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Low-rank matrix estimation

Goal:  Estimate unknown X (or U & V) from known Y. 
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Some examples…
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(Goal: Estimate unknown X from known Y.)

r-dimensional variable (r=rank)
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Additive white Gaussian noise (sub-matrix localization)

Some examples…
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(Goal: Estimate unknown X from known Y.)



Additive white Gaussian noise (sub-matrix localization)

x

T
i = (0, . . . , 0, 1, 0, . . . , 0)

P
out

(y|w) = 1p
2⇡�

e�
(y�w)2

2�

wij = x

T
i xj/

p
n

(Goal: Estimate unknown X from known Y.)

Dense stochastic block model (community detection)
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Some examples…

Additive white Gaussian noise (clustering mixture of Gaussians)

uT
i = (v1i , . . . , v

R
i ) 2 R

vTi = (0, . . . , 0, 1, 0, . . . , 0)

W =
1p
n
UV T +N (0,�2)

Y

(Goal: Estimate unknown U and V from known Y.)



Sparse PCA, robust PCA

Collaborative filtering (low rank matrix completion)

1-bit Collaborative filtering (like/unlike)

Bi-clustering

Planted clique (cf. Andrea Montanari yesterday)

etc…

Even more examples…



QUESTIONS
Many interesting problems can be formulated this way

Q1: When is it possible to perform a good factorization?

Q2: When is it algorithmically tractable ?

Q3: How good are spectral methods (main tool) ?

Yesterday: Andrea taught us how to analyze AMP for such problems 
with the state evolution approach.

Today: We continue in this direction and answer these questions in a 
probabilistic setting, with instances randomly generated from a model.



Probabilistic setting
Assume X is generated from

P (X) =
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The posterior 
distribution reads

xixj yij Graphical model where     are  
pair-wise observations of variables 

yij

MMSE estimator (minimal error) 
Marginals probability of the posterior

When      and        known,                           
Approximate message passing = dense-factor-graph simplifications of belief 
propagation, hopefully asymptotically exact marginals of the posterior distribution.
Exact analysis possible with statistical-physics style methods
Many rigorous proofs possible when one works a bit harder

EXACTLY Solvable ?
PX P

out

n ! 1, r = O(1)



OUTLINE

1) Message passing, State evolution, Mutual information

2) Universality property

3) Main results

4) Sketch of proof
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AMP FOR GAUSSIAN ADDITIVE CHANNEL
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Dependence on the prior only via a “thresholding function” f(A,B) given 
by the expectation of: 
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Mean and variance 
of the marginals:

Note: for  x=±1, these are nothing but the TAP equations for the 
Ising Sherrington-Kirkpatrick model (on the Nishimori line)
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State evolution
Single letter characterization of the AMP

Depends on the channel only though its Fisher information. 
1-parameter family of channels having the same MMSE. 
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cf. Yesterday’s talk: rigorously proven in 
Montanari, Bayati ‘10 - Montanari, Deshpande ‘14
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State evolution
Single letter characterization of the AMP
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Note: for  x=±1, these are nothing but the replica symmetric equations 
for the Ising Sherrington-Kirkpatrick model (on the Nishimori line)



Replica Mutual information
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The replica methods predicts an asymptotic formula for i = I/n:

I(X;Y ) =

Z
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Most quantities of interest can be computed from the Mutual Information 
(free energy for physicist)

with

FACT: The state evolution recursion for AMP is a fixed point of iRS(m)

CONJECTURE: limn!1
I(X;Y )

n
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Replica Mutual information



Replica Mutual information

iRS(m) =
m

2 +
⇥
E
x

(x2)
⇤2

4�
� E

x,z


J

✓
m

�
,

mx

�
+

r
m

�
z

◆�

J (A,B) = log

Z
e

Bx�Ax

2
/2
p(x)dewith

* Proven for “not-too-sparse” PCA (Montanari & Deshpande ’14) and for 
symmetric community detection (Montanari, Abbe & Deshpande ’16).
* Proven for the planted SK model by Korada & Macris ‘10

Can we prove limn!1
I(X;Y )

n
= minmirs(m) ? yes!

FK, Xu & Zdeborová ‘16 : Upper Bound
I

n
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(Guerra Interpolation)

Barbier, Dia, Macris, FK & Zdeborová ‘16: 
(Spatial coupling+thermodynamic integration/I-MMSE)
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WHAT ABOUT OTHER CHANNELS?
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CHANNEL UNIVERSALITY 
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concentration 

Effective Gaussian posterior probability 

A physicist argument
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CHANNEL UNIVERSALITY 

Conjectured in Lesieur, FK & Zdeborova ’15

Rank 1 SBM used & proven in Abbe, Deshpande, Montanari’16

arXiv:1603.08447 FK, Xu & Zdeborova ‘16
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Rank r=2

Minimum mean-squared error
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Size n=20000



Rank >=4

LARGER RANK ?
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Two phase transitions for r>4

Fisher information:
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Fisher information:
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Two phase transitions for r>4



Easy phase

Hard phase 

Impossible phase
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Decelle, Moore, 
FK,  Zdeborova’11

Related to Potts glass temperature (Kanter, Gross, Sompolinsky’85)

