since E[o;f(z;)] = 0 and —f(z) < 0;f(z)) < f(z), we can apply Hoeffding's Lemma

to obtain

Thus,

oSMRm(F.S) <ZHE |:sa,f(z,}

feF i=1

N

E |:esa, (z ,)] < S2@F(@))?/8 _ o5 (@),

esmﬁ’m(]—',S) _ esE[supfef Sl oif(z)]
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esm:‘i’m(]—',S) < V—;w#

Hence, for any s > 0,

1 (In|F| sB?
Rm(F,S) < — — |-
s (M4 )
Setting s = 7V2:Bn|f| yields
. V21
Rm(]:as): o SUP*ZO‘, ZI] _7nm-
fer m=< m




Application: Learning a Binary Classification

Let C be a binary concept class defined on a domain X, and let D be a probability
distribution on X. For each x € X let c(x) be the correct classification of x.
For each hypothesis h € C we define a function f4(x) by

fi(x) = { 1 if h(x) = c(x)

—1 otherwise

Let 7 = {f, | h € C}. Our goal is to find /" € C such that with probability at least
1—-90
E[fh/] > sup E[fh] — €.
fhE]:

We give an upper bound on the required size of the training set using Rademacher
complexity.



For each hypothesis h € C we define a function f4(x) by

fi(x) = { 1 if h(x) = c(x)

—1 otherwise

Let S be a sample of size m, then

and
Rn(F,S) < 2"!;’.
To use .
Pr(?gg(Ep[f(z)] — % Z f(2)) > 2Rm(F) +2¢) <

2
We need 2|nT|F\ < ¢ and 2e 2™ /64 < 6.



Relation to VC-dimension

We express this bound in terms of the VC dimension of the concept class C.

Each function f, € F corresponds to an hypothesis h € C.

Let d be the VC dimension of C.

The projection of the range space (X, C) on a sample of size m has no more than m¢
different sets.

Thus, the set of different functions we need to consider is bounded by m9, and

- 2d |
Rn(F.S) < o

m

Exercise: compare the the bounds obtained using the VC-dimension and the
Rademacher complexity methods.



Advantage of Rademacher Complexity

e Can estimate the Rademacher complexity from a sample

e Apply Progressive Random Sampling:

At each iteration,

@ create sample S by drawing transactions from D uniformly and independently at
random

® Check a stopping condition on S, by computing R,(F.S) and checking if it gives
an (e, 0)-approximation

© If stopping condition is satisfied, use that sample

O Else, iterate with a larger sample



Back to Frequent ltemsets [Riondato and U. - KDD'15]

We define the task as an expectation estimation task:
e The domain is the dataset D (set of transactions)
e The family of functions is 7 = {14, A C 27}, where Tx(7) = 1if AC 7, else
Za(r) = 0.
e The distribution 7 is uniform over D: 7(7) = 1/|D|, for each 7 € D

1
Ex(La) = 3 1a(0r(r) = 3 1a(r) 5 = FolA)
T7€D T€D
Given a sample z1, ..., z, of m transactions we need to bound the empirical

Rademacher average

R’m(f, S) = EU [SUp l ZJ,’].A(Z;)]

m
AC2t T io



How can we bound the Rademacher average? (high level picture)

Efficiency Constraint: use only information that can be obtained with a single scan of S

How:
® Prove a variant of Massart's Theorem.

@® Show that it's sufficient to consider only Closed Itemsets (Cls) in S (An itemset is
closed iff none of its supersets has the same frequency)

© We use the frequency of the single items and the lengths of the transactions to
define a (conceptual) partitioning of the Cls into classes, and to compute upper
bounds to the size of each class and to the frequencies of the Cls in the class

@ We use these bounds to compute an upper bound to R(S) by minimizing a convex
function in R (no constraints)



Experimental Evaluation

Greatly improved runtime over exact algorithm, one-shot sampling (vc), and fixed
geometric schedules. Better and better than exact as D grows
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Figure: Running time for BMS-POS, 6 = 0.015.

In 10K+ runs, the output was always an e-approximation, not just with prob. > 1 —¢
supact |fp(A) — fs(A)| is 10x smaller than = (50x smaller on average)



How does it compare to the VC-dimension algorithm?

Given a sample S and some § € (0,1), what is the smallest = such that FI(S,0 — =/2)
is a (£, 0)-approximation?

0.08 kosarak 0.04 accidents
c 0.06 - VC § 0.03 ¥ A
o R —¥—Thi = —w»— This work
= 0.0 «"‘ This work % 0.02
.
%o.ozﬁﬁ\k‘_—#"*-- -
0 T T 0 T T
0.0E+0 2.0E+6 4.0E+6 0.0E+0 2.0E+6 , 4.0E+6
sample size sample size

Note that this comparison is unfavorable to our algorithm: as we are allowing the
VC-dimension approach to compute the d-index of D (but we don’t have access to D!)

We strongly believe that this is because we haven't optimized all the aspects of the
bound to the Rademacher average. Once we do it, the Rademacher avg approach will
most probably always be better
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CHAPTER FOURTEEN
Sample Complexity,
VC Dimension, and

Rademacher Complexity

Sampling is a powerful technique, which is at the core of statistical data analysis and
‘machine learning. Using a finite, often small, set of observations, we attempt to esti-
mate properties of an entire sample space. How good are estimates obtained from a
sample? Any rigorous application of sampling requires an understanding of the sample
complexity of the problem — the minimum size sample needed to obtain the required
results. In this chapter we focus on the sample complexity of two important applica-
tions of sampling: event detection and probability estimation. Our goal is to use one set
of samples to detect a set of events or estimate the probabilities of a family of events,
where the set of events is large, in fact possibly infinite. For detection, we mean that we
‘want the sample to intersect with each event in the set, while for probability estimation,
we want the fraction of points in the sample that intersect with each event in the set to
approximate the probability of that event.

As an example, consider a sample i, . . ., Xy, of m independent observations from
an unknown distribution D, where the values for our samples are in R. Given an
interval [a, b], if the probability of the interval is at least €, i.e., Pr(x € [a, b]) = ¢,
then the probability that a sample of size m = 1n ! intersects (or, in this context,
detects) the interval [a, b] is at least 1 = (1 — )" = I — 5. Given a set of k intervals,
each of which has probability at least e, we can apply a union bound to show that the
probability that a sample of size ' = L In £ intersects each of the k intervals is at least
T—k(l—ey" = 1-8.

Indeed, in many applications we need a sample that intersects with every interval
that has probability at least €, and there can be an infinite number of such intervals.
What sample size guarantees that? We cannot use a simple union bound to answer this
question, as our above analysis does not make sense when k is infinite. However, if there
are many such intervals, there can be significant overlap between them. For example,
consider samples chosen uniformly over [0, 1] with € = 1/10; there are infinitely many
intervals [a, b] of length at least 1/10, but the largest number of disjoint intervals of
size at least 1/10 is ten. A sample point may intersect with many intervals, and thus a
small sample may be sufficient.
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