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Hard-Core Model

Gibbs Distribution

Given a graph G = (V ,E ) and fugacity λ > 0, for each independent set σ
we have

µ(σ) = λ|σ|/Z ,

where
Z =

∑
σ

λ|σ|

Z = Z (G , λ) is the partition function.
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Partition function

The problem

Given a graph G = (V ,E ) and fugacity λ > 0, compute the partition
function

Z (G , λ) =
∑
σ

λ|σ|

computationally hard problem

#P-complete [Valiant 1979]

focus on the approximation algorithms

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 3 / 35



Partition function

The problem

Given a graph G = (V ,E ) and fugacity λ > 0, compute the partition
function

Z (G , λ) =
∑
σ

λ|σ|

computationally hard problem

#P-complete [Valiant 1979]

focus on the approximation algorithms

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 3 / 35



Partition function

The problem

Given a graph G = (V ,E ) and fugacity λ > 0, compute the partition
function

Z (G , λ) =
∑
σ

λ|σ|

computationally hard problem

#P-complete [Valiant 1979]

focus on the approximation algorithms

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 3 / 35



Partition function

The problem

Given a graph G = (V ,E ) and fugacity λ > 0, compute the partition
function

Z (G , λ) =
∑
σ

λ|σ|

computationally hard problem

#P-complete [Valiant 1979]

focus on the approximation algorithms

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 3 / 35



Partition function

The problem

Given a graph G = (V ,E ) and fugacity λ > 0, compute the partition
function

Z (G , λ) =
∑
σ

λ|σ|

computationally hard problem

#P-complete [Valiant 1979]

focus on the approximation algorithms

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 3 / 35



Approximation Algorithms’ Approach
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Approximation Algorithms’ Approach

Approach

Compute estimates of the Gibbs distribution

Deterministic

Compute numerically (estimations of) the probability of a configuration
Fully Polynomial Time Approximation Scheme (FPTAS)

in time poly(n) and poly(ε−1)

Ẑ ∈ (1± ε)Z(G , λ)

Randomized

Generate Samples (approximately) Gibbs distributed
Fully Polynomial Time Randomized Approximation Scheme (FPRAS)

in time poly(n), poly(ε−1) and poly(log(δ−1))

Pr[Ẑ ∈ (1± ε)Z(G , λ)] > 1− δ
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Pr[Ẑ ∈ (1± ε)Z(G , λ)] > 1− δ

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 4 / 35



How well can we approximate
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How well can we approximate

Hardness of approximation [Sly 2010]

For triangle-free ∆-regular graphs, where ∆ ≥ 3, and for all λ > λc(∆), it
is NP-hard to approximate the partition function within factor 2γn.
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How well can we approximate

Hardness of approximation [Sly 2010]

For triangle-free ∆-regular graphs, where ∆ ≥ 3, and for all λ > λc(∆), it
is NP-hard to approximate the partition function within factor 2γn.

Galanis, Ge, Stefankovic, Vigoda, Yang (2011)

Sly, Sun (2012)

Galanis, Stefankovic, Vigoda (2012)
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How well can we approximate

Hardness of approximation [Sly 2010]

For triangle-free ∆-regular graphs, where ∆ ≥ 3, and for all λ > λc(∆), it
is NP-hard to approximate the partition function within factor 2γn.

What is λc(∆)? [Kelly 1985]

Critical point for “uniqueness/non-uniqueness” phase transition of the
hard-core model on ∆ regular trees

λc(∆) :=
(∆− 1)∆−1

(∆− 2)∆
∼ e

∆
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Gibbs Uniqueness
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Gibbs Uniqueness

r

∆-regular tree T of height h
Take two extreme configurations
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Gibbs Uniqueness

r

L(h)

∆-regular tree T of height h
Take two extreme configurations on L(h)

For every λ consider

lim
h→∞

||µ(·|L(h) occupied)− µ(·|L(h) unoccupied)||{r} =

{
0 Unique
δ non-Unique
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Gibbs Uniqueness

r

L(h)

∆-regular tree T of height h
Take two extreme configurations on L(h)

For every λ consider

lim
h→∞

||µ(·|L(h) occupied)−µ(·|L(h) unoccupied)||{r} =

{
0 Unique
δ non-Unique

λ < λc(∆)⇔ Gibbs measure is Unique

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 6 / 35



Gibbs Uniqueness

r

L(h)

