Algorithmic High-Dimensional Geometry 1

Alex Andoni

(Microsoft Research SVC)

Prism of nearest neighbor search (NNS)

Nearest Neighbor Search (NNS)

- ▶ Preprocess: a set *D* of points
- Query: given a query point q, report a point $p \in D$ with the smallest distance to q

Motivation

Generic setup:

- Points model objects (e.g. images)
- Distance models (dis)similarity measure

Application areas:

- machine learning: k-NN rule
- speech/image/video/music recognition, vector quantization, bioinformatics, etc...

Distance can be:

Hamming, Euclidean,
 edit distance, Earth-mover distance, etc...

Primitive for other problems:

find the similar pairs in a set D, clustering...

2D case

▶ Compute Voronoi diagram

▶ Given query q, perform point location

Performance:

▶ Space: O(n)

• Query time: $O(\log n)$

High-dimensional case

▶ All exact algorithms degrade rapidly with the dimension *d*

Algorithm	Query time	Space
Full indexing	$O(\log n \cdot d)$	n↑O(d) (Voronoi diagram size)
No indexing – linear scan	$O(n \cdot d)$	$O(n \cdot d)$

Approximate NNS

- c-approximate r-near neighbor: given a new point q, report a point p[X]D s.t. $||p-q|| \le r^{cr}$ if there exists a point at distance $\leq r$
- Randomized: a point p returned with 90% probability

Heuristic for Exact NNS

- r-near neighbor: given a new point q, report a set C with
 - ▶ all points p s.t. $||p-q|| \le r$ (each with 90% probability)
 - may contain some approximate neighbors p^{3} s.t. $||p-q|| \le cr$
 - Can filter out bad answers

Approximation Algorithms for NNS

A vast literature:

milder dependence on dimension

```
[Arya-Mount'93], [Clarkson'94], [Arya-Mount-Netanyahu-Silverman-We'98], [Kleinberg'97], [Har-Peled'02], [Chan'02]...
```

little to no dependence on dimension

```
[Indyk-Motwani'98], [Kushilevitz-Ostrovsky-Rabani'98], [Indyk'98, '01], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06], [A-Indyk'06], ...
```

Dimension Reduction

Motivation

- If high dimension is an issue, reduce it?!
 - "flatten" dimension d into dimension $k \ll d$
- Not possible in general: packing bound
- But can if: for a fixed subset of $\Re \mathcal{I}d$
 - Johnson Lindenstrauss Lemma [JL'84]
- Application: NNS in $\Re \mathcal{I}d$
 - ▶ Trivial scan: $O(n \cdot d)$ query time
 - Reduce to $O(n \cdot k) + T \downarrow dim red$ time if preprocess, where $T \downarrow dim red$ time to reduce dimension of the query point

Dimension Reduction

- ▶ Johnson Lindenstrauss Lemma: there is a randomized linear map $F:\ell \downarrow 2 \uparrow d \rightarrow \ell \downarrow 2 \uparrow k$, $k \ll d$, that preserves distance between two vectors x,y
 - up to $1+\epsilon$ factor:

$$||x-y|| \le ||F(x)-F(y)|| \le (1+\epsilon)\cdot ||x-y||$$

- with $1-e\hat{1}-Ce\hat{1}2\ k$ probability (C some constant)
- Preserves distances among n points for $k=O(\log n / \epsilon 12)$
- Time to apply map: $T\downarrow dim red = O(kd)$

Idea:

▶ Project onto a random subspace of dimension k!

1D embedding

- ▶ How about one dimension (k=1) ?
- Map $f: \ell \downarrow 2 \uparrow d$ W
 - $f(x) = \sum i g \downarrow i \cdot x \downarrow i ,$
 - \blacktriangleright where gi are iid normal (Gaussian) random variable
- Why Gaussian?
 - Stability property: $\sum i g \downarrow i \cdot x \downarrow i$ is distributed as |x| / g, where g is also Gaussian
 - Equivalently: $\langle g \downarrow 1, ..., g \downarrow d \rangle$ is centrally distributed, i.e., has random direction, and projection on random direction depends only on length of x

$$P(a) \cdot P(b) =$$

$$= 1/\sqrt{2\pi} \ e^{\uparrow} - a^{\uparrow} 2/2 \ 1/\sqrt{2\pi} \ e^{\uparrow} - b^{\uparrow} 2/2$$

