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The upper tail problem in random graphs

I Let G (N, p) be an Erdős–Rényi random graph. (N vertices,
any two connected by an edge with probability p.)

I Let T be the number of triangles in this graph. What is the
behavior of P(T ≥ (1 + δ)E(T )) as N →∞ and δ remains
fixed?

I Here p may remain fixed or may tend to 0 as N →∞.

I Was an open question for a long time. (History in the next
two slides.) Still not fully resolved. This deceptively difficult
problem falls in the intersection of large deviations,
concentration of measure, and random graph theory.

I This is quite surprising since T is simply a third degree
polynomial of independent random variables. We know
everything about linear functions of independent random
variables, so why all this difficulty for a third degree
polynomial?
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Upper tails for triangles

I After a long line of successively improving tail bounds by
various authors, Kim and Vu (2004) and Janson, Oleszkiewicz
and Ruciński (2004) showed that if p ≥ N−1 logN, then

e−c1(δ)N2p2 log(1/p) ≤ P(T ≥ (1 + δ)E(T )) ≤ e−c2(δ)N2p2
,

where c1(δ) and c2(δ) are constants that depend on δ only.

I The logarithmic gap was closed by Chatterjee (2012) and
DeMarco and Kahn (2012).

I The computation of the exact constant in the exponent was
still open.

I For a certain range of fixed values of p and δ, Chatterjee and
Dey (2009) — using Stein’s method for concentration
inequalities — computed the exact constant c(δ, p) such that,
as N →∞,

P(T ≥ (1 + δ)E(T )) = e−c(δ,p)N2(1+o(1)) .

I This result, however, did not cover the full range of δ and p.
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Large deviations for triangle counts

I For the case of fixed p, the problem was fully resolved by
Chatterjee and Varadhan (2011), who exhibited the constant
c(δ, p) as the solution of a variational problem. This formula
was conjectured in an unpublished manuscript of Bolthausen,
Comets and Dembo (2003).

I The proof relied on Szemerédi’s regularity lemma and the
theory of graph limits developed by Lovász and coauthors.

I However, the regularity lemma has no satisfactory analog for
sparse graphs, certainly when p is of order N−α for some
positive α.

I This made it impossible to extend the proof to the sparse case.
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Partial solution

Theorem (Lubetzky and Zhao (2014))

If N →∞ and p → 0 slower than N−1/42, then

P(T ≥ (1 + δ)E(T ))

= exp

(
−(1 + o(1)) min

{
δ2/3

2
,
δ

3

}
N2p2 log

1

p

)
.

I Conjecture: This formula is valid if p → 0 slower than N−1/2.

I The proof uses the theory of nonlinear large deviations
developed by Chatterjee and Dembo (2014). This will be
described later in this talk.
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Generalization

I Take any connected finite simple graph H on k vertices with
maximum degree ∆ ≥ 2.

I Let H∗ be the induced subgraph of H on all vertices whose
degree in H is ∆.

I Define a polynomial PH∗(x) :=
∑

k iH∗(k)xk , where iH∗(k) is
the number of k-element independent sets in H∗.

I Let HN,p be the number of homomorphisms of H into
G (N, p).

I A homomorphism is a map from the vertex set of H into the
vertex set of G (N, p) that preserves edges. For example, if H
is a triangle, then HN,p is six times the number of triangles in
G (N, p).
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Large deviations for subgraph counts

Theorem (Bhattacharya, Ganguly, Lubetzky and Zhao (2015))

For any δ > 0, there is a unique positive number θ = θ(H, δ) that
solves PH∗(θ) = 1 + δ. There is a constant αH > 0 depending only
on H, such that if N →∞ and p → 0 slower than N−αH ,

P(HN,p ≥ (1 + δ)E(HN,p)) = exp

(
−(1 + o(1))c(δ)N2p∆ log

1

p

)
,

where

c(δ) =

{
min{θ, 1

2δ
2/k} if H is regular,

θ if H is irregular.

