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T he Difficulty of Counting

just got mind fucked
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Intriguing Graph Polynomials

@’T / L Boris Zilber and JAM, September 2004, in Oxford

BZ: VWhat are you studying nowadays?
JAM: Graph polynomials.
BZ: Uh7? What? Can you give examples ....

JAM: Matching polynomial, chromatic polynomial, Tutte polynomial,
characteristic polynomial, ... (detailed definitions) ...

BZ: I know these! They all occur as growth polynomials in my work
on Ng-categorical, w-stable models!

JAM: 7?77 Let's seel
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A detailed exposition of the work which resulted from this conversation can be found in:

Model Theoretic Methods in Finite Combinatorics

M. Grohe and J.A. Makowsky, eds.,
Contemporary Mathematics, vol. 558 (2011), pp. 207-242
American Mathematical Society, 2011

Especially the papers

e On Counting Generalized Colorings
T. Kotek, J. A. Makowsky, and B. Zilber

e Application of Logic to Combinatorial Sequences
and Their Recurrence Relations
E. Fischer, T. Kotek, and J. A. Makowsky

e Counting Homomorphisms and Partition Functions
M. Grohe and M. Thurley
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Related Ph.D. Theses under my supervision

sl I. Averbouch,

Completeness and Universality Properties of
Graph Invariants and Graph Polynomials
Technion - Israel Institute of Technology, Haifa, Israel, 2011

T. Kotek,

Definability of combinatorial functions,
Technion - Israel Institute of Technology, Haifa, Israel, 2012

File:simons-zilber 5



Simons Institute: The Classification Program of Counting Complexity March, 31 2016

Outline of this talk

e | One, two, many chromatic’ polynomials|

e | Computing graph polynomials over the real or complex numbers

Turing vs Blum-Shub-Smale computability

e | Difficult Point Property (DPP)

o [URVariai |

e | Conclusion and many open problems|
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Dagstuhl, January 2013

Earlier versions of this talk can be found at

e J.A. Makowsky and T. Kotek and E.V. Ravve,
A Computational Framework for the Study of Partition Functions and
Graph Polynomials,
Proceedings of the 12th Asian Logic Conference '11,
World Scientific, 2013, pp 210-230.

e Talk given at the Dagstuhl Seminar 13031
Computational Counting
January 13-18, 2013
Organizers:
Peter Blrgisser, Leslie Ann Goldberg, Mark R. Jerrum, Pascal Koiran

In this talk we examine our earlier premature conjectures,
give counter-examples,
and propose revised Open Problems
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One, two, many chromatic polynomials
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The prototype: The chromatic polynomial

Let G be a graph and [k] = {1,2,...,k}. We think of [k] as colors.

A function ¢ : V(G) — [k] is a proper coloring of G with at most k colors, if
for each i € [k] the set ¢~1(4) is an independent set in G.

We denote by x(G; k) the number of proper colorings of G with k colors.

Birkhoff (1912) showed that x(G;k) is a polynomial in Z[k]. Furthermore,
he showed that for the edgeless graph with n vertices, E, = ([n],0) we have
that x(E,; k) = k™ and

X(Gei k) = x(Gr k) + x(Ger k)

where e € E(G) and G/e is obtained by deleting the edge e and G\e is obtained
by contracting the edge e.

This shows that x(G; k) is a polynomial counting colorings and that x(G; k)
has a recursive definition,
and can be extended to a polynomial x(G; X) € R[X].
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Deletion and contraction

e Proving that x(G; X) is a graph polynomial using
deletion and contraction

is very elegant, and led to the theory of graph minors.

e However, this proof is restricted to graph polynomials which are
related to the Tutte polynomial via the recipe theorem.

e B. Zilber's observation, stripped to its basics, shows that counting other
graph colorings of a graph G with k colors leads, for each graph G, to a
polynomial in k.
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The elementary generic proof

THEOREM:

For every graph G, the counting function x(G,k) is a polynomial in k of the
form
V(@)

> e (t)

; J
J=0
where ¢(G, 7) is the number of proper k-colorings with a fixed set of j colors.

