

Phase transitions in low-rank matrix estimation **Florent Krzakala**

arXiv:1503.00338 & 1507.03857 [http://krzakala.github.io/LowRAMP/](http://www.google.com/url?q=http://krzakala.github.io/LowRAMP/&sa=D&sntz=1&usg=AFQjCNFhhQektLn5tJp97tEgDJwaULe04g)

European Research Counci

Thibault Lesieur Lenka Zdeborová

Caterina Debacco Cris Moore Jess Banks SANTA FE

ÉCOLE POLYTECHNIQUE
Fédérale de Lausanne

cea

Jean Barbier Nicolas Macris Mohamad Dia

Jiaming Xu

Low-rank matrix estimation

$$
W = \frac{1}{\sqrt{n}} XX^T \t X \in \mathbb{R}^{n \times r}
$$
 unknown
or

$$
W = \frac{1}{\sqrt{n}} UV^T \t U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}
$$
 unknown

 W is observed element-wise trough a noisy channel: $P_{\rm out}(y_{ij}|w_{ij})$ Matrix W has low (finite) rank $r \ll n, m$

Goal: Estimate unknown X (or U & V) from known Y.

 $x_i^T = (0, \ldots, 0, 1, 0, \ldots, 0)$ *w*_{*ij*} = x_i^T

 $\int\limits_i^T x_j/\sqrt{n}$

r-dimensional variable (r=rank)

{

(Goal: Estimate unknown X from known Y.)

$$
x_i^T = (0, ..., 0, 1, 0, ..., 0)
$$

$$
w_{ij} = x_i^T x_j / \sqrt{n}
$$

Additive white Gaussian noise (sub-matrix localization)

$$
P_{\text{out}}(y|w) = \frac{1}{\sqrt{2\pi\Delta}}e^{-\frac{(y-w)^2}{2\Delta}}
$$

(Goal: Estimate unknown X from known Y.)

$$
x_i^T = (0, ..., 0, 1, 0, ..., 0)
$$
 $w_{ij} = x_i^T x_j / \sqrt{n}$
\nAdditive white Gaussian noise (sub-matrix localization)

$$
P_{\text{out}}(y|w) = \frac{1}{\sqrt{2\pi\Delta}}e^{-\frac{(y-w)^2}{2\Delta}}
$$

Dense stochastic block model (community detection) $P_{\text{out}}(y_{ij} = 1|w_{ij}) = p_{\text{out}} + \mu w_{ij}$ $P_{\text{out}}(y_{ij} = 0|w_{ij}) = 1 - p_{\text{out}} - \mu w_{ij}$ $p_{\text{in}} = p_{\text{out}} + \mu/\sqrt{n}$ $\Delta=$ $p_{\text{out}}(1 - p_{\text{out}})$ $\frac{1}{\mu^2}$.

(Goal: Estimate unknown X from known Y.)

$$
u_i^T = (v_i^1, \dots, v_i^R) \in \mathbb{R}
$$

$$
v_i^T = (0, \dots, 0, 1, 0, \dots, 0)
$$

$$
W = \frac{1}{\sqrt{n}} UV^T + \mathcal{N}(0, \sigma^2)
$$

Additive white Gaussian noise (clustering mixture of Gaussians)

(Goal: Estimate unknown U and V from known Y.)

EVEN MORE EXAMPLES...

Sparse PCA, robust PCA

Collaborative filtering (low rank matrix completion) 1-bit Collaborative filtering (like/unlike) Bi-clustering Planted clique (cf. Andrea Montanari yesterday) etc…

QUESTIONS

Many interesting problems can be formulated this way **Q1**: When is it possible to perform a good factorization? **Q2:** When is it algorithmically tractable ? **Q3:** How good are spectral methods (main tool)?

Yesterday: Andrea taught us how to analyze AMP for such problems with the state evolution approach.