Conjectured to be hard for all polynomial algorithms
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Two phase transitions for r>4
Same transition in 

spectral methods (~BBP’05)



Non-symmetric Community detection
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size +: ρn
size -: (1-ρ)n

p++ = p+ µ
1� ⇢

⇢
p
n

p�� = p+ µ
⇢

(1� ⇢)
p
n

p+� = p� µ
1p
n

� =
p(1� p)

µ2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 0  0.1  0.2  0.3  0.4  0.5

∆

ρ

Asymmetric Community Detection

∆AMP
∆Opt

∆spectral

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.5  1  1.5  2  2.5

 

 

MSE(∆) at ρ=0.05

∆opt∆AMP

MMSE
AMP

P (x) = ⇢�

✓
x�

r
1� ⇢

⇢

◆
+ (1� ⇢)�

✓
x+

r
⇢

1� ⇢

◆



CLUSTERING MIXTURES OF GAUSSIANS  
IN HIGH DIMENSIONS

2 groups 20 groups
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1p
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α=m/n=1

Algorithm first proposed by Matsushita, Tanaka ‘13



What about RANK 1 sparse PCA?

Rank r=1

W =
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XXTXi = {0, 1}

P (x) = ⇢�

x,1 + (1� ⇢)�
x,0

Y = W +N (0,�)

ρ
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ρ=0.05→
Δ

For ρ > 0.05, Montanari and Deshpande 
showed that AMP achieved the optimal MMSE 



What about RANK 1 sparse PCA?

AMP achieved the optimal MMSE everywhere 
EXCEPT between the blue and red curves
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A very common phenomena: Information is hidden by 
metastability (1st order transition in physics)  

The hard phase quantified also in: planted constraint 
satisfaction, compressed sensing, stochastic block model, 
dictionary learning, blind source separation, sparse PCA, 
error correcting codes, hidden clique problem, others ….

Conjecture: hard for all polynomial algorithms 

amount of information 
in the measurements

easyhard

impossible

known bounds

known algorithms

cK
cs

Easy, Hard and impossible inference
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SKETCH OF THE PROOF
Result 1 [FK, Xu & Zdeborová] : Upper Bound

I

n

 iBethe(m) =
m

2 +
⇥
E
x

(x2)
⇤2

4�
� E

x,z


J

✓
m

�
,

mx

�
+

r
m

�
z

◆�

Method: Guerra’s interpolation+Nishimori identities

(note that this is true at any value of n, not only asymptotically)



SKETCH OF THE PROOF

Interpolate the factorization problem at t=1 from a denoising problem at t=0
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Result 1 [FK, Xu & Zdeborová] : Upper Bound
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SKETCH OF THE PROOF

Interpolate the factorization problem at t=1 from a denoising problem at t=0
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Use Stein lemma and Nishimori’s identities, one can show that

Remark: for estimation problems, Guerra’s interpolation yields an upper 
bound while in the usual case (i.e. CSP)  it yields a lower bound

Result 1 [FK, Xu & Zdeborová] : Upper Bound
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SKETCH OF THE PROOF
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Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound



SKETCH OF THE PROOF
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Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

MSEAMP(�) � MMSE(�)

Step 1: ForΔ < ΔAMP
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(For physicists: this is just thermodynamics)
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Step 1: ForΔ < ΔAMP

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound
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Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

Step 1: ForΔ < ΔAMP



SKETCH OF THE PROOF
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SKETCH OF THE PROOF

ΔAMP

Δ

-
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Step 2: Prove  that the true 
thermodynamic potential is

analytic until ΔRS

This is the hardest part. Sketch:
1) Map the problem to its “spatially coupled” version
2) Prove both models have the same mutual information  

(with Guerra’s type interpolation)
3) Prove the spatially coupled version is analytic until ΔRS 

(Threshold saturation)

More in Nicolas Macris's talk this afternoon

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

ΔRS



SKETCH OF THE PROOF

ΔAMP

Δ
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Step 3:
ForΔ >ΔRS,

 AMP provides back the MMSE  
Use again the I-MMSE theorem 

from ΔRS to Δ>ΔRS

Result 2 [Barbier, Dia, Macris, FK & Zdeborová] : Converse Lower bound

ΔRS



MMSE in a random setting of the low-rank matrix estimation evaluated             
(Proven rigorously for symmetric problems, open for generic UVT factorization).

Promising proof strategy for the replica formula in estimation problems 
(possible generalization for larger ranks, tensors, etc…)               

Dependence on the output channel through its Fisher information: universality

Two phase transitions: an algorithmic one and an information theoretic one. 
Sometimes equal, but not always; AMP reach the MMSE in a large region.

When the problem is not balanced (i.e. if the prior has a non-zero mean)         
AMP has a better detectability transition than spectral methods.

Promising algorithm with good convergence properties for applications              
beyond random setting (example: Restricted Boltzmann Machine).

Open-source implementation available                                                            
http://krzakala.github.io/LowRAMP/

Conclusions

http://www.google.com/url?q=http://krzakala.github.io/LowRAMP/&sa=D&sntz=1&usg=AFQjCNFhhQektLn5tJp97tEgDJwaULe04g