$$= 1/2\pi \ e^{\uparrow} - (a^{\uparrow} 2 + b^{\uparrow} 2)/2$$

1D embedding

- $Map f(x) = \sum_{i} g \downarrow i \cdot x \downarrow i ,$
 - for any x, $f(x) \sim ||x|| \cdot g$
 - Linear: f(x)-f(y)=f(x-y)
- Want: $|f(x) f(y)| \approx ||x y||$
- Ok to consider z=x-y since f linear
 - $|f(z)|^2 \approx ||z||^2$
- ► Claim: for any x,y $\Re \mathcal{T}d$, we have
 - Expectation: $\mathbb{W}[|f(z)|^2] = ||z||^2$
 - Standard deviation:
 - $| \mathbb{W}[|(f(z)/12)] = O(||z||12)$
- Proof:
 - Expectation = $\mathbb{W}[(f(z))\uparrow 2] = \mathbb{W}[||z||\uparrow 2 \cdot g\uparrow 2]$ = $||z||\uparrow 2$

Full Dimension Reduction

- Just repeat the ID embedding for k times!
 - $F(x) = (g \downarrow 1 \cdot x, g \downarrow 2 \cdot x, \dots g \downarrow k \cdot x) / \sqrt{k} = 1 / \sqrt{k} Gx$
 - where G is $k \times d$ matrix of Gaussian random variables
- Again, want to prove:
 - $||F(z)|| = (1 \pm \epsilon) * ||z||$
 - for fixed z=x-y
 - with probability $1-e\hat{1}-\Omega(\epsilon\hat{1}2 k)$

Concentration

- F(z) is distributed as
 - $1/\sqrt{k} (||z|| \cdot a \downarrow 1, ||z|| \cdot a \downarrow 2, ... ||z|| \cdot a \downarrow k)$
 - where each $a \downarrow i$ is distributed as Gaussian
- Norm $/|F(z)|/12 = ||z|/12 \cdot 1/\sqrt{k} \sum_{i=1}^{\infty} a \downarrow_{i=1}^{\infty} 2$
 - $\sum i \hat{1} = a \hat{1} = 1$ is called chi-squared distribution with k degrees
- ▶ Fact: chi-squared very well concentrated:
 - Equal to $1+\epsilon$ with probability $1-e\hat{1}-\Omega(\epsilon\hat{1}2 \ k)$
 - Akin to central limit theorem

Dimension Reduction: wrap-up

- $F(x) = (g \downarrow 1 \cdot x, g \downarrow 2 \cdot x, \dots g \downarrow k \cdot x) / \sqrt{k} = 1 / \sqrt{k} Gx$
- ▶ $||F(x)|| = (1 \pm \epsilon)||x||$ with high probability
- Beyond:
 - ▶ Can use ±1 instead of Gaussians [AMS'96,Ach'01,TZ'04...]
 - Fast JL: can compute faster than in O(kd) time [AC'06, AL'08'11, DKS'10, KN'12...]
 - ▶ Other norms, such as $\ell \downarrow 1$?
 - ▶ I-stability Cauchy distribution, but heavy tailed!
 - Essentially no: [CS'02, BC'03, LN'04, JN'10...]
 - But will see a useful substitute later!
 - For n points, D approximation: between $n \uparrow \Omega(1/D \uparrow 2)$ and O(n/D) [BC03, NRI0, ANNI0...]

Space Partitions

Locality-Sensitive Hashing

[Indyk-Motwani'98]

- Random hash function g on $R \uparrow d$ s.t. for any points p,q:
 - ▶ Close when $||p-q|| \le r$

$$P1= \Pr[g(p)=g(q)]$$
 is "not-so-small"

Far when ||p-q||>cr

$$P2=$$
 $Pr[g(p)=g(q)]$ is "small"

Use several hash

tables : $n\rho$, where

$$P \downarrow 1 = P \downarrow 2 \uparrow \rho$$

NNS for Euclidean space

[Datar-Immorlica-Indyk-Mirrokni'04]

- Hash function g is usually a concatenation of "primitive" functions:
 - $g(p) = \langle h \downarrow 1 (p), h \downarrow 2 (p), ..., h \downarrow k (p) \rangle$
- LSH function h(p):
 - \blacktriangleright pick a random line ℓ , and quantize
 - project point into ℓ
 - $h(p) = [p \cdot \ell/w + b]$
 - $\blacktriangleright \ell$ is a random Gaussian vector
 - $\rightarrow b$ random in [0,1]
 - \blacktriangleright w is a parameter (e.g., 4)
- $\rho=1/c$

Putting it all together

- ▶ **Data structure** is just $L=n\hat{1}\rho$ hash tables:
 - Each hash table uses a fresh random function $g(p) = \langle h \downarrow 1 (p), ..., h \downarrow k (p) \rangle$
 - Hash all dataset points into the table

Query:

- Check for collisions in each of the hash tables
- Performance:
 - $O(nL) = O(n \uparrow 1 + 1/c)$ space
 - $O(L) = O(n \uparrow 1/c)$ query time

Analysis of LSH Scheme

- Choice of parameters k,L?
 - L hash tables with $g(p) = \langle h \downarrow 1 \ (p), ..., h \downarrow k \ (p) \rangle$

set k s.t.

