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Outline of the talk

e Hidden partition model (a.k.a. community detection pb.)
o Spectral vs. optimization methods (ML & SDP)
e Optimality vs. robustness
e Community detection algorithm based on SDP
e It is simple, fast and robust
e Phase transitions in SDP
o Statistical physics approach -> phase transitions

 (Quasi-)optimality of SDP for (sparse) dense graphs



Communities detection problem

e Detecting communities/partitions/clusters in graphs is a
widespread problem in many different disciplines

e Examples of applications: social networks mining,
recommendation systems improvement, images
segmentation and classification, and many more in
biology...

 We need fast (linear and scalable) algorithms
e robust (real datasets are very noisy and not random)

e optimal (on random ensemble benchmarks)



Benchmark for community detection

Hidden partition model or stochastic block model (SBM)

Generate a partition of n nodes: e.g. g groups of size n/q

Add independently edges between any pair of nodes
according to the following probability

[ cin/m same group
cout/n  different groups

Pl(ij) € E] = -

\

Assortative model ¢y > Cout
Disassortative model c¢iy < Cout



The hidden partition model

Stochastic block
model (SBM)
with g = 2

. | ¢in/m same group Assortative model:
Pl(ij) € E] = { Cout/n  different groups Cin > Cout



The hidden partition model
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The hidden partition model

The right ordering neither !!



The hidden partition model

Given only the i ieiies Tnfer the &
Al - R T s >

Hidden (true) partition -> xy € {+1,—-1}"
Estimated partition -> &(G) € {+1, -1}"
Quality of inference
via the overlap -> (Q = %|<§3(G),m0>|



Assortative SBM with 2 equal-size groups

Relevant parameters and threshold

Cin + Cout
2

* Mean degree (=

Cin — Cout

e Signal-to-noise ratio )\ = =
g N7

4 .
e Bayes optimal threshold A\. =1 \> Very

e Impossible detection for \ < A, ingenious
e BP algorithm with Q > 0 for \ > \. spectral
\- J < ~ methods

[Decelle, Krzakala, Moore, Zdeborova, 2011]
[Massoulie, 2013] [Mossel, Neeman, Sly, 2013]



Maximum Likelihood (ML)

e If no information on the generative model is given
(apart being assortative and with 2 equal-size groups)
a good choice is to maximize the likelihood

maximize E Ai’jﬂfi{ljj
1,7

subject to z; € {+1,—1} and » x; =0

e NP-hard problem



Lagrangian formulation

2
Maximize ZAZ'J'CEZ'ZCJ' — U(ZSI%) over I < { -1, 1}n
A good choice is n > d/n

For n = d/n the centered adjacency matrix appears

Ag;n — Az’j — d/n

Maximize ZAfjnij over x € {+1,—-1}"

2,]



Spectral relaxation (PCA)

PCA on A" relaxes the constraint = ¢ {+1,—1}"

and maximizes ZAE;HZEZ’Q?J‘ over x €¢ R"
2,]
Computes the eigenvector of the largest eigenvalue

,vl(Acen)
Estimates the partition via a projection on « € {+1,—1}"
& " = sign(vy (A°"))

It is good as long as components of v;(A°°")
have similar moduli/intensities



Spectral relaxation fails on sparse graphs
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Why PCA fails?
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Other spectral methods

Compute eigenvalues and eigenvectors of some matrix
related to the adjacency matrix A

Fail for the same reason -> eigenvectors localization

Laplacian L =D — A
with D being the diagonal matrix of degrees

Normalized Laplacian £ =D Y2LD /2

Shown to be sub-optimal in the sparse regime

[Kawamoto, Kabashima, 2015]
oo [




Improved spectral methods

Non-backtracking matrix
[Krzakala, Moore, Mossel, Neeman, Sly, Zdeborova, Zhang, 2013]

* seems to avoid localization around large degree nodes
e optimal for the SBM
* complex spectrum, not easy to compute

Bethe Hessian [Saade, Krzakala, Zdeborova, 2014]
Hry=@*-11-rA—-D

* symmeftric matrix, real spectrum

e easier to use

e optimal for the SBM with r = Vd



Quasi-random graphs

Generate a graph according to the SBM
Choose a subset S of vertices of size |S| = an
For each vertex in S connect all its neighbours