Example: If H = C4, then

c(δ) =

{
1
2

√
δ if δ < 16,

−1 +
√

1 + 1
2δ if δ ≥ 16.
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A general problem

I Take any smooth f : [0, 1]n → R.

I Let Y = (Y1, . . . ,Yn) be a vector of i.i.d. Bernoulli(p)
random variables.

I We want to find an approximation for the upper tail
probability P(f (Y ) ≥ t) when t is much bigger than E(f (Y )).

I Classical large deviations theory well-suited for linear f .

I May be quite nontrivial even for very simple nonlinear f , as we
saw in the random graph example. Problems tackled on ad
hoc basis.

I Can there be a more unified approach?
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The naive mean field approximation

I For x = (x1, . . . , xn) ∈ [0, 1]n, define

Ip(x) :=
n∑

i=1

(
xi log

xi
p

+ (1− xi ) log
1− xi
1− p

)
.

I For each t ∈ R, define

φp(t) := inf{Ip(x) : x ∈ [0, 1]n such that f (x) ≥ tn} .

I In many problems, it turns out that

P(f (Y ) ≥ tn) ≈ exp(−φp(t)) . (?)

I In particular, this is true in great generality for linear functions.

I I will describe a sufficient condition under which the above
approximation is valid for nonlinear maps.
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Low complexity gradient condition

Theorem (Chatterjee & Dembo, 2014. Rough statement.)

The approximation (?) is valid when, in addition to some
smoothness conditions on the function f , the gradient vector
∇f (x) = (∂f /∂x1, . . . ∂f /∂xn) may be approximately encoded by
o(n) bits of information.

I We call this the “low complexity gradient” condition.

I Actual statement of the theorem involves a messy error term
arising out of the smoothness conditions on f .

I Many notable results on sharp upper and lower bounds for tail
probabilities of nonlinear functions (Talagrand, Kim, Vu,
Lata la, ....) that hold up to constant factors in the exponent,
but no results about the precise approximation (?).

I Some preliminary work in Chatterjee & Dey (2009).
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I Some preliminary work in Chatterjee & Dey (2009).
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Example 1: 1D Ising model

I Let

f (x) =
n−1∑
i=1

xixi+1 .

I Then, for 2 ≤ i ≤ n − 1,

∂f

∂xi
= xi−1 + xi+1 .

I Thus, for this f , the gradient vector cannot be approximately
encoded by o(n) many bits. To know ∇f (x), even
approximately, we need to know the values of all the xi ’s.

I One can check that the approximation (?) is not valid for
this f .
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Example 2: Curie-Weiss model

I Let

f (x) =
1

n

∑
1≤i<j≤n

xixj .

I For each i ,

∂f

∂xi
=

1

n

∑
j 6=i

xj = −xi
n

+
1

n

n∑
j=1

xj .

I Thus, for this f , the gradient vector is approximately encoded
by the single quantity n−1

∑
xj .

I The large deviation probabilities for this function satisfy the
approximation (?).
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Example 3: Subgraph counts in sparse random graphs

I Let T be the number of triangles in an Erdős-Rényi random
graph G (N, p).

I Then

T =
1

6

∑
i ,j ,k

YijYjkYki ,

where Yij is the indicator that edge {i , j} is present in the
graph.

I Let n = N(N − 1)/2 and let us agree to denote elements of
Rn as x = (xij)1≤i<j≤N , with the convention that xii = 0 and
xji = xij . Define a function f : Rn → R as

f (x) =
1

N

N∑
i ,j ,k=1

xijxjkxki .

I The plan is to apply the main theorem to this f .
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Example 3 contd.

I Note that

∂f

∂xij
=

3

N

N∑
k=1

xikxjk =: 3aij(x) .

I To apply the main theorem, we need to show that aij(x)’s
may be approximately encoded by o(N2) bits.

