Sequential Decision Making: Prophets and

Secretaries | - Prophet Inequalities

Matt Weinberg
Princeton University

Online Selection Problems

Imagine you’re trying to hire a secretary, find a job, select a life partner, etc.

* At each time step:

* A secretary* arrives.
— *I’'mreally sorry, but for this talk the secretaries will be pokémon.

* You interview, learn their value.
* Immediately and irrevocably decide whether or not to hire.
* May only hire one secretary!

t= 1 2 3

An Impossible Problem

Offline:
* Every secretary i has a weight w; (chosen by adversary, unknown to you).
* Adversary chooses order to reveal secretaries.
Online:
e Secretaries revealed one at a time. You learn their weight.
* Immediately and irrevocably decide to hire or not.
* May only hire one secretary!
Goal: Maximize probability of selecting max-weight element.
Trivial lower bound: can’t beat 1/n (hire random secretary).

L Online Selection Problems: Secretary Problems

Offline:

* Every secretary i has a weight w; (chosen by adversary, unknown to you).
e Secretaries permuted randomly.

Online:

e Secretaries revealed one at a time. You learn their weight.

* Immediately and irrevocably decide to hire or not.

* May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

L Online Selection Problems: Secretary Problems

Offline:

* Every secretary i has a weight w; (chosen by adversary, unknown to you).
e Secretaries permuted randomly.

Online:

e Secretaries revealed one at a time. You learn their weight.

* Immediately and irrevocably decide to hire or not.

* May only hire one secretary!

Goal: Maximize probability of selecting max-weight element.

t= 1 2 3

L Online Selection Problems: Prophet Inequalities

Offline:

* Every secretary i has a weight w; drawn independently from distribution D;.
* Adversary chooses distributions and ordering (both known to you).

Online:

e Secretaries revealed one at a time. You learn their weight.

* Immediately and irrevocably decide to hire or not.

* May only hire one secretary!

Goal: Maximize expected weight of selected element.

U[3,4] U[4,5]

L Online Selection Problems: Prophet Inequalities

Offline:

* Every secretary i has a weight w; drawn independently from distribution D;.
* Adversary chooses distributions and ordering (both known to you).

Online:

e Secretaries revealed one at a time. You learn their weight.

* Immediately and irrevocably decide to hire or not.

* May only hire one secretary!

Goal: Maximize expected weight of selected element.

t= 1

w= 5 U[0,8] UJ[3,4] U[4,5]

L Online Selection Problems: Prophet Inequalities

Offline:

* Every secretary i has a weight w; drawn independently from distribution D;.
* Adversary chooses distributions and ordering (both known to you).

Online:

e Secretaries revealed one at a time. You learn their weight.

* Immediately and irrevocably decide to hire or not.

* May only hire one secretary!

Goal: Maximize expected weight of selected element.

t= 1 2

w= 5 7 U[3,4] U[4,5] U[0,9]

Prophet Inequalities

Observation: can find optimal policy via dynamic programming/backwards induction.
* |If we make it to Mewtwo, clearly we should accept.
* |f we make it to Pikachu, we can either:
Reject: Get 4.5 from Mewtwo.
Accept: Get w(Pikachu).
So accept iff w(Pikachu) > 4.5.
. If we make it to Charmander, we can either:
Reject: Get 4.625 (from optimal policy starting @ Pikachu).
Accept: Get w(Charmander).
So reject Charmander.
. Etc.

U[3,4] U[4,5]

Prophet Inequalities

Observation: can find optimal policy via dynamic programming/backwards induction.
e Question 1: How well does this policy do compared to a “prophet?”

* Exist c such that for all instances, E[Gambler] = c-E[Prophet]?
e Question 2: How well do “simpler” policies do?

* Ex: set threshold T, accept first element with weight > T?

* Can we get the same c as above?

VS.
Gambler Prophet
knows distributions, knows weights,

uses online policy picks best element

L Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees
E[Gambler] = 1/2 -E[Prophet]. Best possible (for all policies).