- ▶ Pr[collision of far pair] = $P \downarrow 2 \neq k_1/n$
- ▶ Pr[collision of close pair] = $P \downarrow 1 \not= k(P \downarrow 2 \uparrow \rho) \uparrow k = 1/n \uparrow \rho$
- ▶ Hence $L=O(n \uparrow \rho)$ "repetitions" (tables) suffice!

Better LSH?

[A-Indyk'06]

- ▶ Regular grid \rightarrow grid of balls
 - p can hit empty space, so take more such grids until p is in a ball
- ▶ Need (too) many grids of balls
 - Start by projecting in dimension t

Proof idea

Claim: $\rho \approx 1/c^2$, i.e.,

$$P(r) \ge P(cr)^{1/c^2}$$

- P(r)=probability of collision when ||p-q||=r
- Intuitive proof:
 - Projection approx preserves distances [JL]
 - P(r) = intersection / union
 - P(r)≈random point u beyond the dashed line
 - Fact (high dimensions): the x-coordinate of u has a nearly Gaussian distribution

$$\rightarrow P(r) \approx \exp(-A \cdot r^2)$$

$$P(r) = \exp(-Ar^2) = [\exp(-A(cr)^2)]^{1/c} = P(cr)^{1/c}$$

Open question:

More practical variant of above hashing?

• Design space partitioning of $\Re t$ that is

efficient: point location in poly(t) time

qualitative: regions are "sphere-like"

[Prob. needle of length 1 is not cut]

2

[Prob needle of length c is not cut]

 $\bigcirc p$

Time-Space Trade-offs

 ϵ 12)

Time opace frade ono								
space	query time							
		Space	Time	Comment	Reference			
low	high	$\approx n$	nîσ	$\sigma = 2.09/c$	[Ind'01, Pan'06]			
				$\sigma = O(1/c12)$	[Al'06]			
medium	medium	<i>n</i> 11+ρ	$n \uparrow \rho$	<i>ρ</i> =1/ <i>c</i>	[IM'98]			
				$\rho=1/c$ 72	[DIIM'04, Al'06]			
				<i>ρ</i> ≥1/ <i>c</i> ↑2	[MNP'06, OWZ'11]			
		<i>n</i> ↑1+ <i>o</i> (1/ <i>c</i> ↑2)	ω(1) memory lookups		[PTW'08, PTW'10]			
	1 mem lookup							
high	low	$n14/\epsilon12$	$O(d \log n)$	<i>c</i> =1+ <i>ε</i>	[KOR'98, IM'98, Pan'06]			
		nîo(1/	ω(1) memory lookups		[AIP'06]			

LSH Zoo

- To be or not to be
- To Simons or not to Simons

- Hamming distance
 - h: pick a random coordinate(s) [IM98]
- Manhattan distance:
 - ▶ *h*: random grid [Al'06]
- Jaccard distance between sets:
 - $I(A,B)=A\cap B/A\cup B$
 - h: pick a random permutation π on the universe

$$h(A) = \min_{\neg a \in A} \pi(a)$$

min-wise hashing [Bro'97,BGMZ'97]

[Cha'02,...]

...1**1**101... ...0**1**111...

...21102... ...01122...

{be,not,or,to} {not,or,to, Simons)

 π =be,to,Simons,or,not

LSH in the wild

- If want exact NNS, what is C?
 - Can choose any parameters L,k
 - Correct as long as $(1-P \downarrow 1 \uparrow k) \uparrow L \leq 0.1$
 - Performance:
 - trade-off between # tables and false positives
 - will depend on dataset "quality"
 - \blacktriangleright Can tune L,k to optimize for given dataset
- Further advantages:
 - Dynamic: point insertions/deletions easy
 - Natural to parallelize

Space partitions beyond LSH

Data-dependent partitions...

Practice:

- Trees: kd-trees, quad-trees, ball-trees, rp-trees, PCA-trees, sp-trees...
- often no guarantees

▶ Theory:

- better NNS by data-dependent space partitions [A-Indyk-Nguyen-Razenshteyn]
 - $\rho = 7/8/c12 + O(1/c13) \text{ for } \ell \downarrow 2$
- cf. $\rho = 1/c$?2 [Al'06, OWZ'10]
- $\rho = 7/8/c + O(1/c73/2) \text{ for } \ell \downarrow 1$
- cf. ρ =1/c [IM'98, OWZ'10]

Recap for today