I Key observations: (1) If two symmetric matrices x = (xij) and
y = (yij) are close in operator norm, then aij(x) ≈ aij(y) for
almost all i , j . (2) The space of matrices with entries in [0, 1]
has low entropy in operator norm, that is eo(N2) matrices can
well-approximate all matrices in operator norm.

I These two observations allow us to prove the low complexity
condition for ∇f .
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Example 3 contd.

I What is the precise result for triangle counts?

I For x = (xij)1≤i<j≤N , define

Ip(x) :=
∑

1≤i<j≤N

(
xij log

xij
p

+ (1− xij) log
1− xij
1− p

)

and

T (x) :=
1

6

∑
i ,j ,k

xijxjkxki ,

where xij ∈ [0, 1] and xji = xij , xii = 0.

I For u > 1 define

ψp(u) := inf{Ip(x) : T (x) ≥ u E(T )} ,

where T is the number of triangles in G (N, p).
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Example 3 contd.

Theorem (Chatterjee & Dembo, 2014.)

For u > 1 and N sufficiently large (depending only on u),

1− c logN

N1/6p2
≤ ψp(u)

− logP(T ≥ u E(T ))
≤ 1 +

C (logN)33/29

N1/29p42/29
,

where c and C are constants that depend only on u.

I In particular,
ψp(u)

− logP(T ≥ u E(T ))
→ 1

if N →∞ and p → 0 slower than N−1/42(logN)11/14.

I Lubetzky and Zhao (2014) studied the function ψp(u) to
obtain their large deviation result.
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Nonlinear large deviations: The main result

I For any f : [0, 1]n → R, let ‖f ‖ denote the supremum norm
of f .

I Let

fi :=
∂f

∂xi
and fij :=

∂2f

∂xi∂xj
.

I Define

a := ‖f ‖, bi := ‖fi‖ and cij := ‖fij‖ .

I Given ε > 0, let D(ε) be a finite subset of Rn such that for all
x ∈ {0, 1}n, there exists d = (d1, . . . , dn) ∈ D(ε) such that

n∑
i=1

(fi (x)− di )
2 ≤ nε2.
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Main result, contd.

I For x = (x1, . . . , xn) ∈ [0, 1]n, let

I (x) :=
n∑

i=1

(xi log xi + (1− xi ) log(1− xi )) .

I Let
F := log

∑
x∈{0,1}n

ef (x) .

I Given ε > 0, define

complexity term :=
1

4

(
n

n∑
i=1

b2
i

)1/2

ε+ 3nε+ log |D(ε)|, and

smoothness term := 4

( n∑
i=1

(acii + b2
i ) +

1

4

n∑
i,j=1

(
ac2

ij + bibjcij + 4bicij
))1/2

+
1

4

( n∑
i=1

b2
i

)1/2( n∑
i=1

c2
ii

)1/2

+ 3
n∑

i=1

cii + log 2.
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Statement of the main result

Theorem (Chatterjee & Dembo, 2014)

For any ε > 0,

F ≤ sup
x∈[0,1]n

(f (x)− I (x)) + complexity term + smoothness term ,

and

F ≥ sup
x∈[0,1]n

(f (x)− I (x))− 1

2

n∑
i=1

cii .
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Proof sketch

I Let X = (X1, . . . ,Xn) be a random vector that has probability
density proportional to ef (x) on {0, 1}n with respect to the
counting measure.

I For each i , define a function x̂i : [0, 1]n → [0, 1] as

x̂i (x) = E(Xi | Xj = xj , 1 ≤ j ≤ n, j 6= i).

I Let x̂ : [0, 1]n → [0, 1]n be the vector-valued function whose
ith coordinate function is x̂i .

I Let X̂ = x̂(X ).

I The first step in the proof is to show that if the smoothness
term is small, then

f (X ) ≈ f (X̂ ) with high probability.
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Proof sketch contd.

