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High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

6, €carg min{ L(6;Z7) +X . RO }.
~—~— 0 —— ~——
Estimate Loss function Regularizer
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High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

0., €argmin { £6;27) +x RO }.
~— 0eQ ——— ——
Estimate Loss function Regularizer

Past years have witnessed an explosion of results (compressed sensing,
covariance estimation, block-sparsity, graphical models, matrix completion...)

Question: J

Is there a common set of underlying principles?
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Last lecture (+): Sparse regression

Set-up: Observe (y;,z;) pairs for i = 1,2,...,n, where
yi ~P(- [ (67, 23)),

where 6 € R? is sparse.

X *
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Last lecture (+): Sparse regression

Set-up: Observe (y;,z;) pairs for i = 1,2,...,n, where
yi ~P(- [ (67, 23)),

where 6 € R? is sparse.
X *
y 0
I ( S)
n ~ P
SC
Estimator: /;-regularized likelihood

i=1

— ) 1 &
S argn%n{ - EZlog]P’(y,v | (2, 6)) +>‘n||0||1}~



Last lecture (+): Sparse regression
y -X o
( S)
n ~ P
|SC

Example: Logistic regression for binary responses y; € {0,1}:

~ 1 <&
. 4 (i, )\ _ o) (.
0 € argmem{n ;:1 {log(1+e ) — yilw, 0)} + )m||9||1}.



Example: Block sparsity and group Lasso
Y X o* W
n = + n
d

@ Matrix ©* partitioned into non-zero rows S and zero rows S°¢
@ Various applications: multiple-view imaging, gene array prediction,
graphical model fitting.



Example: Block sparsity and group Lasso
Y X o* W
n = + n
d

@ Matrix ©* partitioned into non-zero rows S and zero rows S°¢
@ Various applications: multiple-view imaging, gene array prediction,
graphical model fitting.

@ Row-wise £1/(-norm [|0]12 = Y7, [16;]



Example: Block sparsity and group Lasso
Y X o* W
n = + n
d

@ Row-wise ¢1/{e-norm ||O]1,2 = Z?Zl 19;1l2

@ Weighted r-group Lasso: (Wright et al., 2005; Tropp et al., 2006; Yuan & Lin,
2006)

10%(lg.» =Y wgllOllr  for some r & [2,00].
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Example: Block sparsity and group Lasso
Y X o* W
n = + n
d

@ Row-wise ¢1/{e-norm ||O]1,2 = Z?Zl 19;1l2

@ Weighted r-group Lasso: (Wright et al., 2005; Tropp et al., 2006; Yuan & Lin,
2006)

10%(lg.» =Y wgllOllr  for some r & [2,00].
geg

@ Extensions to { hierarchical, graph-based } groups
(e.g., Zhao et al., 2006; Bach et al., 2009; Baraniuk et al., 2009)



Example: Structured (inverse) covariance matrices

Zero pattern of inverse covariance

1 2 3 4 5 4
Set-up: Samples from random vector with sparse covariance ¥ or sparse

inverse covariance ©* € R4x4,

Estimator (for inverse covariance)

O € argmm{ Zx z7, —log det(©) + )‘"Z (‘)7k|}

J#k

Some past work: Yuan & Lin, 2006; d’Asprémont et al., 2007; Bickel & Levina, 2007; El
Karoui, 2007; d’Aspremont et al., 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman
et al., 2008; Lam & Fan, 2008; Ravikumar et al., 2008; Zhou, Cai & Huang, 2009; Guo et



Example: Low-rank matrix approximation
U D VT

Set-up: Matrix ©* € R4 X4 with rank r < min{ds, d>}.

@*




Example: Low-rank matrix approximation

VT

Set-up: Matrix ©* € R4 X4 with rank r < min{ds, d>}.

