
A framework for imperfectly observed networks

David Aldous

2 May 2016

David Aldous A framework for imperfectly observed networks



A math model of a real-world network typically starts as a graph. This is
weird, because almost all real networks are better represented as
edge-weighted graphs. The reason this isn’t the default (I guess) is that
there are several conceptually different interpretations of edge-weight:

flow capacity (road network, water network)

distance or cost (TSP)

strength of association (close friend or acquaintance or Facebook
friend).

I’ll consider the last class and think of social networks – collaboration
networks, corporate directorships, Senators’ voting record, etc (note many
biological networks are also in this class). Even within this class of social
networks there are different interpretations of strength of association ,
but (envisaging friends) I abstract this as frequency of interaction.
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Introduce randomness by saying:

for each edge e = (vy), individuals v and y interact at the times of a
rate-we Poisson process.

So this is the meaning of the edge-weights we ≥ 0.

Aside. As discussed in my 2013 paper Interacting Particle Systems (IPS)
as Stochastic Social Dynamics this setup underlies what probabilists call
IPS: each individual is in some “state” and some update rule changes the
states when individuals interact. This covers numerous models like the
voter model or SIS epidemic – a line of research going back to statistical
physics study of the Ising model on Zd .

This talk goes in a different direction: Suppose we are interested in
some quantitative feature of a network which we could calculate if we
knew exactly what the network is.
But suppose we don’t know it . . . . . . . . . . . . then what can we do?
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I’ll call this the imperfectly-observed network problem. I will talk
about one particular formalization – not claimed to be useful for
real-world data but (I do claim) interesting as math theory.

A network is a finite edge-weighted graph. We are concerned with some
“statistic” Γ, a functional G → Γ(G ) on finite edge-weighted graphs G .
There is a network G true with known vertices but unknown edges and
edge-weights we . What we observe is the interaction process described
above. That is, what we observe over time [0, t] is the Poisson(twe)
number of interactions Ne(t) over edges e. We can represent our
observations in two equivalent ways: either as the random multigraph
with Ne(t) copies of edge e, or as the random weighted graph G obs(t) in
which edge e has weight t−1Ne(t).

How do we use these observations to estimate Γ(G true), and how
accurate is the estimate?
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Some general comments.

For any problem about networks where you assumed the network is
known, you could ask this “imperfectly-observed” variation.

There are many other ways to think about “imperfectly-observed
networks” [one popular way will be shown later].

We always have the naive frequentist estimator Γ(G obs(t)). It’s
natural to study, but there is no reason to think it is optimal.

We always have the naive Bayes estimator (flat prior on each we)
but . . . . . .

“Computation is free” – not concerned with computational
complexity – instead we regard observation time as the “cost”.

Any estimator like Γ(G obs(t)) for fixed t will have error depending on the
unknown G true. The “elegant” formulation of a mathematical problem is:

Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.
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Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.

The bottom line of this talk. We have no idea how to do this for most
interesting/natural statistics, but we can do this for a few statistics which
are less interesting/natural.

This is ongoing joint work with grad student Lisha Li.
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Given G , write n for the number of vertices and wv =
∑

y wvy for the
total interaction rate of vertex v . We are thinking of results for large
networks, formalized as n→∞ limits. For discussion purposes here
(not as assumptions in theorems) assume wv ≡ 1, so in time t we see on
average t edges per vertex.

Qualitatively there are 3 time regimes.

For t = o(1) can only estimate statistics like (weighted) degree
distributions (cf. birthday problem).

To make the observed graph connected we need t = Θ(log n) (cf.
coupon collector problem) at which time we see Θ(log n) edges per
vertex and (intuitively) “we can estimate anything well”.

The interesting/challenging regime is where t is a (large-ish)
constant; what can we infer when we have seen 13 interactions per
individual?
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Here is a fundamental, albeit vague, open problem.

if we observe G obs(t) has a “highly connected” (in some sense)
giant vertex set of size αn, then we can infer that G true has a
similarly “highly connected” giant vertex set of size β(α)n?

There are many ways to quantify connectedness by a statistic Γ in this
context, for instance via spectral gap of the (restricted) graph Laplacian.
We conjecture that our program (repeated below) can be done in this
setting. The intuition is that randomness makes G obs less well connected
than G true – but we have no idea how to prove any reasonable version.

Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.

David Aldous A framework for imperfectly observed networks



On the positive side, here is a “sideways” approach to our program.
Consider

T tria
k = inf{t : observed multigraph contains k edge-disjoint triangles}.

T span
k = inf{t : observed multigraph contains k edge-disjoint spanning trees}.