I Next, define a function g : [0, 1]n × [0, 1]n → R as

g(x , y) :=
n∑

i=1

(xi log yi + (1− xi ) log(1− yi )) .

I The second step is to show that with high probability,

g(X , X̂ ) ≈ g(X̂ , X̂ ) = I (X̂ ) .

I Suppose that these two steps have been proved.

I Let A be the set of all x where f (x) ≈ f (x̂(x)) and
g(x , x̂(x)) ≈ I (x̂(x)).

I Since X ∈ A with high probability,∑
x∈A ef (x)∑

x∈{0,1}n e
f (x)
≈ 1 .
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Proof sketch contd.

I Therefore

F = log
∑

x∈{0,1}n
ef (x) ≈ log

∑
x∈A

ef (x)

≈ log
∑
x∈A

ef (x̂(x))−I (x̂(x))+g(x ,x̂(x)) .

I Now let ε be a small positive number.

I Using the low complexity gradient condition, it is possible to
construct a set D′(ε) of size eo(n) such that for each
x ∈ [0, 1]n there exists p ∈ D′(ε) such that x̂(x) ≈ p.

I For each p ∈ D′(ε) let P(p) be the set of all x ∈ {0, 1}n such
that x̂(x) ≈ p.
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Proof sketch contd.

I The crucial fact is that for any p ∈ [0, 1]n,∑
x∈{0,1}n

eg(x ,p) = 1.

I Therefore,

log
∑
x∈A

ef (x̂(x))−I (x̂(x))+g(x ,x̂(x))

≤ log
∑

p∈D′(ε)

∑
x∈P(p)

ef (x̂(x))−I (x̂(x))+g(x ,x̂(x))

≈ log
∑

p∈D′(ε)

∑
x∈P(p)

ef (p)−I (p)+g(x ,p)

≤ log
∑

p∈D′(ε)

ef (p)−I (p) ≤ log |D′(ε)|+ sup
p∈[0,1]n

(f (p)− I (p)) .

I This completes the proof sketch for the upper bound, modulo
the two unproved steps. I will now sketch why f (X ) ≈ f (X̂ ).
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Proof of f (X ) ≈ f (X̂ )

I To show this, define

h(x) := f (x)− f (x̂(x)) .

I Let ui (t, x) := fi (tx + (1− t)x̂(x)), so that

h(x) =

∫ 1

0

n∑
i=1

(xi − x̂i (x))ui (t, x) dt.

I Thus, if D := f (X )− f (X̂ ), then

E(D2) =

∫ 1

0

n∑
i=1

E((Xi − X̂i )ui (t,X )D) dt . (†)
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Proof of f (X ) ≈ f (X̂ ), contd.

I Let X (i) denote the random vector
(X1, . . . ,Xi−1, 0,Xi+1, . . . ,Xn) and let Di := h(X (i)).

I Then note that ui (t,X
(i))Di is a function of the random

variables (Xj)j 6=i only.

I Therefore since X̂i = E(Xi | (Xj)j 6=i ),

E((Xi − X̂i )ui (t,X
(i))Di ) = 0.

I Thus,

E((Xi − X̂i )ui (t,X )D)

= E((Xi − X̂i )ui (t,X )D)− E((Xi − X̂i )ui (t,X
(i))Di ) .

I If the smoothness term is small, then ui (t,X ) ≈ ui (t,X
(i))

and D ≈ Di . Together with the identity (†), this shows that
f (X ) ≈ f (X̂ ) with high probability.
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Summary

I Large deviations for sparse random graphs cannot be tackled
by techniques based on graph limit theory and Szemerédi’s
regularity lemma.

I The recently developed theory of large deviations for nonlinear
functions of Bernoulli random variables has seen some
successful applications in this class of problems, leading to the
solutions of some longstanding questions.

I The degree of sparsity that is allowed by these theorems is less
than optimal. New breakthroughs are required.
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