@*

Least-squares matrix regression: Given observations y; = (X;, ©*)) + w;,
solve:
min{dl,dg}

6 < argmin ! ; CC TS SRO)

Jj=1

Some past work: Fazel, 2001; Srebro et al., 2004; Recht, Fazel & Parillo, 2007; Bach, 2008;
Candes & Recht, 2008; Keshavan et al., 2009; Rohde & Tsybakov, 2010; Recht, 2009;
Negahban & W., 2010, Koltchinski et al.. 2011



Application: Collaborative filtering

1

Universe of d; individuals and ds films Observe n < dads ratings

(e.g., Srebro, Alon & Jaakkola, 2004; Candes & Recht, 2008)



Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

Y U D vt
=~ " --
U [ ]
] ]

Y = e + r-
~—~— ~—~
Low-rank component Sparse component
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Low-rank component Sparse component

@ Initially proposed by Chandrasekaran, Sanghavi, Parillo & Willsky, 2009
@ Various applications:

» robust collaborative filtering
» robust PCA
» graphical model selection with hidden variables




Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

Y U D vt
=~ " --
U [ ]
] ]

Y = e + r-
~—~— ~—~
Low-rank component Sparse component

@ Initially proposed by Chandrasekaran, Sanghavi, Parillo & Willsky, 2009
@ Various applications:
» robust collaborative filtering
» robust PCA
» graphical model selection with hidden variables
@ subsequent work: Candes et al., 2010; Xu et al., 2010 Hsu et al., 2010;
Agarwal et al., 2011




Example: Discrete Markov random fields

Ok (x5, k)

9j($j)ﬂi v Or(@k)

Set-up: Samples from discrete MRF(e.g., Ising or Potts model):

Po(x1,...,2q ): — exp{Z@ xj) Z Oik(zj, 1) }-

JEV (3,k)EE
Estimator: Given empirical marginal distributions {i;, [k }:

6 e argmm{ZEM @)+ Y Bl Jk(xJ,M]—logZ<0>+AnZ|ejk|F}
(:

sev jik) (j.k)

Some past work: Spirtes et al., 2001; Abbeel et al., 2005; Csiszar & Telata, 2005;
Ravikumar et al, 2007; Schneidman et al., 2007; Santhanam & Wainwright, 2008; Sly et al.,
2008: Montanari and Pereira. 2009: Anandkumar et al.. 2010



Non-parametric problems: Sparse additive models

@ non-parametric regression: severe curse of dimensionality!

@ many structured classes of non-parametric models are possible:
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» multiple-index models f*(x) = g(B*x)



Non-parametric problems: Sparse additive models
@ non-parametric regression: severe curse of dimensionality!

@ many structured classes of non-parametric models are possible:
» additive models f*(z) = Zj:1 fi(zy) (Stone, 1985)
» multiple-index models f*(x) = g(B*x)

» sparse additive models:

d
fi(z) = Z 17 (z5) for unknown subset S
jeSs
(Lin & Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and
Yuan, 2008; Raskutti et al., 2010)



Non-parametric problems: Sparse additive models

Sparse additive models:
a
x) = Z [i(z;) for unknown subset S
jES
(Lin & Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and Yuan, 2008

Raskutti, W., & Yu, 2010)
Noisy observations y; = f*(x;) +w; for i =1,...,n.

Estimator:

~ 1 &
fear min {f Y
gf:Z?:1fj n;(

d
i— > Fi@i)* + An ZHL |H+unZ||fj In }
j=1

15111, 1l




Example: Sparse principal components analysis

= +

» z27T D

Set-up: Covariance matrix ¥ = ZZ7 4 D, where leading eigenspace Z has
sparse columns.