The number of edges increases by ~ ad*n/2
l.e. by a fraction ~ ad

A robust inference method should work also for a > 0
at least in the regime a < 1/d



Improved spectral methods
fail on quasi-random graphs

n=10> d=3 A=1.1
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Improved spectral methods
fail on quasi-random graphs
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Improved spectral methods
fail on quasi-random graphs

n=10> d=3 A=1.1
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eigenvalues of //j a = (0.001
Bethe Hessian
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SDP: a better relaxation?

e Maximize ZACGD r;x; over « € {+1,—1}"
i,J
it is equivalent to maximize ZACGHXZJ = (A™", X)
i,J
subject fo X e R"*", X =0 (i.e. all eigenvalues >= 0)

@(7;7; — Dand X being of rank 1

e SDP relaxes the rank and maximizes (A"", X)
over the convex space of positive semidefinite matrices

e The maximizer is a matrix of rank m with m € [1,n]
to be projected back on a rank 1 matrix...

XOpt N .’i}SDP (iSDP)T



SDP-based algorithm

Maximize (A“°", X) over rank-m matrices = correlation
matrices between m-components variables of unit norm

jo with z; e R™ | |l ||* =z -z, = 1
Maximize Z z;-z; subject to Z&z =0
(ij)EE 7

by greedy T=0 dynamics (very fast! no gradient used)

Given the maximizer z* = {z%,...,z*}

) =N

compute the empirical covariance matrix (m x m)
n

1 B X
2jk = " Z(% )i (27 )k
1=1
Project on its principal eigenvector #:°" = sign(x; - v,)

_7, -

http://web.stanford.edu/~montanar/SDPgraph/



SDP-based algorithm

e Algorithm complexity O(nmt..n) and
quality of inference do depend on m

e m=l -> ML, very rough objective function, NP-hard

e m=n -> SDP, convex objective function
no local maxima for m > V2n [Burer, Monteiro, 2003]

e m>l, but small -> smooth enough objective function ?
local minima are “close enough” O(m~!/?)
to global minimum [Montanari, 2016]

e Running times grows very mildly with m and n
e.g. if stopping rule is max variation <1073 =5 teony ox 1%



QSDP

0.5

Small m values are fine!

n=4-10* d=3 A=11 «a=0.0

0.4 -

0.3

0.2 -

0.1 -

077

333333

| ! |
10000 100000



QSDP
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The algorithm is very robust!
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QSDP

The algorithm is very fast!

n = 10°

1 10 100 1000
CPU time (sec.)

QSDP

d=3
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CPU time (sec.)



SDP optimality

Analytical predictions on SDP-based hidden partition
detection (signal recovery) in the limit m — oo

undetectable : detectable
QSDP ~ O )\Z%;DP QSDP > O

A simpler synchronization problem:
A

Y:—.’L‘oa)o*—l—W
mn

Recovery xo given the noisy relative positions in Y
Different models: =9 € R" W;; ~ N(0,1/n)
xg € C" Wij ~ CN(O, 1/%)



Different estimators

e Bayes optimal 25(Y) =E{z|(\/n)zz* + W =Y}
e Maximum likelihood &Y (Y) = c()) argmaxy,e i1 _11n (T, Y )

e SDP maximize (X,Y),
subject to X =0, X;; =1 Vi€ |n]

7 (Y) = Vne (N vi(Xop (Y))

argmaXQZRe(Y;jgi -z x, € " ||z, ]| =1

2,]



Statistical physics approach

Unified framework: statistical physics models with

m-component variables: z, € F""  ||z,|| =1

P(x) = % exp {Zmﬁ Z Re(Y;;z, gj)]

1<]

R
A if ] C

Bayes: m =1, 5:{ A2 ﬁ?