Today: We continue in this direction and answer these questions in a probabilistic setting, with instances randomly generated from a model.

PROBABILISTIC SETTING

Assume X is generated from $P(X) = \prod$ *n* $i=1$ $P_X(x_i)$

The posterior distribution reads

$$
P(X|Y) = \frac{1}{Z(Y)} \prod_{i=1}^{n} P_X(x_i) \prod_{i < j} P_{\text{out}} \left(y_{ij} \Big| \frac{x_i^T x_j}{\sqrt{n}} \right)
$$

 x_j *x*^{*i*} *Graphical model where* y_{ij} *are* pair-wise observations of variables

> MMSE estimator (minimal error) Marginals probability of the posterior

EXACTLY Solvable ?

When P_X and P_{out} known, $n \to \infty, r = O(1)$

Approximate message passing = dense-factor-graph simplifications of belief propagation, hopefully *asymptotically exact* marginals of the posterior distribution. Exact analysis possible with *statistical-physics* style methods Many rigorous proofs possible when one works a bit *harder*

- **1) Message passing, State evolution, Mutual information**
- **2) Universality property**
- **3) Main results**
- **4) Sketch of proof**

- **1) Message passing, State evolution, Mutual information**
- **2) Universality property**
- **3) Main results**
- **4) Sketch of proof**

AMP FOR GAUSSIAN ADDITIVE CHANNEL

$$
w_{ij} = x_i^T x_j / \sqrt{n}
$$
 AWGN $y_{ij} = w_{ij} + \sqrt{\Delta \xi}$

$$
\mathbf{B}^{t} = \frac{1}{\sqrt{n}} \mathbf{S} \mathbf{a}^{t} - \frac{1}{\Delta} \left(\frac{1}{n} \sum_{i} v_{i}^{t} \right) \mathbf{a}^{t-1}
$$
\nMean and variance
\nof the marginals:
\n
$$
a_{i}^{t+1} = f(A^{t}, B_{i}^{t})
$$
\n
$$
\mathbf{S} = \frac{\mathbf{Y}}{\Delta}
$$
\nWhen and variance of the marginals:

\n
$$
a_{i}^{t+1} = f(A^{t}, B_{i}^{t})
$$
\n
$$
\mathbf{S} = \frac{\mathbf{Y}}{\Delta}
$$

First written for rank r=1 in Rangan, Fletcher'12

Dependence on the prior only via a "thresholding function" $f(A, B)$ given by the expectation of:

$$
P(x) = \frac{1}{\mathcal{Z}(A,B)} P_X(x) \exp\left(B^\top x - \frac{x^\top Ax}{2}\right)
$$

AMP FOR GAUSSIAN ADDITIVE CHANNEL

$$
w_{ij} = x_i^T x_j / \sqrt{n}
$$
 AWGN $y_{ij} = w_{ij} + \sqrt{\Delta \xi}$

$$
\mathbf{B}^{t} = \frac{1}{\sqrt{n}} \mathbf{S} \mathbf{a}^{t} - \frac{1}{\Delta} \left(\frac{1}{n} \sum_{i} v_{i}^{t} \right) \mathbf{a}^{t-1}
$$
\nMean and variance
\nof the marginals:
\n
$$
a_{i}^{t+1} = f(A^{t}, B_{i}^{t})
$$
\n
$$
\mathbf{S} = \frac{\mathbf{Y}}{\Delta}
$$

First written for rank r=1 in Rangan, Fletcher'12

Note: for x=±1, these are nothing but the TAP equations for the Ising Sherrington-Kirkpatrick model (on the Nishimori line)

 \backslash^2

$$
a_i^{t+1} = \tanh(B_i^t) \qquad \qquad v_i^{t+1} = 1 - (a_i^{t+1})
$$

STATE EVOLUTION

Single letter characterization of the AMP

$$
M^t = \frac{1}{n} \hat{\mathbf{x}}_{\text{AMP}} \cdot \mathbf{x}
$$

$$
M^{t+1} = \mathbb{E}_{x,\xi} \left[f\left(\frac{M^t}{\Delta}, \frac{M^t}{\Delta} x + \sqrt{\frac{M^t}{\Delta}} \xi \right) x \right]
$$

Depends on the channel only though its Fisher information. 1-parameter family of channels having the same MMSE.