Polynomials in Z[k] with monomials of the form (f)
are sometimes called Newton polynomials.
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Proof

A proper coloring uses at most N = |V(G)| of the k colors.

For any 7 < N, let ¢(G, 7) be the number of proper colorings, with a fixed set
of 5 colors, which are proper colorings and use all 5 of the colors.

We observe:
(A): Every permutation of the set of colors used gives also a proper coloring.
(B): Colors not used do not have an effect on being a proper coloring.

Therefore, given k colors, the number of vertex colorings that use exactly j
of the k colors is the product of ¢(G,j) and the binomial coefficient (;“) So

<k
(G k) =D e(G,)()
J<N J
The right side here is a polynomial in k, because each of the binomial coef-

ficients is. We also use that for k < j we have (f) = 0. Q.E.D.
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Variations on coloring, I

Using properties (A) and (B) we get variations of chromatic polynomials:
We can count other coloring functions.
e proper k-edge-colorings:

fe : E(G) — [k] such that if (e, f) € E(G) have a common vertex then fg(e) = fe(f).

xe(G, k) denotes the number of k- edge-colorings

e Total colorings

fv:V = lkvl], fe: E— [kg] and f = fy U fg,

with fy, a proper vertex coloring and fr a proper edge coloring.
e Connected components

fv :V = [ky], If (u,v) € E then fy(u) = fy(v).

e Hypergraph colorings

Vitaly I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications,
Fields Institute Monographs, AMS 2002
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Variations on coloring, II

Let f: V(G) — [k] be a function, such that @& is one of the properties below
and x«(G, k) denotes the number of such colorings with atmost k colors.

For (*), xo(G, k) satisfies (A) and (B), hence is a polynomial in k, for (-),
it is not.

- complete: f is a proper coloring such that every pair of colors occurs
along some edge.
F. Harary and S. Hedetniemi and G. Prins, An interpolation theorem for graphical
homomorphisms, Portugal. Math., 26 (1967), 453-462.

* harmonious: f is a proper coloring such that every pair of colors occurs
at most once along some edge.
J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM
J. Algebraic Discrete Methods, 4 (1983), 306-311.

* convex: Every monochromatic set induces a connected graph.
S. Moran and S. Snir, Efficient approximation of convex recolorings, Journal of Com-

puter and System Sciences, 73.7 (2007), 1078-1089
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Variations on coloring, III

More coloring polynomials in Z[k]:

* injective: f is injectiv on the neighborhood of every vertex.
G. Hahn and J. Kratochvil and J. Siran and D. Sotteau, On the injective chromatic
number of graphs, Discrete mathematics, 256.1-2, (2002), 179-192.

* path-rainbow: Let f: E — [k] be an edge-coloring. f is path-rainbow if
between any two vertices u,v € V there as a path where all the edges
have different colors.

Rainbow colorings of various kinds arise in computational biology
Rainbow connection in graphs, G. Chartrand and G.L. Johns and K. McKeon A and P.
Zhang, Mathematica Bohemica, 133.1, (2008), 85-98.

* monochromatic components: Let f:V — [k] be an vertex-coloring and
t € N. f is an mecc-coloring of G with k colors, if all the connected
components of a monochromatic set have size at most ¢. N. Alon, G. Ding,
B. Oporowski, and D. Vertigan. Partitioning into graphs with only small components.
Journal of Combinatorial Theory, Series B, 87:231-243, 2003.
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Variations on coloring, IV

Let P be any graphs property and let n € N.

We
any

can define coloring functions f : V — [k] by requiring that the union of
n color classes induces a graph in P.

For n = 1 and P the empty graphs G = (V,0) we get the proper colorings.
For n =1 and P the connected graphs we get the convex colorings.

For n = 1 and P the graphs which are disjoint unions of graphs of size
at most ¢, we get the mcci-colorings.