Estimator:
6 < argugn{ (0. 5) + 2,3 10,4/}
(4,k)
Some past work: Johnstone, 2001; Joliffe et al., 2003; Johnstone & Lu, 2004; Zou et al.,

2004; d’Asprémont et al., 2007; Johnstone & Paul, 2008; Amini & Wainwright, 2008; Ma,
2012; Berthet & Rigollet, 2012; Nadler et al., 2012



Motivation and roadmap

@ many results on different high-dimensional models

@ all based on estimators of the type:

0\, €arg min{ L£(6;Z7) +X\, R(O) }.
~— 0eN ——— N

Estimate Loss function Regularizer
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Motivation and roadmap

@ many results on different high-dimensional models

@ all based on estimators of the type:

0\, €arg min{ L£(6;Z7) +X\, R(O) }.
~— 0eN ——— N

Estimate Loss function Regularizer

Is there a common set of underlying principles?

Question: J

Answer: Yes, two essential ingredients.

(1) Restricted strong convexity of loss function

(1) Decomposability of the regularizer

Martin Wainwright (UC Berkeley) High-dimensional statistics



(1) Classical role of curvature in statistics

@ Curvature controls difficulty of estimation:

oL

High curvature:

,,,,,,,,,,,,,,,

)

Canonical example:

easy to estimate

0 0

(b) Low curvature: harder

Log likelihood, Fisher information matrix and Cramér-Rao bound.




(1) Classical role of curvature in statistics

@ Curvature controls difficulty of estimation:

0 0 0 0
High curvature: easy to estimate (b) Low curvature: harder

Canonical example:

Log likelihood, Fisher information matrix and Cramér-Rao bound.

© Formalized by lower bound on Taylor series error &, (A)

L0* + A) — L(6%) — (VLO"), A) > ~*|Al|*>  for all A around 6*.

En(AD)




High dimensions: no strong convexity!

When d > n, the Hessian V2£(0; Z}) has nullspace of dimension d — n.



Restricted strong convexity

Definition
Loss function £,, satisfies restricted strong convexity (RSC) with respect to
regularizer R if

Ln(0% +A) — {ﬁn(e*) +(VL, (%), A)} > el A2 ~R2RY(A)

Lower curvature Tolerance

Taylor error &,(A)

for all A in a suitable neighborhood of 6*.
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Restricted strong convexity

Definition
Loss function £,, satisfies restricted strong convexity (RSC) with respect to
regularizer R if

L,(07+A) — {E,,,(e*) + (VL (6%), A)} > el A2 — 2R2(A)

Lower curvature Tolerance

Taylor error &,(A)

for all A in a suitable neighborhood of 6*.

@ ordinary strong convexity:

» special case with tolerance 7, = 0
» does not hold for most loss functions when d > n

@ RSC enforces a lower bound on curvature, but only when R?(A) < ||A|?

@ a function satisfying RSC can actually be non-convex



Example: RSC = RE for least-squares

@ for least-squares loss £(0) = 5-|ly — X0|3:

En(A) =Lp(0"+A) — {En(é’*) —(VL,(07), A>} = %HXAH%.
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Example: RSC = RE for least-squares

@ for least-squares loss £(0) = 5-|ly — X0|3:

En(A) =Lp(0"+A) — {cn(e*) —(VL,(07), A>} = %HXAH%.

@ Restricted eigenvalue (RE) condition  (van de Geer, 2007; Bickel et al., 2009):

XA|?
AL > 1Al for all ase s < s
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Example: RSC = RE for least-squares

@ for least-squares loss £(0) = 5-|ly — X0|3:

En(A) =Lp(0"+A) — {cn(e*) —(VL,(07), A>} = %HXAH%.

@ Restricted eigenvalue (RE) condition  (van de Geer, 2007; Bickel et al., 2009):

IX A3 2 d i
o 2 VIIAIE for all A€ RY with [|A]L < 2v/5]Al.

Martin Wainwright (UC Berkeley) High-dimensional statistics



Example: Generalized linear models

A broad class of models for relationship between response y € X and
predictors = € R%.
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Example: Generalized linear models

A broad class of models for relationship between response y € X and
predictors = € R%.