> cf. Yesterday's talk: rigorously proven in Montanari, Bayati '10 - Montanari, Deshpande '14

STATE EVOLUTION

Single letter characterization of the AMP

$$
M^t = \frac{1}{n} \hat{\mathbf{x}}_{\text{AMP}} \cdot \mathbf{x}
$$

$$
M^{t+1} = \mathbb{E}_{x,\xi} \left[f\left(\frac{M^t}{\Delta}, \frac{M^t}{\Delta} x + \sqrt{\frac{M^t}{\Delta}} \xi \right) x \right]
$$

Note: for x=±1, these are nothing but the replica symmetric equations for the Ising Sherrington-Kirkpatrick model (on the Nishimori line)

$$
M^{t+1} = \int dx \mathcal{D}\xi \tanh\left(\frac{M^t}{\Delta}x + \sqrt{\frac{M^t}{\Delta}}\xi\right)
$$

Replica Mutual information

Most quantities of interest can be computed from the Mutual Information (free energy for physicist)

$$
I(X;Y) = \int dx dy P(x,y) \log \left(\frac{P(x,y)}{P(x)P(y)} \right)
$$

The replica methods predicts an asymptotic formula for $i = I/n$:

$$
i_{\text{RS}}(m) = \frac{m^2 + \left[\mathbb{E}_x(x^2)\right]^2}{4\Delta} - \mathbb{E}_{x,z} \left[\mathcal{J}\left(\frac{m}{\Delta}, \frac{mx}{\Delta} + \sqrt{\frac{m}{\Delta}}z\right)\right]
$$

with $\mathcal{J}(A, B) = \log \int e^{Bx - Ax^2/2} p(x) de$

FACT: The state evolution recursion for AMP is a fixed point of i_{RS}(m) **CONJECTURE:** $\lim_{n\to\infty}$ $I(X;Y)$ *n* $= \min_{m} i_{rs}(m)$

Replica Mutual information

$$
i_{\text{RS}}(m) = \frac{m^2 + \left[\mathbb{E}_x(x^2)\right]^2}{4\Delta} - \mathbb{E}_{x,z} \left[\mathcal{J}\left(\frac{m}{\Delta}, \frac{mx}{\Delta} + \sqrt{\frac{m}{\Delta}}z\right)\right] \qquad \mathcal{J}(A, B) = \log \int e^{Bx - Ax^2/2} p(x) de
$$

Good for AMP

Bad for AMP

Good for AMP **Good** for AMP

 $E = MSE_{\text{AMP}}^{vector} = \mathbb{E}[x^2] - m$

Replica Mutual information

Can we prove
$$
\lim_{n\to\infty} \frac{I(X;Y)}{n} = \min_m i_{rs}(m)
$$
 ? **yes!**

$$
i_{\text{RS}}(m) = \frac{m^2 + \left[\mathbb{E}_x(x^2)\right]^2}{4\Delta} - \mathbb{E}_{x,z} \left[\mathcal{J}\left(\frac{m}{\Delta}, \frac{mx}{\Delta} + \sqrt{\frac{m}{\Delta}}z\right)\right]
$$

with
$$
\mathcal{J}(A, B) = \log \int e^{Bx - Ax^2/2} p(x) de
$$

* Proven for "not-too-sparse" PCA (Montanari & Deshpande '14) and for symmetric community detection (Montanari, Abbe & Deshpande '16). * Proven for the planted SK model by Korada & Macris '10

n

 $\leq i_{\rm rs}(m)$

FK, Xu & Zdeborová '16 : Upper Bound *(Guerra Interpolation)*

Barbier, Dia, Macris, FK & Zdeborová '16: $\lim_{n\to\infty}$ *(Spatial coupling+thermodynamic integration/I-MMSE)* $n\rightarrow\infty$ *I n* \geq min_{*m*} $i_{rs}(m)$