Proposition

s.d.(T tria
k )

ET tria
k

≤
(

e

e − 1

)1/2

k−1/6, k ≥ 1.

s.d.(T span
k )

ET span
k

≤ k−1/2, k ≥ 1.

So here the bounds are independent of w, meaning that we can estimate
the statistics ETk without assumptions on w.

So the “sideways” approach is to seek some observable quantity which is
concentrated around its mean, independent of w, which therefore
provides an estimator of the statistic defined by the expectation.
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Proposition from arXiv preprint Weak Concentration for First Passage
Percolation Times on Graphs and General Increasing Set-valued
Processes and the title give a hint of the proof method. Our observation
process, considered as a growing multigraph, is an increasing set-valued

process, for which there is a simple general bound on s.d.(T )
ET for the first

time T that some “increasing” property holds. In our context, we have

Tk = inf{t : observed multigraph contains k edge-disjoint objects}

and the argument for the bound uses only one object-specific calculation,
which I will outline as a game, which is trivial in the two cases (triangles
and spanning trees) above.

David Aldous A framework for imperfectly observed networks



The game. I choose a multigraph with the given “contains k
edge-disjoint objects” property, and I then delete an edge, and then
show you. Can you always find many different ways to restore the
property by creating a few new edges?

Spanning trees; deleting edge creates a split (A,V \ A) of vertex-set V;
sufficient for you to create any edge between A and V \ A.

Triangles: sufficient for you to create one new triangle.

The bound in the general inequality involves (worst-case) mean “restore”
time in the observation process.

Open problem; Can we do this for the “k-edge connected” property?
(Menger’s theorem doesn’t seem to help).
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Here is a first example of a “natural” statistic. Identify a graph with its
matrix w of edge-weights.

Maximum matching. Take n even. A matching is a set π of n/2 edges
such that each vertex is in exactly one edge.
The weight of the matching is weight(π,w) :=

∑
e∈π we .

The maximum-weight is Γ1(w) := maxπ weight(π,w).
Can we estimate Γ1(w) from the observed G obs(t) at (large) times
t = O(1)?

The naive frequentist estimator Γ1(G obs(t)) does not work – consider the
“dense” case of the complete graph with edge-weights we = 1/(n − 1).

We will finesse this issue by reformulating the problem. Because
real-world networks are typically sparse, we can say that, although we
require our estimates to be valid for all G true, we only require them to be
informative for sparse G true.
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Informally, we regard a weighted graph as sparse if the vertex-weight
sums wv =

∑
y wvy are dominated by the largest O(1) terms.

For discussion, assume maxv wv = 1. For a sparse graph we will have
Γ1(w) = Θ(n), so we reformulate the problem as

can we estimate n−1Γ1(w) up to small additive error?

Such an estimator will be informative in the sparse case, but not for
dense graphs like the complete graph above, for which Γ1 = Θ(1).

A moment’s thought says that to know anything about the weight of
some specific edge we must observe at least two interactions (cf. unseen
species problem).
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This suggests making an estimator using only edges for which we have
observed at least two “interactions”. That is, we define

weight2(π,G obs(t)) := t−1
∑
e∈π

Ne(t)1{Ne(t)≥2}

Γ2(G obs(t)) := max
π

weight2(π,G obs(t))

and our goal is to obtain a bound of the form

En−1
∣∣Γ2(G obs(t))− Γ1(w)

∣∣ ≤ ψ(t) ∀w. (1)

The best we can hope for is a ψ(t) = O(t−1/2) bound: consider the
graph with only one edge. And a conceptually straightforward argument
(large deviations and counting) shows (1) is true for some

ψ(t) = O(t−1/2 log t).

[Also a factor maxv wv , but we can estimate this more quickly].
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Observed and true community structure.

For a subset A of vertices write A∗ for the set of edges with both
end-vertices in A. Write

wm = m−2 max

{∑
e∈A∗

we : |A| = m

}

– essentially the maximum edge-density in a size-m community. Ignoring
computational complexity, suppose we can compute the analogous
observable quantity

W m(t) = m−2 max

{∑
e∈A∗

Ne(t)/t : |A| = m

}
.

To make inferences from the observed G obs(t) to G true we need
m ∼ γ log n. Then (as in previous example, just using large deviations and
counting) we can be confident that wm is in a certain interval, roughly[

W m(t)−
√

2Wm(t)
γt ,W m(t)

]
.

David Aldous A framework for imperfectly observed networks



Here is one case where it seems impossible to carry out this program. It
is a basic example of a process built over a weighted graph.

First passage percolation (FPP).

Given an edge-weighted graph (G ,w) with distinguished vertices
(v∗, v∗∗), create independent random variables ξe with Exponential(we)
distributions, and view ξe as the “traversal time” of edge e. Let X (w) be
the (random) FPP time from v∗ to v∗∗, that is the minimum value of∑

e∈π ξe over all paths π from v∗ to v∗∗. Take the expectation of this
FPP time as our statistic

Γ(w) = EX (w).

