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Nearest Neighbor Search (NNS)

» Preprocess: a set /2 of points

» Query: given a query point ¢, report a
point p€/ with the smallest distance to

q



Motivation

» Generic setup:
Points model objects (e.g. images)
Distance models (dis)similarity measure
» Application areas:
machine learning: k-NN rule

speech/image/video/music recognition, vector
quantization, bioinformatics, etc...

» Distance can be:

Hamming, Euclidean,

edit distance, Earth-mover distance, etc...

» Primitive for other problems:

find the similar pairs in a set D, clustering...
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2D case

» Compute Voronoi diagram
» Given query g, perform point locs io

» Performance: , ’
Space: O(n) , ‘é‘
Query time: O(logn ) . “'A




High-dimensional case

» All exact algorithms degrade rapidly with the
dimension 4

Full indexing O(log n-d) nto(d) (Voronoi diagram
size)
No indexing—  9(74d) O(n-d)

linear scan



Approximate NNS

c-aP?

» r-near neighbor: given a new point g,

report a point p

W

if there exists a
point at distance <r

Dst [[p—qgl|<r

cr

» Randomized: a point p returned with

90% probability
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Heuristic for Exact NNS

c-aP?

» r-near neighbor: given a new point g,

o
reportaset C'with
all points p s.t. [[p—qg/[/<7 (each with 90% P e

probability) Ay .

'. 9 ;
may contain some approximate neighbors p L S q\
st [lp—qll<cr e
» Can filter out bad answers

~o —



Approximation Algorithms for NNS

» A vast literature:

milder dependence on dimension

[Arya-Mount’93], [Clarkson’94], [Arya-Mount-Netanyahu-Silverman-
We’'98], [Kleinberg’97], [Har-Peled’02], [Chan’02]...

little to no dependence on dimension

[Indyk-Motwani’98], [Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98,
‘01], [Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-Immorlica-
Indyk-Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-
Chazelle’06], [A-Indyk’06], ...



Dimension Reduction



Motivation

» If high dimension is an issue, reduce it?!
“flatten” dimension & into dimension A<d

» Not possible in general: packing bound

» But can if: for a fixed subset of R7d
Johnson Lindenstrauss Lemma [JL'84]

» Application: NNS in R 7d
Trivial scan: J(72-d) query time

Reduce to O(n-k)+7ldim—red time if preprocess, where
7ldim—red time to reduce dimension of the query point




Dimension Reduction

» Johnson Lindenstrauss Lemma: there is a randomized
linear map ~:€J27d —-€I2 Tk, k< d, that preserves
distance between two vectors .ty

up to 1+¢€ factor:

[l =NI=FD)—FD)lI=A+e) || x=y]
with 1—eT—CeT2 k& probability (£ some constant)

» Preserves distances among 7 points for A4=0(logn /

€12 )
» Time to apply map: 7}dim—red =0(kd)




Idea:

» Project onto a random subspace of dimension 41




1D embedding . ,@?;fzt/‘/z” el-g12 /2

» How about one dimension (4=1)? = 497217
» Map fi427d (%]
f()=>Y1igli-xii, S

where g7 are iid normal (Gaussian) random variable

» Why Gaussian!?

Stability property: Y./ gl -xli is distributed as |/x] [ g,
where g is also Gaussian
Equivalently: (g/1,...,gld ) is centrally distributed, i.e., has

random direction, and projection on random direction
depends only on length of x

P(a)P(b)=
=1/V27r el—al2 /2 1/V2x
=1/2mel—(al2 +b72)/2




1D embedding . g‘[’;;{)/‘/z” el-g12 /2
» Map f(x)=>igli-xii, e ElgT2]=1

for any x, f(x)~ [/x]]-g
Linear: /(x)—/(»)=/(x—Y)

» Want: | /(x)— /W) = |lx=)] o
» Ok to consider z=x—y since f linear
@1 % Al 2

» Claim: for any x,y[¥]R Td, we have
Expectation: M} [/f(2)]T2 | = [|z||T2
Standard deviation:
¥i[| (272 ] = 0([z]|T2)
» Proof:
Expectation = X} /(/(2))T2 [=}//|z[[T2 -gT2 ]
=[[z[[T2




Full Dimension Reduction

» Just repeat the |D embedding for 4 times!
y F(Y) = (g4l -x, gd2 x,..gdke-x) | VE =1k Gx

» where G is X d matrix of Gaussian random variables

» Again, want to prove:
» AN = (146 * ||
» for fixed z=x—y
» with probability 1—eT-Q(€72 %)



Concentration

» F(2)is distributed as
1V (J]z]]-adl, ||z]]-ad2 , ...]|z]]|-alk)

where each al/ is distributed as Gaussian

degrees

» Fact: chi-squared very well concentrated:
Equal to 14 € with probability 1—eT—Q (72 k)

Akin to central limit theorem



Dimension Reduction: wrap-up

y A = (gl -x, g2 -x, ..qlke-x) [V =1/Vk Gx
» [[F(x)]][= (1x€)/[x]] with high probability
» Beyond:

Can use %1 instead of Gaussians [AMS'96,Ach’01,TZ'04...]

Fast JL: can compute faster than in J(4d) time [AC 06,
ALO08| I,DKS’ 10, KN’12...]
Other norms, such as £J1?

| -stability Cauchy distribution, but heavy tailed!