∆-regular tree T of height h
Take two extreme configurations on L(h)

For every λ we compare

lim
h→∞

||µ(·|L(h) occupied)−µ(·|L(h) unoccupied)||{r} =

{
0 Unique
δ non-Unique

λ < λc(∆)⇔ we have spatial mixing
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Deterministic Algorithms

Weitz’s approach [Weitz 2006]

Given G and λ < λc ,

uses tree of self avoiding walks, to organize the computations

reduces to dynamic programming.

the size of computations depends on the size of the tree

in the worst case the tree is exponentially large

(strong) spatial mixing allows to “prune” the tree and still be
accurate.

this step requires λ < λc(∆)

L. Li, P. Lu, and Y. Yin (2012), (2013)

Restrepo, Shin, Tetali, Vigoda, and Yang (2013)

A. Sinclair, P. Srivastava, and Y. Yin (2013)
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Performance Weitz’s algorithm

Approximation guarantees

For all δ > 0, there exists constant C = C (δ) > 0, for all ∆ all G of
maximum degree ∆, all λ < (1− δ)λc(∆) all ε > 0 Weitz’s algorithm
returns an estimation Ẑ of the partition function Z (G , λ) such that

(1− ε)Z (G , λ) ≤ Ẑ ≤ (1 + ε)Z (G , λ)

in time O((n/ε)C log∆).

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 8 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



Randomized Algorithm

Markov Chain Monte Carlo

Given G and λ > 0,

set up an ergodic Markov Chain over the independent sets

the equilibrium distribution is the hard-core model with fugacity λ

the algorithm simulates the Markov chain

outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution

it is desirable that the chain mixes “fast”

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 9 / 35



The dynamics

Glauber dynamics (Xt)

Xt → Xt+1 is defined as follows:

1 Choose v uniformly at random from V .

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ)

2 If X ′ is independent set, then Xt+1 = X ′, otherwise Xt+1 = Xt

The chain converges to the hard-core model with fugacity λ.
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Our Results

Theorem

For all δ > 0, there exists ∆0 = ∆0(δ) for all graphs G = (V ,E ) of
maximum degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1− δ)λc(∆), the mixing
time of the Glauber dynamics satisfies

Tmix = O (n log(n)) .
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Tmix = O (n log(n)) .

Mixing Time . . .

Tmix = min{t : for all X0, dtv (Xt , µ) ≤ 1/4},

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 11 / 35



Our Results
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For all δ > 0, there exists ∆0 = ∆0(δ) for all graphs G = (V ,E ) of
maximum degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1− δ)λc(∆), the mixing
time of the Glauber dynamics satisfies

Tmix = O (n log(n)) .

Corollary

The above sampling result yields an FPRAS for estimating the partition
function Z . The running time is O∗(n2).
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Our Results

Theorem

For all δ > 0, there exists ∆0 = ∆0(δ) for all graphs G = (V ,E ) of
maximum degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1− δ)λc(∆), the mixing
time of the Glauber dynamics satisfies

Tmix = O (n log(n)) .

Previous work

Tmix = O (n log(n)) for Glauber dynamics on G of maximum degree ∆
and λ < 2/(∆− 2)

Dyer Greenhill, Luby, Vigoda
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O(n log n) mixing for Random Graphs

Relaxation for girth

“ # short cycles in the neighborhood of its vertex in G are not too many”

Corollary

Tmix = O(n log n) for Glauber dynamics with λ ≤ (1− δ)λc(∆) for

random ∆-regular graph

random ∆-regular bipartite graph

Mossel, Weitz, Wormald (2009)
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Belief Propagation on trees
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Belief Propagation on trees

For T and λ compute
µ(v occupied|w unoccupied)

qw (v) = µ(v occupied|w unoccupied)

Rv→w =
qw (v)

1− qw (v)

Rv→p(v) = λ
∏

w∈N(v)\{p(v)}

1

1 + Rw→v

For every i ≥ 1

R i
v→p = λ

∏
w∈N(v)\{p}

1

1 + R i−1
w→v
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1
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Belief Propagation on trees

For T and λ compute
µ(v occupied|w unoccupied)

qw (v) = µ(v occupied|w unoccupied)

Rv→w =
qw (v)

1− qw (v)