Tight example:

* Prophet gets 1/e w.p. €, 1 w. p. 1-€. E[prophet] =2 — €.
* Gambler can accept Bulbasaur, get 1.

* Orreject and get Squirtle, also for 1. So E[gambler] = 1.

L Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees
E[Gambler] = 1/2 -E[Prophet]. Best possible (for all policies).

(modified) Proof:
* Let T = E[max{w;}/2], use threshold T (accept any element > T).
l

» Define p = Pr[max{w;} > T]. Define ALG; = w; - [(Alg accepts i).
l

* Notation: X* = max{X, 0}.

EIALG) =), E[ALG;] = X, E[(T +w; —T) - I(Alg accepts i)].
=pT + Y, E[(w; = T) - I(Alg accepts i)] .

=pT + Y, E[(w; = T) - I(w; > T AND don't accept any j < i)].
=pT + Y, E[(w; = T)* - I(Don’t accept any j < i)].

= pT + Y; E[(w; = T)™] - Pr[Don’t accept any j < i].

> pT + (1 - p) X E[(w; — D)1,

So: A) E[ALG] = pT + (1 —p) Y, E[(w; — T)"].

L Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees
E[Gambler] = 1/2 -E[Prophet]. Best possible (for all policies).

(modified) Proof:
So: A) E[ALG] = pT + (1 —p) X, E[(w; — T)"].

Just need to bound E [max{wi}]. Recall T = E [max{wi}] /2.
l l

E [miax{wi}] <E [T + (miax{wl-} — T)+] :

<T+ E[miax{(wl- —T)*}].

<T+E[Y;w—-T)"].

=Y. E[(w; —T)"] = E [miax{wi}] —T = E[miax{wl-}]/z.

So: B) T = E[max;{w;}]/2, Y,;E[(w;—T)"] = E[max;{w;}]/2.
= E[ALG] = E[max;{w;}]/2.

L Prophet Inequalities

Theorem [Krengel-Sucheston 78, Samuel-Cahn 86]: Uniform threshold guarantees
E[Gambler] = 1/2 -E[Prophet]. Best possible (for all policies).
(modified) Proof:

A) E[ALG] = pT + (1 — p) 3, E[(w; — T)*].

B) T = E[max;{w;}]/2, X,E[(w;—T)"] = E[max;{w,}]/2.
= E[ALG] = E[max;{w;}]/2.

Intuition: A) holds for any T. B) lets us get mileage from A).
Because T not too big, Y, E[(w; — T)"] = E [max{wi}] /2.
l

Because Tnottoosmall, T > E [max{wi}] /2.
l

T is a balanced threshold (not formal definition yet).

Multiple Choice Prophet Inequalities

We just saw:
* Simple description of optimal stopping rule.
* Tight competitive analysis, also achieved by uniform threshold.

Rest of talk: What if multiple choices?
Offline:
* Secretary i has a weight w; drawn independently from distribution D;.

* Adversary chooses distributions, ordering, and feasibility constraints: which
secretaries can simultaneously hire? (all known to you)

Online:

* Secretaries revealed one at a time. You learn their weight.
 Immediately and irrevocably decide to hire or not.

 H=all hired secretaries. Must maintain H feasible at all times.

Goal: Maximize E[}};. w;] - expected weight of hires.

L Multiple Choice Prophet Inequalities

Examples:

Feasible to hire any k secretaries (k-uniform matroid).

Associate each secretary with an edge in a graph. Feasible to hire any acyclic
subgraph (graphic matroid).

Associate each secretary with a vector in a vector space. Feasible to hire any
linearly independent subset (representable matroid).

Associate each secretary with an edge in a bipartite graph. Feasible to hire any
matching (intersection of two partition matroids).

U[4,5] U[0,9]

State-of-the-art (non-exhaustive)

Feasibility Approximation Guarantee

k-Uniform Algorithm: 1+0(1/Vk) [Alaei 11]. Lower Bound: 1+Q(1/Vk) [Kleinberg 05].
Matroids Algorithm: 2 [Kleinberg-W. 12]. Lower Bound: 2.