For n = 2 and P the acyclic graphs we get the acyclic colorings,
introduced in: B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14
(1973), 390-412 and further studied in N.Alon , C. Mcdiarmid, B. Reed, Acyclic coloring
of graphs, Random Structures & Algorithms 2.3 (1991) 277-288.

Theorem: Let xp,(G,k) be the number of colorings of G with k colors such
that the union of any n color classes induces a graph in P.

Then xp,(G, k) is a polynomial in k.

IBack to outlinel
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Equivalence of graph polynomials

with E.V. Ravve

Two graph polynomials P(G; X) and Q(G; X) are d.p.-equivalent if for all
graphs Gi1,G2 we have

P(G17X) — P(G27X) iff Q(GlaX) — Q(G27X)
Theorem:(JAM and E.V. Ravve)

Let P and O be two graph properties.
xr.1(G, k) is d.p.-equivalent to xo1(G,k) iff P=Q or P = Q.

Conclusion: There uncountably many generalized chromatic polynomials.

[Back to outlinel

ISkip multivariate and go to DPPJ [Skip multivariate and go to BSYS]
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Variations on colorings, V: Two kinds of colors.

Let G = (V, E).

Here we look at two disjoint color sets A = [k1] and B = [k1 + k2] — [k1].
The colors in A are called proper colors.

Our coloring is a function f :V — [k1 4+ k2] = [k] such that

o If (u,v) € E and f(u) € A and f(v) € A then f(u) = f(v).

e We count the number of colorings with k£ = k1 + k> colors such that k;
colors are in A, i.e., proper.

Theorem 1 (K. Dohmen, A. Ponitz and P. Tittman, 2003)
This gives us a polynomial P(G,k1,k) in k1 and k.
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Computing chromatic polynomials

Turing computability vs Computability over R or C.

An in-depth discussion can be found in:

e J.A. Makowsky and T. Kotek and E.V. Ravve,

A Computational Framework for the Study of Partition Functions
and Graph Polynomials,

Proceedings of the 12th Asian Logic Conference '11,
World Scientific, 2013, pp. 210-230
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Evaluations of graph polynomials, I

Let P(G; X) be a graph polynomial in the indeterminates X, ..., X,.
Let R be a subfield of the complex numbers C.
For a € R", P(—;a) is a graph invariant taking values in R.

We could restrict the graphs to be from a class (graph property) C of graphs.

What is the complexity of computing P(—;a) for
graphs from C 7

e If for all graphs G € C the value of P(—;a) is a graph invariant taking
values in N, we can work in the Turing model of computation.

e Otherwise we identify the graph G with its adjacency matrix Mg, and we
work in the Blum-Schub-Smale (BSS) model of computation.
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Our goal

We want to discuss and extend the classical result of
F. Jaeger and D.L. Vertigan and D.J.A. Welsh

on the complexity of evaluations of the Tutte polynomial. They show:

e cither evaluation at a point (a,b) € C? is polynomial time computable in
the Turing model, and a and b are integers,

e or some fP-complete problem is reducible to the evaluation at (a,b) € C2.

e To stay in the Turing model of computation, they assume that (a,b) is
in some finite dimensional extension of the field Q.

The proof of the second part is a hybrid statement:
The reduction is more naturally placed in the BSS model of computation,
However, gP-completeness has no suitable counterpart in the BSS model.
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Pseudo-gP-completeness

Authors often use implicitly the following hybrid definition:

The evaluation of P(—,a) with a € C™ is (pseudo)-4P hard (or complete) if

e Thereis ce C™ with P(—,¢) € 4P and gP-complete
in the Turing model, and

o P(—,E) Salgebraically P(_7a’)1
where the reduction <ggepraicairy 1S 9iven
no precise definition, but can be given easily subject to minor variations.