Rv→w = λ
∏

z∈N(v)\{w}

1

1 + Rz→v

BP starts from arbitrary R0
v→w s,

iterates like

R i
v→w = λ

∏
z∈N(v)\{w}

1

1 + R i−1
z→v

v

w

Rv→w

z ẑ

Rz→v Rẑ→v
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Convergence

Convergence on trees

There exists i0 such that for every i ≥ i0 and every (R0
v→w ){v ,w}∈E we have

R i
v→w = R∗v→w

In turn

µ(v occupied|w unoccupied) = q∗ =
R∗v→w

1 + R∗v→w

BP is an elaborate use of Dynamic Programing to compute marginal.
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(Loopy) Belief Propagation

We do not know whether it converges

. . . if does, we do not know where exactly it converges
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BP Convergence for girth ≥ 6

R i
v→w = λ

∏
z∈N(v)\{w}

1

1 + R i−1
z→v

and qiw (v) =
R i
v→w

1 + R i
v→w

Theorem

For G = (V ,E ) of maximum degree ∆ ≥ ∆0 and girth ≥ 6, all
λ < (1− δ)λc(∆), the following holds: for i ≥ C , for all v ∈ V , w ∈ N(v),∣∣∣∣ qiw (v)

µ(v is occupied | w is unoccupied)
− 1

∣∣∣∣ ≤ ε
we also have convergence for the BP estimate of µ(v is occupied)
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Path Coupling for Rapid Mixing
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Path Coupling for Rapid Mixing

Path Coupling [Bubley and Dyer 1997]

Consider copies (Xs), (Ys) such that Xt ⊕ Yt = {v}

E [Φ(Xt+1,Yt+1)|Xt ,Yt ] ≤ (1− γ)Φ(Xt ,Yt).

Φ : Ω ×Ω → R≥1 is a “distance metric”

Φ(X ,Y ) =
∑

u∈X⊕Y
Φ(u)
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Key Results

We don’t know a Φ that gives contraction for worst-case Xt ,Yt .

can find Φ when locally Xt ,Yt “behave” like R∗

Glauber dynamics converges locally to R∗

Given Φ and convergence of Glauber dynamics we show rapid mixing
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Path Coupling Example
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Path Coupling Example
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Path Coupling Example

Expected distance

E [Φ(Xt+1,Yt+1)|Xt ,Yt ] =

(
1− 1

n

)
Φ(v) +

1

n

∑
zi

Pr[zi ∈ Yt+1] · Φ(zi )

v
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Expected distance

E [Φ(Xt+1,Yt+1)|Xt ,Yt ] =

(
1− 1

n

)
Φ(v)+

1

n

∑
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1{zi unblocked}
λΦ(zi )

1 + λ
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Path Coupling Example

Path coupling condition

Φ(v) >
λ

1 + λ

∑
zi

1{zi unblocked in Yt} · Φ(zi )

v
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Key Results

We don’t know a Φ that gives contraction for worst-case Xt ,Yt .

can find Φ when locally Xt ,Yt “behave” like R∗

Glauber dynamics converges locally to R∗

Given Φ and convergence of Glauber dynamics we show rapid mixing
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Unblocked Neighbors and loopy BP

ωi
z =

∏
y∼z

1

1 + λ · ωi−1
y

ωi (z) is the loopy BP estimate of z to be unblocked

converges to a unique fixed point ω∗

ω∗(z) ≈ µ(z is unblocked)

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 21 / 35



Unblocked Neighbors and loopy BP

ωi
z =

∏
y∼z

1

1 + λ · ωi−1
y

ωi (z) is the loopy BP estimate of z to be unblocked

converges to a unique fixed point ω∗

ω∗(z) ≈ µ(z is unblocked)

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 21 / 35



Unblocked Neighbors and loopy BP

ωi
z =

∏
y∼z

1

1 + λ · ωi−1
y

ωi (z) is the loopy BP estimate of z to be unblocked

converges to a unique fixed point ω∗

ω∗(z) ≈ µ(z is unblocked)

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 21 / 35



Unblocked Neighbors and loopy BP

ωi
z =

∏
y∼z

1

1 + λ · ωi−1
y

ωi (z) is the loopy BP estimate of z to be unblocked

converges to a unique fixed point ω∗

ω∗(z) ≈ µ(z is unblocked)

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 21 / 35



Unblocked Neighbors and loopy BP

ωi
z =

∏
y∼z

1

1 + λ · ωi−1
y

ωi (z) is the loopy BP estimate of z to be unblocked

converges to a unique fixed point ω∗

ω∗(z) ≈ µ(z is unblocked)