Based on families of conditional distributions:

z, 07) — ((x, 9*>)}
c(o) '

Po(y | z,0%) x exp{y<

Examples:
@ Linear Gaussian model: ®(¢) = t?/2 and c(0) = o>
@ Binary response data y € {0, 1}, Bernouilli model: ®(t) = log(1 + €*).
@ Multinomial responses (e.g., ratings)

@ Poisson models (count-valued data): ®(t) = e'.



GLM-based restricted strong convexity

@ let R be norm-based regularizer dominating the ¢s-norm (e.g., {1,
group-sparse, nuclear etc.)
@ let R* be the associated dual norm

@ covariate-Rademacher complexity of norm ball

n
sup (u, ,E €ii) = R* g 5imi)
nia

R(u)<1

where {e;}7_, are i.i.d sign variables



GLM-based restricted strong convexity
@ let R be norm-based regularizer dominating the ¢s-norm (e.g., {1,

group-sparse, nuclear etc.)
@ let R* be the associated dual norm
@ covariate-Rademacher complexity of norm ball

n
el — R* o
R?B)pq u, Z €5 i) ; ezml)

where {e;}7_, are i.i.d sign variables

Theorem (Negahban et al., 2010; W., 2012)

Let the covariates {x;}7, be sampled i.i.d. Then

En(D) > £(A) —e {t R(A)}
—— ~——
Pop. Taylor error

Emp. Taylor error

with probability at least 1 — P[R*(+ Y1 | &;;) > t]

for all |All2 <1




(1) Decomposable regularizers

MJ_

Subspace M: Approximation to model parameters
Complementary subspace M*: Undesirable deviations.
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(1) Decomposable regularizers

MJ_

Subspace M: Approximation to model parameters
Complementary subspace M*: Undesirable deviations.

Regularizer R decomposes across (M, M*) if
R(a+ B) = R(a) + R(5) for all « € M, and 3 € M= .
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(1) Decomposable regularizers

MJ_

Regularizer R decomposes across (M, M) if
R(a+B) =R(a)+R(B)  forall a € M, and 3 € M*.

e (weighted) £1-norms e nuclear norm

Includes:
® group-sparse norms e sums of decomposable norms

Martin Wainwright (UC Berkeley) High-dimensional statistics



(1) Decomposable regularizers

MJ_

Regularizer R decomposes across (M, M=) if

R(a+ B) = R(a) + R(5) for all « € M, and 3 € M*.

Related definitions:

Geometric decomposability:  Candes & Recht, 2012; Chandrasekaran et al., 20
Weak decomposability: van de Geer, 2012

Martin Wainwright (UC Berkeley) High-dimensional statistics



Significance of decomposability

R(IIm(A)) Ry (A))

R(IIy(A))

(a) C for exact model (cone) (b) C for approximate model (star-shaped)

Lemma

Suppose that L is convex, and R is decomposable w.r.t. M. Then as long as
An > 2R* <V£(9*; Zf”)), the error vector A = §>\n — 6* belongs to

C(M, M;0%) := {A € Q | R(ILp(A)) < 3R(IL(A)) + 4R(Ipex (67))}.




Example: Sparse vectors and /;-regularization
o for each subset S C {1,...,d}, define subspace pairs
M(S) = {0eR?| Os. =0},
ME(S) = {#eR!| s =0} = M(S).

@ decomposability of £;-norm:

165 +6sc||, = [l6s]1+8sc]1 for all 65 € M(S) and 8. € M*(S).

@ natural extension to group Lasso:
» collection of groups G; that partition {1,...,d}
» group norm

10llg, =Y l16g;lla  for some a € [1,00].
J



Example: Low-rank matrices and nuclear norm
@ for each pair of r-dimensional subspaces U C R4 and V C Rée;
MU, V) = {©eR"*® | 1ow(0) CV, col(®) CU}
MU, V) = {T eR"*% | row(T) C V-, col(T) C UL},
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@ for each pair of r-dimensional subspaces U C R4 and V C Rée;
MU, V) = {©eR"*® | 1ow(0) CV, col(®) CU}
MU, V) = {T eR"*% | row(T) C V-, col(T) C UL},
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Example: Low-rank matrices and nuclear norm
@ for each pair of r-dimensional subspaces U C R4 and V C Rée;
MU, V) = {©eR"*® | 1ow(0) CV, col(®) CU}
MU, V) = {T eR"*% | row(T) C V-, col(T) C UL},

(a) © € M (b) T € M+ (c) L eM

@ by construction, ©TT =0 for all © € M(U,V) and T € /K/IVJ‘(U, V)

min{dl,dg} 0_‘7 (9).