We will argue informally that there is no “good” general stopping rule T
for which Γ(G obs(T )) is a good estimate of Γ(G true). That is, one
cannot improve on using the observation process to simulate the FPP
process itself.
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First consider the linear graph on vertex set {v∗ = 0, 1, 2, . . . , n = v∗∗}
with unknown edge-weights w = (wi , 1 ≤ i ≤ n). Clearly

Γ(w) =
n∑

i=1

1/wi .

Fix k ≥ 1 and consider the first time that we have observed k
interactions across each edge:

Tk = min{t : Ni (t) ≥ k , 1 ≤ i ≤ n}.

It is intuitively clear (and true) that Γ(G obs(Tk)) should be a good
estimator for Γ(w) for the linear graph. By analogy with earlier “weak
concentration” results one might hope this holds generally for

Tk = time until observe k edge-disjoint paths from v∗ to v∗∗.

But this is false, as explained below.
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For the linear graph with weights wi ≡ 1 we have

“observation time needed” Tk = Θ(log n) ; actual FPP time Γ(G true) = n.

Consider instead the graph with n 2-edge routes from v∗ to v∗∗, and
with edge weights w .

Here both “observation time needed” and actual FPP time are the same
order, Θ(w−1n−1/2). So choose wn = 1/n to make this n1/2.

Now superimpose this graph and the linear graph. Then at time Θ(log n)
we observe the presence of the linear route, for which FPP time is n, but
we do not observe the presence of the shorter-time 2-edge routes until
time n1/2.

Bottom line: a “universal” algorithm for this statistic cannot stop before
the actual FPP time, because there might be unobserved analogs of such
2-edge paths “in the gap”.
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Comments on example above.

The example is artificial; perhaps Γ(G obs(Tk)) is indeed a good
estimator of Γ(w) under some weak assumptions on w.

A simple argument shows that for this FPP statistic Γ the natural
estimator is an overestimate. Precisely, the unconditional
distribution of X (G obs(t)) stochastically dominates X (w).

As mentioned earlier, a major open problem is to prove some version of
the latter for a statistic measuring “connectivity of giant component”.

Note the weird logic: usually with a random structure we are interested
in proving some desirable property holds. In our framework we want to
reach a conclusion of the format
if the observed graph has a given desirable property then we can be
confident that the true graph has a similar property.
So we want the observed graph to have (slightly) worse behavior, as
regards the given property.
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A very different framework for “imperfectly-observed networks”.

[from a 2011 survey Link prediction in complex networks by Linyuan Lü
and Tao Zhou, cited 683 times.]

Consider unweighted graphs, and only the possibility of unobserved edges
– this is called link prediction. In this literature, the goal is to define an
algorithm that takes the observed edges as input, and outputs an ordering
e1, e2, . . . of all the other possible edges, intended as decreasing order of
assessed “likelihood” of the edge being present. This is done by defining,
for each possible edge (v1, v2), some statistic based on (typically) the
local structure of the observed graph near v1 and v2, for instance

s(v1, v2) =
|N (v1) ∩N (v2)|
|N (v1)| |N (v2)|

where N (v) is the set of neighbors of v . Then list edges in decreasing.
order of s(v1, v2).

In this framework there is no probability model involved; different
algorithms are compared empirically by taking a real-world network,
randomly deleting a proportion of edges to create a synthetic “observed
graph”, and comparing the algorithms’ effectiveness in predicting the
deleted edges.
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Returning to our framework – unknown G true and an observed Gobs(t) – it is
conceptually simpler to take the Bayesian view. Put a prior on G true, compute
the posterior distribution of G true given Gobs(t), then any given statistic has a
posterior distribution.

In particular, if we assume G true is connected and wish to estimate the spectral
gap of the graph Laplacian, in our previous setup we need t = Θ(log n) to
make Gobs(t) connected and get a non-trivial estimate, where in the Bayes
setup we can put a prior on connected graphs.

But not so easy in practice – how do you choose a plausible prior?

To play with the mathematics, consider the “naive Bayes” procedure – take as
prior the uniform law on [0,∞) for each wij – for which the posterior
distribution on w given observed interactions (nij) is that the wij are
independent with densities

ν → p(nij ; νt) (2)

where p(k;λ) denotes the Poisson probability function.

Informally, this “flat” prior lives on highly connected graphs, and for small t the

posterior distribution on w will concentrate on too-highly-connected graphs,

with spectral gap around ne−t . So we will not get a good estimate of true

spectral gap before time Θ(log n).
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