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 21 / 35



Back to Path Coupling

worst case condition

Φ(v) >
λ

1 + λ

∑
zi

1{zi unblocked} · Φ(zi )

when Xt ,Yt “behave” like ω∗

Φ(v) >
λ

1 + λ

∑
zi

ω∗(zi ) · Φ(zi )
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Finding Φ

Reformulation

For ρ = 1− δ, there is Φ such that

ρ · Φ(v) ≥
∑
zi

λω∗(zi )

1 + λω∗(zi )
· Φ(zi )

n × n matrix C

C(v , z) =

{
λω∗(z)

1+λω∗(z) if z ∈ N(v)

0 otherwise

There is a vector Φ ∈ RV
≥1 such that

CΦ ≤ ρ · Φ.
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Connections with Loopy BP

Jacobian of Loopy BP

BP Operator

F (ωz) =
∏

y∈N(z)

1

1 + λωy
.

J∗ = J|ω=ω∗ denote the Jacobian of F at the fixed point ω = ω∗.

Ĵ = D−1J∗D,

where D is diagonal matrix, with D(v , v) = ω∗(v)

Relation to Path Coupling

Ĵ = C

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 24 / 35



Connections with Loopy BP

Jacobian of Loopy BP

BP Operator

F (ωz) =
∏

y∈N(z)

1

1 + λωy
.

J∗ = J|ω=ω∗ denote the Jacobian of F at the fixed point ω = ω∗.
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Covergence from loopy BP

Reduction to BP Spectral radius

For ρ = 1− δ, there is a vector Φ ∈ RV such that

ĴΦ ≤ ρ · Φ

Ĵ has the same eigenvalues as the Jacobian of BP at the fixed point

Spectral radius of BP in uniqueness region

We should expect ρ(λ,∆) < 1, because the fixed point ω∗ is attractive

Φ > 0 from Perron-Frobenius

What is Φ

Φ(v) =

√
1 + λω∗(v)

ω∗(v)
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Ĵ has the same eigenvalues as the Jacobian of BP at the fixed point

Spectral radius of BP in uniqueness region

We should expect ρ(λ,∆) < 1, because the fixed point ω∗ is attractive

Φ > 0 from Perron-Frobenius

What is Φ

Φ(v) =

√
1 + λω∗(v)

ω∗(v)

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 25 / 35



Key Results

We don’t know a Φ that gives contraction for worst-case Xt ,Yt .

can find Φ when locally Xt ,Yt “behave” like R∗

Glauber dynamics converges locally to R∗

Given Φ and convergence of Glauber dynamics we show rapid mixing
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Local Uniformity with Loopy BP fixed points

Theorem

Let G be of girth ≥ 7 and maximum degree ∆, for ∆ > ∆0. Let (Xt) be
the Glauber dynamics with λ < (1− δ)λc(∆).
For any vertex v , with probability 1− exp [−∆/C ], it holds that

# Unblocked Neighbors of v in Xt <
∑

z∈N(v)

ω∗(z) + ε∆

where t ≥ Cn log∆.
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Key Results

We don’t know a Φ that gives contraction for worst-case Xt ,Yt .

can find Φ when locally Xt ,Yt “behave” like ω∗

Φ is from the Jacobian of BP operator

Glauber dynamics (approximately) converges locally to ω∗

locally Glauber dynamics behaves approximately like BP fixed points

Given Φ and convergence of Glauber dynamics we show rapid mixing
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

There is a single disagreement at v
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

Run the chains for Cn log∆ steps, “burn-in”
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

The disagreements spread in the graph during burn-in
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

Typically the disagreements do not escape the ball
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

Typically the ball has uniformity.
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

Interpolate and do path coupling for the pairs,
. . . the pairs now “behave” like ω∗
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

Interpolate and do path coupling for the pairs,
. . . the pairs now “behave” like ω∗ and Φ gives convergence
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Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

v √
∆

disagerement
area

G

E
[
Φ(XC ′n log∆,YC ′n log∆)

∣∣X0,Y0

]
≤ (1− γ)Φ(X0,Y0)
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Key Results

We don’t know a Φ that gives contraction for worst-case Xt ,Yt .