Essentially no: [CS’02, BC’03, LN’04, JN’10...]

But will see a useful substitute later!

For 72 points, 2 approximation: between 27Q(1/072 ) and O(n/D)
[BCO3, NRI0O,ANNIO...]



Space Partitions



Locality-Sensitive Hashing
[Indyk-Motwani’98]

any points p,q:
Close when [[p—gqg/[I<7r

Prig(p)=g(9)] is“ “not-so-small”
Far when [[p—gqg|[>cr

T Prig@=g(@)] is “small”
» Use several hash

tables : ,», where

Pl1=Pl2Tp




NNS for Euclidean space

[Datar-Immorlica-Indyk-Mirrokni’04]
» Hash function g is usually a concatenation of “primitive”

functions:

gw)=(d1 (p), 242 (p),...1lk (p))
» LSH function 2(p):

pick a random line £, and quantize
project point into ¢
h@)=Ipt/w+b]

£ is a random Gaussian vector
b random in [0,1]

w is a parameter (e.g., 4)

» p=1/c

21



Putting it all together

» Data structure is just Z=77Tp hash tables:

Each hash table uses a fresh random function

g@)=(il (p),... 1tk (p))

Hash all dataset points into the table
» Query:

Check for collisions in each

of the hash tables

» Performance:
O(nl)=0(nT1+1/c) space
O(L)=0(nT1/c) query time

22



Analysis of LSH Scheme

» Choice of parameters £, !
Z hash tables with g(p)=(2d1 (p),...Alk (p))
set % s.t.
» Pr[collision of far pair] = Pl2Fm/n
» Pr[collision of close pair] = P21 Fri2ip)th=1/nlp
» Hence Z=0(nTp) “repetitions” (tables) suffice!

23



Better LSH ?

[A-Indyk 06]

» Regular grid — grid of balls

p can hit empty space, so take more

elele
00@®.

O

such grids until p is in a ball | O
» Need (too) many grids of balls O
Start by projecting in dimension t




Proof idea

» Claim: P~ 1/CQ,i.e.,
P(r) = P(cr)Y/¢

P(r)=probability of collision when ||p-q||=r
» Intuitive proof:

Projection approx preserves distances [JL]

P(r) = intersection / union

P(r)=random point u beyond the dashed line

Fact (high dimensions): the x-coordinate of u has a
nearly Gaussian distribution

— P(r) = exp(-A 1?)

P(r)=exp(—ArT2 ) =[exp(—A(cr) T2 |T1/cT2 =P(cr)T1/cT2




Open question:

» More practical variant of above hashing?

» Design space partitioning of SR 7z that ;
efficient: point location in poly(t) time

qualitative: regions are “sphere-like”

[Prob. needle of length 1 is not cut]
>

2
[Prob needle of length c is not cut]1



Time-Space Trade-otts

space

low

medium

high

query
time

high

medium

low

Space |Time Comment Reference

=7 nlo 0=2.09/c [Ind’'01, Pan’06]
o=0(1/cT2) |[AI'06]

nMl+p nlp po=1/c [IM'98]
p=1/cT2 [DIIM’04, AI'06]
0=>1/c12 [MNP’06, OWZ'11]

nfl+o( | w(1) memory lookups [PTW08, PTW’10]

1/c72) X\

3 mem PO

nt4/el2 | OLddoe?) | c=1+€ [KOR'98, IM'98, Pan’06]

nrfza()l/ w(1) memory lookups [AIP°06]

€




LSH Zoo

» Hamming distance

/2. pick a random coordinate(s) [IM98]

» Manhattan distance:
/2. random grid [AI'06]

» Jaccard distance between sets:

J(AB)=ANEB/AUB

To be or To Simons

not to be or not to
Simons

(e (e
o o
i

11101... L O R Y
21102, ..01122..

{be,not,or,to} {not,or,to,

/2. pick a random permutation 7z on the Simons}

universe

/1(A)=minra€A m(a)
min-wise hashing [Bro’97,BGMZ’97]

[Cha’02,...]

28
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be to

7=be,to,Simons,or,not



LSH in the wild

fewer false
positives

» If want exact NNS, what is ¢?

safety not
Can choose any parameters Z,A guaranteed q
Correct as long as (1—Pd1 Tk )7L <0.1 L
Performance:

trade-off between # tables and false positives
will depend on dataset “quality”

Can tune Z,4 to optimize for given dataset

» Further advantages:
Dynamic: point insertions/deletions easy
Natural to parallelize

29



Space partitions beyond LSH

4
» Data-dependent partitions...
» Practice:
Trees: kd-trees, quad-trees, ball-trees, rp-= l

trees, PCA-trees, sp-trees...
often no guarantees

» Theory:

better NNS by data-dependent space

partitions [A-Indyk-Nguyen-Razenshteyn]
p=7/8/cT2 +0(1/cT3 ) for £i2  cf. p=1/c12 [AI'06, OWZ'10]
p=7/8/c+0(1/cT3/2) for £/1 of. =1 /c [IM'98, OWZ'10]
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Recap for today

High dimensional
dimension reduction

geometry

space partitions
small dimension

() embedding

® sketching
o 7
A ////O/ ® & ® O—@ >
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