@ decomposability of nuclear norm [|©[l; = > 77

1©+T|, = [|©f: + [Ty  forall ® € M(U,V) and T € ML(U, V).



Main theorem

Estimator

-~

by, < in {£,,(6; Z7") + \eR(6)},
A arg min { £, (0; Z1') + M R(6) }

n

where £ satisfies RSC(v, 7) w.r.t regularizer R.



Main theorem

Estimator

-~

0

n

e in {£,(0: 27) + A\, R(O)},
arg min { £, (0; Z1') + M R(6) }
where £ satisfies RSC(v, 7) w.r.t regularizer R.

Theorem (Negahban, Ravikumar, W., & Yu, 2012)

Suppose that 0* € M, and V?(M)72 < 1. Then for any regularization
parameter \, > 2R* (VL(G*; Zf)), any solution 0y, satisfies

~ N 1
1Bs. = "1 3 5175 X M),
Quantities that control rates:
@ curvature in RSC: v,
@ tolerance in RSC: 7
@ dual norm of regularizer: R*(v) := sup (v, u).
R(w)<1

@ optimal subspace const.: U(M) = sup R(6)/||0]
e M\{0}



Main theorem

Estimator

-~

0

n

€ arg ;Ielgé {£,(0;Z7) + \R(0) },

Theorem (Oracle version)

With A, > 2R*(VL(0*; Z1)), any solution 8 satisfies

5 o* 2 2 (/\{11)2 \112 M )‘;7 R(II o*
0x, — ||N7() + T(MJ-())
)
—_——— —_—
Estimation error Approzimation error
where N, = max{\,, T}.
Quantities that control rates:
@ curvature in RSC: v,
@ tolerance in RSC: 7
@ dual norm of regularizer: R*(v) := sup (v, u).

R(u)<1

@ optimal subspace const.: U(M) = sup R(6)/||¢]
9eM\{0}



Example: Group-structured regularizers

Many applications exhibit sparsity with more structure.....

@c ) @

Go Gs

o divide index set {1,2,...,d} into groups G = {G1,Ga,...,G|g|}

@ for parameters v; € [1,00], define block-norm

|
16116 == > Gll6c, Il

t=1

@ group/block Lasso program

~

1
0y, € argmin {—|ly — X0[3 + \,||0 :
An geeRd{Qn”y H2 n” ||u,g}
o different versions studied by various authors
(Wright et al., 2005; Tropp et al., 2006; Yuan & Li, 2006; Baraniuk, 2008; Obozinski et

al., 2008; Zhao et al., 2008; Bach et al., 2009; Lounici et al., 2009)



Convergence rates for general group Lasso

Corollary

Say ©* is supported on group subset Sg, and X satisfies RSC. Then for
regularization parameter

XTw
Ap > 2 max || . where &+ =1— L,
t=1,2,...,|G| n v Vg 2
any solution t/9\,\n satisfies
0 . 2 16110
[10x, — 0%]l2 < — ¥, (Sg) \n, where U, (Sg) = sup ol
Ve

0eM(Sg)\{0}




Convergence rates for general group Lasso

Corollary

Say ©* is supported on group subset Sg, and X satisfies RSC. Then for
regularization parameter

XTw
An > 2  max || v H s where & =1— 1,
t=1,2,...,|G| n i Vi vt
any solution t/9\,\n satisfies
~ 2 0
18y, = 0%[l2 < =W, (Sg) \n,  where ¥, (Sg) =  sup  Itlee
e 0eM(Sg)\{0}