FORMULAS FOR UVT AMP

$$
B_{u}^{t+1} = \sqrt{\frac{1}{\Delta n}} X f_{v}(A_{v}^{t}, B_{v}^{t}) - \frac{1}{\Delta} \langle f_{v}^{t'}(A_{v}^{t}, B_{v}^{t}) \rangle f_{u}(A_{u}^{t-1}, B_{u}^{t-1})
$$

\n
$$
A_{u}^{t+1} = \frac{1}{\Delta n} f_{v}(A_{v}^{t}, B_{v}^{t}) f_{v}(A_{v}^{t}, B_{v}^{t})^{T}
$$

\n
$$
B_{v}^{t+1} = \sqrt{\frac{1}{\Delta n}} X^{T} f_{s}(A_{v}^{t}, B_{v}^{t}) - \frac{\alpha}{\Delta} \langle f_{s}'(A_{s}^{t}, B_{s}^{t}) \rangle f_{v}(A_{v}^{t-1}, B_{v}^{t-1})
$$

$$
A_v^{t+1} = \frac{\sqrt{\Delta n}}{\Delta n} f_u(A_u^t B_u^t) f_u(A_u^t, B_u^t)^T
$$

State evolution

 $M_u^t =$ 1 *n* $\mathbf{\hat{u}}_{\mathrm{AMP}} \cdot \mathbf{u} \qquad \qquad M_u^{t+1} = \mathbb{E}_{u, \xi}$ $\overline{ }$ *fu* $\left(\frac{M_v^t}{\Delta},\right)$ $\frac{M_v^t}{\Delta}x$ + $\sqrt{\frac{M_v^t}{\Delta}}\xi$! *u* $\overline{1}$

$$
M_v^t = \frac{1}{m} \hat{\mathbf{v}}_{\text{AMP}} \cdot \mathbf{v} \qquad \qquad M_v^{t+1} = \mathbb{E}_{v,\xi} \left[f_v \left(\alpha \frac{M_u^t}{\Delta}, \alpha \frac{M_u^t}{\Delta} x + \sqrt{\alpha \frac{M_u^t}{\Delta}} \xi \right) v \right]
$$

Mutual information

 $i_{\rm RS}(m_u,m_v) = \alpha$ $\frac{m_u m_v + \left[\mathbb{E}(u^2)\right]\left[\mathbb{E}(v^2)\right]}{2\Delta} - \mathbb{E}_{u,z}\left[\mathcal{J}_u\right]$ $\left(\frac{m_v}{\Delta}, \frac{m_v u}{\Delta} + \sqrt{\frac{m_v}{\Delta}}z\right]-\alpha \mathbb{E}_{v,z}\left[\mathcal{J}_v\right]$ $\left(\frac{m_u}{\Delta}, \frac{m_u v}{\Delta} + \sqrt{\frac{m_u}{\Delta}}z\right]$

- **1) Message passing, State evolution, Mutual information**
- **2) Universality property**
- **3) Main results**
- **4) Sketch of proof**

WHAT ABOUT OTHER CHANNELS?

$$
w_{ij} = x_i^T x_j / \sqrt{n} \xrightarrow{P_{\text{out}}(y_{ij}|w_{ij})} y_{ij}
$$