Intersection of P Algorithm: 4P-2 [K\W 12].

Matroids Lower Bound: P+1 [KW 12].

Arbitrary Algorithm: O(log n log r) [Rubinstein 16].

Downwards Lower Bound: Q)(log n/log log n) [Babaioff-Immorlica-Kleinberg 07].
Closed n = #elements, r = size of largest feasible set.

Independentset Algorithm: O(p?log n) [Gobel-Hoefer-Kesselheim-Schleiden-Vocking 14].
in Graph Lower Bound: Q(log n/log?(log n)) [GHKSV 14].
p = “inductiveindependence number” of graph.

Polymatroids Algorithm: 2 [Dutting-Kleinberg 15]. Lower Bound: 2.

Matroid: S, T feasible, |S|>|T| = 3i € S,T U {i} feasible. Downwards closed.
Think: feasible = linearly independent in a vector space.

Matroid Intersection: 3 P matroids M, ..., Mp, S feasible < S feasible in each M;.
Bipartite matchings = intersection 2 matroids. 3D matchings = 3 matroids.

Rest of Talk — Balanced Thresholds

Goal: Introduce concept of “balanced thresholds” via:

* Formal definition.

e 2-approximation for k-uniform [Chawla-Hartline-Malec-Sivan 10].
e 2-approximation for matroids (partial analysis).

Recall high level idea:
* Want thresholds big enough so that thresholds themselves contribute high weight.
 Want thresholds small enough so that expected surplus still high.

Balanced Thresholds — Cost and Remainder

Notation: OPT(wy, ..., w,;) = max-weight feasible set.
* Willdrop (wy, ..., wy,), just remember that OPT depends on weights.

Definition: Remainder(H,w4, ..., w,,) = argmax {DiesWi }
SCOPT,SUH feasible

 “Best subset of OPT that could have added to H.”

Definition: Cost(H,w, ...,w,) = OPT — Remainder(H).
 “What we lost from OPT by accepting H.”

* Will abuse notation. Use OPT, Remainder, Cost to refer to these sets. As well as
their weights.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w,, ...,w,,) = argmax {DiesWi }-
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

Example: Sets of size 1 feasible. OPT = {Mewtwo}.
Remainder({Charmander}) = @. Cost({Charmander}) = {Mewtwo}.
Remainder(®) = {Mewtwo}. Cost(®) = @.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

Example: Sets of size 2 feasible. OPT = {Mewtwo, Pikachuj.

Remainder({Charmander}) = {Mewtwo}. Cost({Charmander}) = {Pikachu}.
Remainder(®) = {Mewtwo, Pikachu}. Cost(®) = @.

Remainder({Bulbasaur, Squirtle}) = @. Cost({Bulbasaur, Squirtle}) = {Mewtwo, Pikachu}.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w,, ...,w,,) = argmax {DiesWi }-
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

Example: Sets of size k feasible. OPT = top k elements.
Remainder(H) =top k-|H| elements.
Cost(H) = lowest |H| elements of top k.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

OPT ={e, d, c}.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

OPT ={e, d, c}.
Remainder({a}) ={e,c}. Cost({a}) = d.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

OPT ={e, d, c}.
Remainder({a}) ={e,c}. Cost({a}) = d.
Remainder({e}) = {d,c}. Cost({e}) =e.

L Balanced Thresholds — Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

OPT ={e, d, c}.

Remainder({a}) ={e,c}. Cost({a}) = d.
Remainder({e}) = {d,c}. Cost({e}) =e.
Remainder({a,b}) = {e}. Cost({a,b}) = {c,d}.

Balanced Thresholds

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

 “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).
 “What we lost from OPT by accepting H.”

Definition: A thresholding algorithm defines thresholds T;(wy, ..., w;_1), accepts i iff
w; > T; and feasible to hire i.