We can find Φ when X ,Y ∼ ω∗
Glauber dynamics converges locally to ω∗

Given Φ and convergence of Glauber dynamics we show rapid mixing
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Local uniformity I

R(σ, v) =
∏
w∼v

(
1− λ

1 + λ
1{w unblocked by its children}

)
,
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Local uniformity I

R(σ, v) =
∏
w∼v

(
1− λ

1 + λ
1{w unblocked by its children}

)
,

v

w1

w2

w`

z1

z2

z3

z4

zs

R(σ, v) = Pr
Y∼µ

[v is unblocked in Y |v /∈ Y , Y (S2(v)) = σ(S2(v))]
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Local uniformity I

R(σ, v) =
∏
w∼v

(
1− λ

1 + λ
1{w unblocked by its children}

)
,

BP for Gibbs measure

Let G be of girth ≥ 6 and maximum degree ∆ > ∆0. Let X be distributed
as in µ with λ < (1− δ)λc(∆).
Then for any vertex v with probability ≥ 1− exp (−∆/C ) it holds that∣∣∣∣∣R(X , v)−

∏
z∼v

(
1− λ

1 + λ
R(X , z)

)∣∣∣∣∣ < γ.
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Local uniformity I

R(σ, v) =
∏
w∼v

(
1− λ

1 + λ
1{w unblocked by its children}

)
,

BP for Glauber dynamics

Let G be of girth ≥ 7 and maximum degree ∆ > ∆0. Let (Xt) be the
Glauber dynamics with λ < (1− δ)λc(∆).
Then for any vertex v and any t > Cn log∆ with probability
≥ 1− exp (−∆/C ) it holds that∣∣∣∣∣R(Xt , v)−

∏
z∼v

(
1− λ

1 + λ
Etz [R(Xtz , z)]

)∣∣∣∣∣ < γ.
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Local uniformity II

Lemma

Let G be of girth ≥ 7 and maximum degree ∆ > ∆0. Let (Xt) be the
Glauber dynamics with λ < (1− δ)λc(∆).
For all I = [t0, t1], where t0 = Cn log∆, for every v ∈ V with probability
1− (1 + |I|/n) exp (−∆/C ), we have that

(∀t ∈ I) |R(Xt , v)− ω∗(v)| ≤ ε.

Hayes 2012
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Iterations in space and time
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Iterations in space and time

Convergence with Ψ

Potential function

Ψ(x) = (λ)−1arcsinh(
√
λx)
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Iterations in space and time

Convergence with Ψ

Potential function

Ψ(x) = (λ)−1arcsinh(
√
λx)

Provided

t ∈ I ′ approximate BP equation
hold in B(v ,R)

∀t ∈ Ii+1, u ∈ B(v , i + 1)

|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ αi+1

∀t ∈ Ii , u ∈ B(v , i)

|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ (1− δ)αi+1

I

i − 1 i i + 1v
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|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ (1− δ)αi+1

IIiIi+1

i − 1 i i + 1v

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 33 / 35



Iterations in space and time

Convergence with Ψ

Potential function

Ψ(x) = (λ)−1arcsinh(
√
λx)

Provided

t ∈ I ′ approximate BP equation
hold in B(v ,R)

∀t ∈ Ii+1, u ∈ B(v , i + 1)

|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ αi+1

∀t ∈ Ii , u ∈ B(v , i)

|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ (1− δ)αi+1

IIiIi+1

i − 1 i i + 1v

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 33 / 35



Iterations in space and time

Convergence with Ψ

Potential function

Ψ(x) = (λ)−1arcsinh(
√
λx)

Provided

t ∈ I ′ approximate BP equation
hold in B(v ,R)

∀t ∈ Ii+1, u ∈ B(v , i + 1)

|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ αi+1

∀t ∈ Ii , u ∈ B(v , i)

|Ψ(R(Xt , u))− Ψ(ω∗(u))| ≤ (1− δ)αi+1

IIiIi+1

i − 1 i i + 1v

C.Efthymiou (Frankfurt) Rapid Mixing from Loopy BP 33 / 35



Concluding Remarks

Rapid mixing for Glauber Dynamics

G max degree ∆ > ∆0 and girth ≥ 7
λ in uniqueness

Approach

by establishing uniformity
proposing “Hamming weights”

Establish a novel connection between Path Coupling and Loopy BP

this is important for both uniformity and Hamming weights

Use experience from Glauber dynamics to analyze Loopy BP

for graphs of girth ≥ 6 in the uniqueness region

The connection between Glauber dynamics and Loopy BP is deep

Allows to establish uniformity and weights in a systematic way
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The End

THANK YOU!
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