Some special cases with m = max. group size

© (1 /{5 regularization: Group norm with v = 2

~ . Sglm  |Sg|log|G
1B, — 0713 = oo [Salloslel,

n



Convergence rates for general group Lasso

Corollary

Say ©* is supported on group subset Sg, and X satisfies RSC. Then for
regularization parameter

XTw
An > 2  max || v H s where & =1— 1,
t=1,2,...,|G| n i Vi vt
any solution t/9\,\n satisfies
~ 2 0
18y, = 0%[l2 < =W, (Sg) \n,  where ¥, (Sg) =  sup  Itlee
e 0eM(Sg)\{0}

Some special cases with m = max. group size

O {1/l regularization: group norm with v = co

~ . Sglm? Sg| log |G
1B, —0°1 = oS 5ol e dl)



Is adaptive estimation possible?

Consider a group-sparse problem with:
@ |G| groups in total
@ each of size m
@ |Sgl-active groups
o T active coefficients per group

Group Lasso will achieve

16— 0713 3

|Sg|m n |Sg|log |G|
n n '

Lasso will achieve

~ T1



Is adaptive estimation possible?

Consider a group-sparse problem with:
@ |G| groups in total
@ each of size m
@ |Sgl-active groups
o T active coefficients per group

Group Lasso will achieve

n
Lasso will achieve

~ T1

Natural question:

Can we design an estimator that optimally adapts to the degree of
elementwise versus group sparsity?




Answer: Overlap group Lasso

Represent ©* as a sum of row-sparse and element-wise sparse matrices.
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Answer: Overlap group Lasso

Represent ©* as a sum of row-sparse and element-wise sparse matrices.

Define new norm on matrix space:
R.,(©)= inf {w Q + |IT" }
( ) o IQ r ” ”1,2 ” ”1

Special case of the overlap group Lasso: (Obozinski et al., 2008; Jalali et al., 2011)



Example: Adaptivity with overlap group Lasso

Consider regularizer

Ro(©) = inf {wlz+ Tl -

with
@ |G| is number of groups
W= \/ﬁ+— \,10g|g|’ @ m is max. group size
Vlogd

@ d is number of predictors.



Example: Adaptivity with overlap group Lasso

Consider regularizer

Ro(©) = inf {wlz+ Tl -

with
@ |G| is number of groups
w=+—Y_°= @ m is max. group size

@ d is number of predictors.

Corollary

Under RSC condition on loss function, suppose that ©* can be decomposed as

a sum of an |S.,|-elementwise sparse matriz and an |Sg|-groupwise sparse

matriz (disjointly). Then for A, = 4o loﬁd, any optimal solution satisfies

(w.h.p.)

Sen
st

5o < g2 {1Selm  ISelloglgly |
18- 3 o {20 4+ b+

n




Example: Low-rank matrices and nuclear norm

@ low-rank matrix ©* € R%*% that is exactly (or approximately) low-rank

@ noisy/partial observations of the form
yi = (X5 O 4w, i=1,...,n, w; iid. noise
@ estimate by solving semi-definite program (SDP):

n min{d,d>}

O e argm@in{iZ(yi (X O A D ’)’“j(@)}

i=1 j=1

e



Example: Low-rank matrices and nuclear norm

@ low-rank matrix ©* € R%*% that is exactly (or approximately) low-rank

@ noisy/partial observations of the form
yi = (X5 O 4w, i=1,...,n, w; iid. noise

@ estimate by solving semi-definite program (SDP):

n min{d,d>}
~ . 1
6 cargmn{ 1 Y- (X )P+ A > (0))
i=1 j=1
el

@ various applications:

» matrix compressed sensing
matrix completion
rank-reduced multivariate regression (multi-task learning)
time-series modeling (vector autoregressions)
phase-retrieval problems

vy vy VvVYy



Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: X; are random
sub-Gaussian projections).