Will just write T;, but remember can depend on wy, ..., w;_;.

Definition: A thresholding algorithm has a-balanced thresholds if whenever it accepts
set H when the weights are wy, ..., w,,, we have:

* Thresholds nottoo small: };., T; = iE[Cost(H, Wy, .., W)].
 Thresholds nottoo big: Y., T; < (1 — %) E[Remainder(H, Wy, ..., w,)], for all V

disjoint from H such that H U I/ is feasible.

 Wy,..,w, denote fresh samples from Dy, ..., D,,.

L Expected Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

Example: Sets of size 1 feasible. E[OPT] = 5/6.
E[Remainder({Charmander})] = 0. E[Cost({Charmander})] = 5/6.
E[Remainder(®)]= 5/6. E[Cost(®)] = O.

U[0,1] U[0,1] U[0,1]

L Expected Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

Example: Sets of size 2 feasible. E[OPT] =5/6+2/3 = 3/2.
E[Remainder({Charmander})] = 5/6. E[Cost({Charmander})] = 2/3.
E[Remainder(@)] = 3/2. E[Cost(®D)] = 0.

E[Remainder({Bulbasaur, Squirtle})] = 0. E[Cost({Bulbasaur, Squirtle})] = 3/2.

U[0,1] U[0,1]

L Expected Cost and Remainder

Definition: Remainder(H,w;, ..., w,,) = argmax {Dies Wil
SCOPT,SUH feasible

e “Best subset of OPT that could have added to H.”
Definition: Cost(H,wy, ..., w,;) = OPT — Remainder(H).

 “What we lost from OPT by accepting H.”

Example: Sets of size k feasible. OPT = top k elements.
E[Remainder(H)] = Expected weight of top k-|H| elements.
E[Cost(H)] = Expected weight of lowest |H| elements of top k.

U[0,1] U[0,1] U[0,1]

L Balanced Thresholds Imply Prophet Inequalities

Definition: A thresholding algorithm has a-balanced thresholds if whenever it accepts
set H when the weights are wy, ..., w,;, we have:

* Thresholds nottoo small: },; ., T; = %E[Cost(H, Wy, e, W) .

* Thresholds not too big: };;c, T; < (1 — %) E[Remainder(H,wy, ..., w,)], for all V
disjoint from H such that H U I/ is feasible.

Theorem [KW 12]: If a thresholding algorithm has a-balanced thresholds, then it
guarantees E[ALG] = iE[OPT].

Proof overview: Write E[OPT] = E[Cost(H, Wy, ..., W,) + Remainder(H,w, ..., w,,)].
Just partitions OPT(Wy, ..., W,) into Cost(H) and Remainder(H).

* “Not too small” guarantees E[Y;cy T;] = 1/a E[Cost(H, Wy, ..., Wy,)].

* “Not too big” guarantees E[Y;cy,(w; — T;)] = 1/a E[Remainder(H, Wy, ..., W,)].

« Summing yields E[Y,;c; w;] = E[OPT]/a.

L Proving Thresholds are Balanced: 1-uniform

Definition: A thresholding algorithm has a-balanced thresholds if whenever it accepts
set H when the weights are wy, ..., w,;, we have:

* Thresholds nottoo small: },; ., T; = %E[Cost(H, Wy, e, W) .

* Thresholds not too big: };;c, T; < (1 — %) E[Remainder(H,wy, ..., w,)], for all V
disjoint from H such that H U I/ is feasible.

Theorem [KW 12]: If a thresholding algorithm has a-balanced thresholds, then it
guarantees E[ALG] = iE[OPT].

Observation: For 1-uniform matroids, T = E [max{wi}] /2 are 2-balanced.
l

* Any hired element i has E[Cost(i)] = 2T, so not too small.
* If nothing accepted, all possible V have |V| =1, E[Remainder(®)] = 2T.
* |f something accepted, possible V = @, constraint becomes 0 < 0. So not too big.