CHANNEL UNIVERSALI⁻ $w_{ij} = x_i^T x_j / \sqrt{n}$ $\frac{P_{\text{out}}(y_{ij}|w_{ij})}{\sqrt{n}}$ *yi* $S_{ij}\equiv$ $\partial \log P_{\rm out}(y_{ij}|w)$ ∂w $\overline{}$ $\overline{}$ $|y_{ij},0|$ 1 Δ $\equiv \mathbb{E}_{P_{\text{out}}(y|w=0)} \left[\left(\frac{\partial \log P_{\text{out}}(y|w)}{\partial w} \right) \right]$ ∂w $\overline{\mathsf{I}}$ *y,*0 \setminus ² Fisher-score matrix Fisher information Dependence on the channel **only** via:

 $w_{ij} = x_i^T x_j / \sqrt{n}$ **AWGN** $y_{ij} = w_{ij} + \sqrt{\Delta \xi}$ Effective Gaussian channel with y=ΔS

CHANNEL UNIVERSALITY A physicist argument

small quantity
$$
\longrightarrow
$$
 $W = \frac{1}{\sqrt{n}} XX^T$

 $P_{\text{out}}(Y_{ij}|W_{ij}) = e^{\log P_{\text{out}}(Y_{ij}|W_{ij})} = P_{\text{out}}(Y_{ij}|0)e^{W_{ij}S_{ij} + \frac{1}{2}W_{ij}^2S'_{ij} + O(n^{-3/2})}$

 $P_{\text{out}}(Y|W) = P_{\text{out}}(Y|0)e$ $\sum_{i \leq j} (W_{ij} S_{ij} + \frac{1}{2} W_{ij}^2 S'_{ij}) + O(\sqrt{n})$ $P_{\text{out}}(Y|W) \approx P_{\text{out}}(Y|0)e$ $\sum_{i \leq j} (W_{ij} S_{ij} - \frac{1}{2\Delta} W_{ij}^2) + O(\sqrt{n})$ $P(W|Y) \propto P(W)e^{-\frac{1}{2Z}}$ 2Δ $\sum_{i \leq j} (\Delta S_{ij} - W_{ij})^2 + O(\sqrt{n})$ *.* n^2 terms $\longrightarrow P_{\rm out}(Y|W)=P_{\rm out}(Y|0)e^{\sum_{i\leq j}(W_{ij}S_{ij}+\frac{1}{2}W_{ij}^2S_{ij})}$ *concentration Effective Gaussian posterior probability*

CHANNEL UNIVERSALITY

Theorem I.1 (Channel Universality). Assume model (1) with a prior $p(x)$ having a finite support, and the output channel $P_{\text{out}}(y|w)$ such that at $w = 0$, $\log P_{\text{out}}(y|w)$ is thrice differentiable with bounded second and third derivatives and $\mathbb{E}_{P_{\text{out}}(y|0)} [|\partial_w \log P_{\text{out}}(y|w)|_{w=0}|^3] = O(1)$. Then the mutual information per variable satisfies

$$
I(\boldsymbol{W};\boldsymbol{Y})=I(\boldsymbol{W};\boldsymbol{W}+\sqrt{\Delta}\boldsymbol{\xi})+O(\sqrt{n}),\qquad(2)
$$

where ξ is a symmetric matrix such that $\xi_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ for $i \leq j$, and Δ is the inverse Fisher information (evaluated at $w=0$) of the channel $P_{\text{out}}(y|w)$:

$$
\frac{1}{\Delta} \equiv \mathbb{E}_{P_{\text{out}}(y|0)} \left[\left(\frac{\partial \log P_{\text{out}}(y|w)}{\partial w} \Big|_{y,0} \right)^2 \right]. \tag{3}
$$

arXiv:1603.08447 *FK, Xu & Zdeborova '16*

■ Conjectured in *Lesieur*, *FK & Zdeborova* '15

■Rank 1 SBM used & proven in *Abbe, Deshpande, Montanari'16*

- **1) Message passing, State evolution, Mutual information**
- **2) Universality property**
- **3) Main results**
- **4) Sketch of proof**