It seems to us more natural to work entirely
in the BSS model of computation.
How exactly ?
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Evaluations of graph polynomials, II

e A graph invariant or graph parameter is a function f : J {0,1}"" — R
which is invariant under permutations of columns and rows of the input
adjacency matrix.

e A graph transformation is a function 7': (J, {0, 1} — |, {0, 1}™*™ which
is invariant under permutations of columns and rows of the input adja-
cency matrix.

e The BSS-P-time computable functions over R, Pg, are the functions
f:{0,1}"*" — R BSS-computable in time O(n¢) for some fixed c € N,

e Let f1, fo be graph invariants. f; is BSS-P-time reducible to fo, f1 <p f>
if there are BSS-P-time computable functions T and F such that
(i) T is a graph transformation ;
(ii) For all graphs G with adjacency matrix Mg we have
fi(Mg) = F(f2(T'(Mg)))

e two graph invaraints fi, fo are BSS-P-time equivalent, fi ~gss_p f2,
if f1 <pss, f2 and fz> <pgg, fi1.
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Evaluations of graph polynomials, III:
Degrees and Cones

What are difficult graph parameters in the BSS-model?

Let g,¢' be a graph parameters computable in exponential time
in the BSS-model, i.e., g,9' € EX Pggs.

BSS-Degrees We denote by [g]lpss and [g]lr the equivalence class (BSS-
degree) of all graph parameters ¢’ € EX Pgss under the equivalence rela-
tion ~BSS—P-

BSS-Cones We denote by < g >pgs the class (BSS-cone) {¢ € EXPpgs :
9 <Bss-pr g}

NP-completeness There are BSS-NP-complete problems, and instead of
specifing them, we consider NP to be a degree (which may vary with the
choice of the Ring R).

NP-hardness The cone of an NP-complete problem forms the NP-hard prob-
lems.
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Evaluations of graph polynomials, IV

We work in BSS model over R.

We define
EASY pss(P,C) = {a € R" : P(—;a) is BSS-P-time computable }

and
HARDpgss(P,C) = {a € R" : P(—;a) is BSS-NP-hard }

We use EASY gss(P) and HARDggs(P) if C is the class of all finite graphs.

How can we describe EASY(P,C) and HARD(P,C)~
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Counting Complexity Classes in the BSS-model, 1

K. Meer (2000) introduced an analogue of #P for discrete counting in the
BSS model which can easily be extended to the BSS model over C.

e A counting function over C is a functions f : C>*® — NU {oco}.

e For a complexity class of functions FC we denote by FC®“" the class of
counting functions in FC.

e A function f isin #§P¢ if there exists a polynomial time BSS-machine over
C and a polynomial g such that

f(y) = |{z € C1&=W) - M (y, ) accepts }|
e For every sub-field R of C we have FP¥"" C P C FER.

Typical examples over the reals R are counting zeroes of multivariate poly-
nomials of degree at most 4 (§4 — FEAS) or counting the number of sign
changes of a sequence of real numbers (§SC).
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Counting Complexity Classes in the BSS-model, 1II

Proposition: Over C the number of k-colorings of a graph is in #Pc.

To see this, we associate with a graph G = (V, E) with V = {1,...,n} = [n] the following set
(G) of equations:

col or

(i) xf—le,iG[n]

(ii) Zdo fldd(zj)EE

Clearly, ¥ (G) has at most k" many complex solutions.

D.A. Beyer in his Ph.D. thesis (1982) observed that a graph G is k-colorable iff £ (G) has
a complex solution, and each solution corresponds exactly to proper k-coloring of G.

In S. Margulies’ Ph.D. thesis (2008) it is shown:

Theorem: Every decision problem in NP (in the Turing model) can be en-
coded as solvability problem of sets of equations over C.

Using the fact that §SAT is §P complete we get:

Theorem: Every function f € P (in the Turing model) has an encoding in
fPc (in the BSS model).
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The difficult counting hypothesis (DCH)

e In the literature there are no explicit graph parameters
which are g§Pc-complete problems.

e Counting the number of colorings is not known to be NPc¢-hard in the
BSS-model. On the other hand, it would be truly surprising if counting
the number of k-colorings were in FP{",

Hence we formulate two complexity hypotheses for the BSS model over C:

SDHC: Strong difficult counting hypothesis
Every counting function in f € fP¢ with discrete input which is gP-hard
in the Turing model is NPc-hard in the BSS model over C.