L Proving Thresholds are Balanced: k-uniform

Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

« setT; = £

, for alli.

Proof:
* What is Remainder(H)? Highest weight k-|H| elements.

What is Cost(H)? |H| lowest weight items in the top k.

« So E[Remainder(H)] > (k_lel

. E[Cost(H)] < %E[OPT].

) E[OPT].

« =Y. 47T = lz—PQE[OPT] > E[Cost(H)]/2, not too small.

k;LHl E[OPT] < E[Remainder(H)]/2, not too big.

* 2 ey i S

L Proving Adaptive Thresholds are Balanced: k-uniform

Theorem [(modified) CHMS 10]: 2-balanced thresholds exist for k-uniform matroids.

e SetT; = E[OPT" |Hj_ 1|]

, for alli. H;_; = hired secretaries from {1, ...,i — 1}.

OPT, = expected weight of cth highest element.

Alternative Proof:
 What is Remainder(H)? Highest weight k-|H| elements.
What is Cost(H)? |H| lowest weight items in the top k.

* So E|Remainder(H)]| = Zf;lHlE[OPTC].
« E[Cost(H)] = XY E[0PT,_].

* = XienT; ZlHl “1E[OPT,_.] /2 = E[Cost(H)]/2, not too small.
« Yy Ti < (k—|H]) - E|OPT,_] /2 < E[Remainder(H)]/2, not too big.

Proving Thresholds are Balanced: Matroids

Theorem [K\W 12]: 2-balanced thresholds exist for all matroids.

E[Cost(H;—1U{i},W1,...Wn)| —E[COSt(H;_1,W1,...Wn)]
2

e SetT; = for all i.

Omit proof. Intuition for thresholds — Imagine two worlds:

s A: All weights redrawn
fresh, game restarted,
' but already hired
/' secretaries H;_.

B: All weights redrawn
| fresh, game restarted,
~but already hired

' secretaries H;_; U {i}.

e Clearly, World A is better.
* If youare a prophet, by exactly E[Cost(H;_; U {i}) — Cost(H;_,)].

* Soin order to prefer World B, w; should be Q(E[Cost(H;_; U {i}) — Cost(H;_)]).
* Dividing by 2 just makes the math work out.

Recap - Balanced Thresholds

* Not too small = Thresholds themselves cover part of expected OPT.
* Not too big = Expected surplus above thresholds still large.

Another kind of balanced thresholds, by probability [Samuel-Cahn 86, CHMS 10]:
* Not too small = unlikely to block any element.

* Not too big = accept enough elements in expectation.

* Related to “contention resolution schemes” [Feldman-Svensson-Zenklusen 16].

Not all proofs follow this methodology, but it’s a good way to think about the
“challenge” of prophet inequalities.

L Related Results/Problems

What if you get to choose the order?

* Improve to e/(e-1) approximation for all matroids (tight) [Yan 11].

Algorithm:

* Compute q; = Pr[i € OPT] for alli.

» Set T; such that Pr{w; > T;] = gq;.

e Sortiin decreasing order of T;.

* Hireeveryiwithw; > T;, (and feasible to hirei).

Proof Overview: Uses “Correlation Gap Inequalities.”

Related Results/Problems

What if you have limited access to D;?

« 1+ 0(1/Vk) for k-uniform with 1 sample from each [Azar-Kleinberg-W. 14].
* Open: What is the best ratio for 1-uniform with 1 sample?

e Set T = highest sample gets <4-approximation.
* Open: O(1) approximation for matroids with 1 sample from each?

What if an adversary adaptively chooses the ordering?
* Most results hold even if adversary “is a prophet” (knows weights).
* Exception: [KW 12], holds if adversary “is a gambler” (knows what you know).

Applications to Bayesian Mechanism Design

* Good prophet inequalities against appropriate adversaries immediately imply good
mechanisms in certain Bayesian settings [CHMS 10].

* See Anna’s talk on Friday for more details!

Related Results/Problems

Thanks for listening!