Rank r=2 Minimum mean-squared error $W =$ 1 \sqrt{n} $x_i^T = (0, \ldots, 0, 1, 0, \ldots, 0)$ *W* = $\frac{1}{\sqrt{n}} X X^T$ *Y* = *P*_{out}(*W*)

\n- ▶ **Easy phase**
$$
\Delta < \frac{1}{r^2} = \Delta_c
$$
 Same transition in spectral methods (-BBP'05)
\n- ▶ **Hard phase** $\frac{1}{r^2} < \Delta < \frac{1}{4r \ln(r)}[1 + o_r(1)] = \Delta_s$ **Conjectured to be hard for all polynomial algorithms**
\n- ▶ **Impossible phase** $\Delta > \frac{1}{4r \ln(r)}[1 + o_r(1)] = \Delta_s$ **Impossible phase** $\Delta > \frac{1}{4r \ln(r)}[1 + o_r(1)] = \Delta_s$ $|p_{\text{in}} - p_{\text{out}}| < \frac{1}{\sqrt{n}} 2\sqrt{r \log r} \sqrt{p_{\text{out}}(1 - p_{\text{out}})}$.
\n

Related to Potts glass temperature *(Kanter, Gross, Sompolinsky'85)*

Non-symmetric Community detection

$$
P(x) = \rho \delta \left(x - \sqrt{\frac{1 - \rho}{\rho}} \right) + (1 - \rho) \delta \left(x + \sqrt{\frac{\rho}{1 - \rho}} \right)
$$

 $\Delta=$ $p(1-p)$ μ^2

CLUSTERING MIXTURES OF GAUSSIANS IN HIGH DIMENSIONS

Algorithm first proposed by Matsushita, Tanaka '13

WHAT ABOUT RANK 1 SPARSE PCA? Rank r=1 $W =$ 1 $X_i = \{0, 1\}$ $W = \frac{1}{\sqrt{n}} XX^T$ $P(x) = \rho \delta_{x,1} + (1 - \rho) \delta_{x,0}$ $Y = W + \mathcal{N}(0, \Delta)$

For $\rho > 0.05$, Montanari and Deshpande showed that AMP achieved the optimal MMSE

What about RANK 1 sparse PCA? Rank r=1 $W =$ 1 $X_i = \{0, 1\}$ $W = \frac{1}{\sqrt{n}} XX^T$ $P(x) = \rho \delta_{x,1} + (1 - \rho) \delta_{x,0}$ $Y = W + \mathcal{N}(0, \Delta)$

AMP achieved the optimal MMSE everywhere EXCEPT between the blue and red curves

Easy, Hard and impossible inference

A very common phenomena: Information is hidden by metastability (1st order transition in physics)

The hard phase quantified also in: planted constraint satisfaction, compressed sensing, stochastic block model, dictionary learning, blind source separation, sparse PCA, error correcting codes, hidden clique problem, others ….

Conjecture: hard for **all** polynomial algorithms

- **1) Message passing, State evolution, Mutual information**
- **2) Universality property**
- **3) Main results**
- **4) Sketch of proof**

Result 1 [FK, Xu & Zdeborová] : Upper Bound

$$
\frac{I}{n} \leq i_{\text{Bethe}}(m) = \frac{m^2 + \left[\mathbb{E}_x(x^2)\right]^2}{4\Delta} - \mathbb{E}_{x,z} \left[\mathcal{J}\left(\frac{m}{\Delta}, \frac{mx}{\Delta} + \sqrt{\frac{m}{\Delta}}z\right)\right]
$$

(note that this is true at any value of n, not only asymptotically)

Method: Guerra's interpolation+Nishimori identities

Result 1 [FK, Xu & Zdeborová] : Upper Bound

Interpolate the factorization problem at $t=1$ from a denoising problem at $t=0$

$$
P_t(x|Y,D) = \frac{1}{Z_t} p_0(x)e^{t\sum_{i\leq j}\left[-\frac{\left(\frac{x_i x_j}{\sqrt{n}} - Y_{ij}\right)^2}{2\Delta}\right] + (1-t)\sum_{i}\left[\frac{(D_i - x_i)^2}{2\Delta_D}\right]}
$$