WDCH: Weak difficult counting hypothesis
A counting function in f € §Pc¢ which is fP-hard in the Turing model
cannot be in FPE"™,

If Pc &= NP¢ then SDCH implies WDCH.
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Computing the chromatic polynomial and

the Tutte polynomial, revisited
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The complexity of the chromatic polynomial, I

Theorem:
e x(G,0), x(G,1) and x(G,2) are P-time computable (Folklore)
e x(G,3) is fP-complete (Valiant 1979).
e x(G,—1) is fP-complete (Linial 1986).

Question:
What is the complexity of computing x(G, \) for

A=X€Q
or even for
A= N € C?
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The complexity of the chromatic polynomial, II
Linial's Trick

Let G1 ><x1 G denote the join of two graphs.

We observe that

X(G > Ky A) = (A% x(G, A —n)
Hence we get

(i) x(GK1,4) =4-x(G,3)

(i) x(G> Ky, 3+n) =(n+3)" x(G,3)
hence for n € N with n > 3 it is fP-complete.

This works in the Turing model of computation
for A in some Turing-computable field extending Q.

File:simons-casestudy
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The complexity of the chromatic polynomial, III

If we have have an oracle for some ¢ € Q — N which allows us to compute
x (G, q) we can compute x(G,q') for any ¢ € Q as follows:

Algorithm A(q,q,| V(G) |):
(i) Given G the degree of x(G,q) is at most n =| V(G) |.
(ii) Use the oracle and () to compute n 4+ 1 values of x(G, \).
(iii) Using Lagrange interpolation we can compute x(G, q¢') in polynomial time.

We note that this algorithm is purely algebraic and works for all graphs G,
g€ (F)—N and ¢ € F for any field F extending Q.

Hence we get that for all q1,90 € C — N the graph parameters
are polynomially reducible to each other.

Furthermore, for 3<:<j €N, x(G,1) is reducible to x(G, 7).

T his works in the BSS-model of computation.
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The complexity of the chromatic polynomial, IV

We summarize the situation for the chromatic polynomial as follows:
(i) EASYpss(x) ={0,1,2} and HARDgss(x) = C—{0,1,2}.

(ii) HARDpggs(x) can be split into two sets:

(ii.a) HARDy4p(x): the graph parameters which are counting functions in P in the sense
of Valiant, with x(—,3) <p x(—,j) for j € N and 3 <.
All graph parameters in HARDyp(x) are §P-complete in the Turing model.

(ii.b) HARDpss_np(x): the graph parameters which are not counting functions.

In the BSS model they are all polynomially reducible to each other,
and all graph parameters in HARDp(x) are P-reducible to each of the graph pa-

rameters in HARDpggss(x).

(ii.c) In the BSS-model the graph parameter yx(—,3) is P-reducible to all the parameters
in HARDBgs(X).

(ii.d) Inside HARDpgss(x) we have:
xX(—,3) <Bssp x(—4) <Bssp ---xX(—,J) - <pss—p xX(—,a) ~pss, X(—,—1)

with j e N—{0,1,2} and a € C —N.
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The complexity of the chromatic polynomial, V

We have a Dichotomy Theorem for the evaluations of x(—, \):

(i) EASYgss(x) =1{0,1,2}
Over C this is a quasi-algebraic set (a finite boolean combination of
algebraic sets) of dimension 0.

(ii) All graph parameters in HARDpggs(x)
are at least as difficult as x(—,3)
(via BSS-P-reductions)
This is a quasi-algebraic set of dimension 1.
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Evaluating the Tutte polynomial (Jaeger, Vertigan, Welsh)

The Tutte polynomial T(G, X,Y) is a bivariate polynomial
and x(G,A\) <pT(G,1—X0).
We have the following Dichotomy Theorem:
(i) EASYss(T) = {(x,y) € C?: (x —1)(y — 1) = 1} U Except, with
Except — {(Oa O)a (17 1)7 (_17 _1)7 (07 _1)7 (_17 O)a (7'7 _Z)a (_Za 7')7 (j7j2)7 (]27.7)}

and j = e
Over C this is a quasi-algebraic set of dimension 1.