For parameter ¢ € [0, 1], set of near low-rank matrices:
min{dy,d2}
By(R,) = {07 € ROXE | Y [0,(@7)7 < R,}.

j=1



Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: X; are random
sub-Gaussian projections).

For parameter ¢ € [0, 1], set of near low-rank matrices:

min{dy,d2}
B(R,) = {07 € R | 3" [0,(07)[7 < R,}.
j=1
Corollary (Negahban & W., 2011)
With regularization parameter \,, > 160( \/% = o/ ‘f—‘f ), we have w.h.p.
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Rates for (near) low-rank estimation

For parameter g € [0, 1], set of near low-rank matrices:

min{dy,d2}
By(Rq) = {@* S | Z loj (@) < Rq}-

j=1

Corollary (Negahban & W., 2011)

With regularization parameter \, > 160( \/ % + 4/ %2 ), we have w.h.p.

P . R
B-elp < wl(
Y/

n

0’2 (d1 —‘rdg))l_g

@ for a rank r matrix M
1Ml = "o (M) < Vi | Y o2(M) = Vr|M|r
Jj=1 Jj=1

n

@ solve nuclear norm regularized program with A, > 2[| 37" w; X ||



Matrix completion

Random operator X : R¥*? — R™ with
[‘x(g*)]i = d@:(i)b(i)

where (a(i),b(7)) is a matrix index sampled uniformly at random.



Matrix completion

Random operator X : R¥*? — R™ with
[‘x(g*)]i = d@:(i)b(i)

where (a(i),b(7)) is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:
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Matrix completion

Random operator X : R¥*? — R™ with
[‘x(g*)]i = d@Z(i)b(i)

where (a(i),b(7)) is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:

10 0 0
000 0
0 =l = [0 00 0
: 0
000 0

Exact recovery based on eigen-incoherence involving leverage scores
(e.g., Recht & Candes, 2008; Gross, 2009)



A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

100 0
00 0 0
O =T* +derel =T +4(0 0 0 0
Do 0
00 0 0

where I'* is rank 7 — 1, all eigenectors perpendicular to e;.

Excluded by eigen-incoherence for all § > 0.
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A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

100 0
00 0 0
O =T* +dejel =1 +4|0 0 0 0
Do 0
00 0 0

where I'* is rank 7 — 1, all eigenectors perpendicular to e;.
Excluded by eigen-incoherence for all § > 0.

Control by spikiness ratio:
Lo Al
Iexls

Spikiness constraints used in various papers: Oh et al., 2009; Negahban & W.
2010, Koltchinski et al., 2011.
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Uniform law for matrix completion
Let X, : R¥*? — R” be rescaled matrix completion random operator
(X0(0))i = d Og(iy by where index (a(i), b(i)) from uniform distribution.
Define family of zero-mean random variables:

xa(0)]3

Z,(©) : 2 _Je|%,  for © c R4,



Uniform law for matrix completion

Let X, : R¥*4 5 R™ be rescaled matrix completion random operator
(X0(0))i = d Og(iy by where index (a(i), b(i)) from uniform distribution.

Define family of zero-mean random variables:

X
Z,(0) == w [el%,  for © € Rixd,

Theorem (Negahban & W., 2010)

For random matriz completion operator X,,, there are universal positive
constants (c1,ca) such that

Zn(0) dlogd dlogd\>
sup 200 < ol 1014/ LEL + (a6
ocrixd\{o} OlI2 n
“low-rank term” “spikiness” term

with probability at least 1 — exp(—dlogd).




Some papers (www.eecs.berkeley.edu/ wainwrig)
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© G. Raskutti, M. J. Wainwright and B. Yu (2011) Minimax rates for linear
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@ G. Raskutti, M. J. Wainwright and B. Yu (2010). Restricted nullspace
and eigenvalue properties for correlated Gaussian designs. Journal of
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