Factorization:
$$
w_{ij} = x_i^T x_j / \sqrt{n}
$$
 $\xrightarrow{N(0, \Delta/t)}$ y_{ij}

 $\mathcal{N}(0,\Delta_D/(1-t))$ Denoising: $x_i \xrightarrow{y_0, \Delta_D/(1-t)} D_i$ with $\Delta_D =$ Δ *m* with

 $I^{t=1}(x; Y) = I^{t=0}(x; y) + \int_0^1$ 0 $\frac{d}{dt} I^t(x;Y,y)$

Result 1 [FK, Xu & Zdeborová] : Upper Bound

Interpolate the factorization problem at $t=1$ from a denoising problem at $t=0$

$$
P_t(x|Y,D) = \frac{1}{Z_t} p_0(x)e^{t\sum_{i\leq j}\left[-\frac{\left(\frac{x_i x_j}{\sqrt{n}} - Y_{ij}\right)^2}{2\Delta}\right] + (1-t)\sum_{i}\left[\frac{(D_i - x_i)^2}{2\Delta_D}\right]}
$$

$$
I^{t=1}(x;Y) = I^{t=0}(x;y) + \int_0^1 \frac{d}{dt} I^t(x;Y,y)
$$

Use Stein lemma and Nishimori's identities, one can show that

$$
\frac{I(x;Y)}{n} = i_{rs}(m) - \int_0^1 dt \frac{(m - \mathbb{E}_t [xx_0])^2}{4\Delta} < i_{rs}(m)
$$

Remark: for estimation problems, Guerra's interpolation yields an upper bound while in the usual case (i.e. CSP) it yields a <u>lower bound</u>

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

 $Step 1:$ For $\Delta < \Delta_{\text{AMP}}$

 $MSE_{AMP}(\Delta) \geq MMSE(\Delta)$

 $\frac{1}{2}$

 Δ _{RS}

Δ

 $\frac{1}{1}$

 $\frac{d}{d\Delta^{-1}}i(\Delta) = \frac{1}{4}$ I-mmse theorem (Guo-Verdu) *(For physicists: this is just thermodynamics)*

 $\mathrm{MMSE}(\Delta)$

SKETCH OF THE PROOF ΔAMP ΔRS Δ |
|
| $\frac{1}{2}$ $MSE_{AMP}(\Delta) \geq MMSE(\Delta)$ *d* $\frac{d\Delta^{-1}}{d\Delta^{-1}}$ [min_E*i*_{RS}(*E*; Δ)] \geq *d* $d\Delta^{-1}$ $-\frac{d}{d\Delta^{-1}}[\min_E i_{RS}(E;\Delta)] \geq \frac{d}{d\Delta^{-1}}i(\Delta)$ $Step 1:$ For $\Delta < \Delta_{\text{AMP}}$ **Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound** $\frac{d}{d\Delta^{-1}}i(\Delta) = \frac{1}{4}$ $\mathrm{MMSE}(\Delta)$ I-mmse theorem (Guo-Verdu) *(For physicists: this is just thermodynamics)*

SKETCH OF THE PROOF $\Delta_{\rm AMP}$ ΔRS Δ |
|
| $\frac{1}{2}$ $MSE_{AMP}(\Delta) \geq MMSE(\Delta)$ *d* $\frac{d\Delta^{-1}}{d\Delta^{-1}}$ [min_E*i*_{RS}(*E*; Δ)] \geq *d* $\frac{d\alpha}{d\Delta^{-1}}i(\Delta)$ *d* $\frac{d\alpha}{d\Delta}$ [min_E $i_{RS}(E;\Delta)] \le$ *d* $\frac{d}{d\Delta}i(\Delta)$ $\frac{1}{1}$ **Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound** $Step 1:$ For $\Delta < \Delta_{\text{AMP}}$