ML: m=1 [ —

SDP: m — o0, (B — o0



Statistical physics approach

Ising variables (m=1), dense graph
Sherrington-Kirkpatrick model H = — Z Jiisis; s, € {—1,1}

. Jii ~N(M\/n,1/n)

A

T=1/8 o o
P: Q=0 easy
GGJ’@& F F: Q>0 easy
SG: Q=0 hard
SG M: Q>0 hard
A~ F
. M g




Statistical physics approach

e Ansatz for the marginals in m-component dense models

Pi(x;) = Zi exp [Qmﬁ(éz z; +z; Ciz, )}

(/

z, €F" |zl =1 §~NpQ) Ci=C

o Self consistency equations in the dense case

=AE[(z)]
[(z) (z")]
BmE[(zz") — (z)(z")]

QA O =
||




Analytical solution: dense real case

. -~ 2
B{  min  [[&(Y)—sxol,}

1.0
- == Bayes
m— SDP
0.8} === PCA
® SDP, n=200
® SDP, n=400
0o ® SDP, n=800 |
N ® SDP, n=1600
=
0.4}
02 W Tteel
Q%n 0.5 1.0 f5 2.0 2.5 3.0



Analytical solution: sparse case (SBM)

e Run the SDP-based algorithm for very large m values

o Approximate ansatz (exact in the large d limit)



Analytical solution: sparse case (SBM)

d=2>5 Nsamples = 2000

1.0 . :
— sparse graph theory -
- - GOE theory -
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SDP-based algorithm
for very large m values



Analytical solution: sparse case (SBM)

e Crossing of the Binder cumulants to locate exactly A>°"

3

' 1=2000 —+—

%\{\; 2:;31888 e d — 5
‘ 5
2.5 - § [Nsa,mples 2 10 j
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n 4:{<mSDP7 mO>4}

1.5

SDP-based algorithm B = Bz 22
for very large m values
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Analytical solution: sparse case (SBM)

e Crossing of the Binder cumulants to locate exactly A>°"

2.1
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X SDP-based algorithm
for very large m values



Approximate analytical solution (SBM)

In the recovery phase we assume the O(m) symmetry to
break along the first component, while preserving O(m-1)

L, = (S@',TZ’), S; € R, T; € Rm_l

We write the marginal for z, as
exp {QBN/mci (zi, T:i) + 28mh; s; — Bmr;s? + Om(l)} 5(3% + ||73]15 — 1)

with z; ~ N(O,Im_l)
Approximate because the z; are correlated

It should be valid in the limits d -1 and d — o



Approximate analytical solution (SBM)

exp {QBx/mcf,; (zi, Ti) + 28mh; s; — Pmr;ss + Om(l)} 5(3% + |73 — 1)
e Cavity method -> self consistency equation for marginals

€0 = 2 h? 1+
i—1 P 1 = L+ ——
(pi +17i) P;

k -1 2

1 1 (1+ Cz')m‘) h:

ro = — — + (14 :
’ ; {Pz' pi + Ti ( p; (pi + 1) }

e Solve by population dynamics

e At the fixed point Q°PY = E[sign(h*)]




Approximate analytical solution (SBM)

O O
i1l
o1 N

0.8 + o © 8
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Approximate analytical solution (SBM)

e To linear order in h — r; =0

R ek

kg (i +1i)* P}
1




Approximate analytical solution (SBM)

2.0 x x x x x
d=0.5,0.75,1,1.25, 1.5, 1.75, 2.
1.5/
E{c’} 1.0} é
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1, g1y 4 ( ; il )
(< ) 2 T c! ; J1+d



Approximate analytical solution (SBM)

0.08
1

Go(d,)\) = lim inf — logE(|h!|%)
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Analytical solution: sparse case (SBM)

e SDP at most 2% sub-optimal!

1.02}

1.01F
SDP
)\C

1.00

0.991

e Red points: numerical solution of the replica/cavity
equations (crossing of Binder cumulants)

10

e Black line: approximated analyftical solution



Take-home messages

SDP relaxations are very effective:
 robust and quasi-optimal
 may outperform spectral relaxations

Better than SDP are SDP-inspired algorithms (small m)
http://web.stanford.edu/~montanar/SDPgraph/

It is worth studying the statistical physics of models
with m-component variables:

e unifying framework to study and solve several
estimators in statistical inference

o different physics, better algorithms