SKETCH OF THE PROOF ΔAMP ΔRS Δ |
|
| $\frac{1}{2}$ $MSE_{AMP}(\Delta) \geq MMSE(\Delta)$ *d* $\frac{d\Delta^{-1}}{d\Delta^{-1}}$ [min_E*i*_{RS}(*E*; Δ)] \geq *d* $\frac{d\alpha}{d\Delta^{-1}}i(\Delta)$ *d* $\frac{d\alpha}{d\Delta}$ [min_E $i_{RS}(E;\Delta)] \le$ *d* $\frac{d}{d\Delta}i(\Delta)$ $\min_E i_{RS}(E; \Delta) - \min_E i_{RS}(E; 0) \leq i(\Delta) - i(0)$ Both are equal to $H(x)$ $\frac{1}{1}$ **Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound** $Step 1: For $\Delta < \Delta_{\text{AMP}}$$

SKETCH OF THE PROOF ΔAMP Δ |
|
| $\frac{1}{2}$ $MSE_{AMP}(\Delta) \geq MMSE(\Delta)$ *d* $\frac{d\Delta^{-1}}{d\Delta^{-1}}$ [min_E*i*_{RS}(*E*; Δ)] \geq *d* $\frac{d\alpha}{d\Delta^{-1}}i(\Delta)$ *d* $\frac{d\alpha}{d\Delta}$ [min_E $i_{RS}(E;\Delta)] \le$ *d* $\frac{d}{d\Delta}i(\Delta)$ $\min_E i_{RS}(E; \Delta) - \min_E i_{RS}(E; 0) \leq i(\Delta) - i(0)$ $\frac{1}{1}$ **Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound** *Step 1:* For $\Delta < \Delta_{\text{AMP}}$ ΔRS $\min_E i_{\text{RS}}(\Delta, E) \leq i(\Delta)$

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

Step 2: Prove that the true thermodynamic potential is analytic until $\Delta_{\rm RS}$

This is the hardest part. Sketch: 1) Map the problem to its "spatially coupled" version 2) Prove both models have the same mutual information *(with Guerra's type interpolation)*

 $\Delta_{\rm AMP}$

 $\Delta_{\rm RS}$

|
|
|

 $\frac{1}{1}$

 $\frac{1}{2}$

Δ

3) Prove the spatially coupled version is analytic until Δ_{RS} *(Threshold saturation)*

More in Nicolas Macris's talk this afternoon

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

Step 3: $For \Delta > \Delta_{RS}$ AMP provides back the MMSE Use again the I-MMSE theorem from Δ_{RS} to $\Delta > \Delta_{RS}$

ΔRS

 $\frac{1}{2}$

Δ

 $\frac{1}{1}$

CONCLUSIONS

- MMSE in a random setting of the low-rank matrix estimation evaluated *(Proven rigorously for symmetric problems, open for generic UVT factorization).*
- **Promising proof strategy for the replica formula in estimation problems** (possible generalization for larger ranks, tensors, etc…)
- Dependence on the output channel through its Fisher information: *universality*
- Two phase transitions: an algorithmic one and an information theoretic one. Sometimes equal, but not always; AMP reach the MMSE in a large region.
- When the problem is not balanced (i.e. if the prior has a non-zero mean) AMP has a *better detectability transition* than spectral methods.
- **Promising algorithm with good convergence properties for applications** beyond random setting (example: Restricted Boltzmann Machine).
- **Open-source implementation available** [http://krzakala.github.io/LowRAMP/](http://www.google.com/url?q=http://krzakala.github.io/LowRAMP/&sa=D&sntz=1&usg=AFQjCNFhhQektLn5tJp97tEgDJwaULe04g)