(ii) All graph parameters in HARDpggs(T') are at least as hard as T'(G,1—\,0).
This is a quasi-algebraic set of dimension 2.
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The proof and its generalizations

Variations on Linial's Trick

e (%) is replaced by two (or more) operations:

stretching and thickening.
e Lagrange interpolation is done on a grid.

e T here are considerable technical challenges in details of
the proof for the Tutte polynomial.

e Allthough in all successfull generalizations to other cases,
the same general outline of the proof is always similar,
substantial challenges in the details have to be overcome.
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How hard is 43COL = x(—,3)7

e In the Turing model x(—,3) and x(—,—1)? are both
in ﬁP and X(_73) SP X(_a_l)
As x(—,3) is fP-complete, they are both gP-complete.

In BSS this does not work!

e For C, Malajovich and Meer (2001) proved
an analogue of Ladner’'s Theorem for the BSS-model over C:

Assuming that P¢ #= NP¢ there are infinitely many different BSS-degrees
between them.

e Although the problem x(—,3) #% 0?7 is in NP¢ we do not know whether
there is a € C — N for which computing x(—,a) is really harder!

e In particular, we know that x(a,3) <gss_p x(—,—1),
but we do not know whether x(a,—1) <gss_p x(—,3)

ISKip problems with hybrid|
[Back to outline
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Problems with hybrid complexity, I

Let f1, fo be two graph parameters taking values in N
as a subset of the ring R.

We have two kind of reductions:

e T-P-time Turing reductions (via oracles) in the Turing model.
f1 <r_p fo iff f1 can be computed in T-P-Time using f, as an oracle.

e BSS-P-time reductions over the ring R.
f1 <pss_p f2 iff f1 can be computed in BSS-P-Time using f> as an oracle.

e In the Turing model there is a natural class of problems #P for counting,
problems which contains many evaluation of graph polynomials.
However, P is NOT CLOSED under T-P-reductions.

e In the BSS model no corresponding class seems to accomodate graph
polynomials.
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Problems with hybrid complexity, II

e In 2013, T. Kotek, JAM, E. Ravve proposed a new candidate, the
class SOLEVALx of evaluations of SOL-polynomials,
the graph polynomials definable in Second Order Logic as described
by T. Kotek, JAM, and B. Zilber (2008, 2011).

e T he main problem with hybrid complexity is the
apparent incompatibility
of the two notions of polynomial reductions, fi <7_p fo and f1 <pss_p fo
even in the case where f1 and fo are both in §P.

e The number of 3-colorings of a graph, §3COL, and
the number of acyclic orientations fACYCLOR
are T-P-equivalent, and #P-complete in the Turing model.

e In the BSS model we have §3COL <pgs_p tACYCLOR,
but it is open whether fACYCLOR <pgs_p §3COL holds.

File:simons-casestudy 39



Simons Institute: The Classification Program of Counting Complexity March, 31 2016

The difficult point properties (DPP)
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Difficult Point Property, I

Given a graph polynomial P(G, X) in n indeterminates X1,..., X,
we are interested in the set HARDpggss(P).

(i) We say that P has the weak difficult point property (WDPP)
if HARDpgss(P) #= 0 then
there is a quasi-algebraic subset D C C™ of co-dimension <n — 1
such that C" — D C HARDpggs(P).

(ii)) We say that P has the strong difficult point property (SDPP)
if HARDpgss(P) #= 0 then
there is a quasi-algebraic subset D C C™ of co-dimension <n — 1
such that C" — D = HARDBss(P) ?& 0 and D = EASYBss(P).

In both cases EASY ggs(P) is of dimension <n — 1, and for almost all points
a € C" the evaluation of P(—,a) is BSS-NP-hard.

x(G; ) and T(G; X,Y) both have the SDPP.
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Difficult Point Property, II

We compare WDPP and SDPP to Dichtomy Properties.

(i) We say that P has the dichotomy property (DiP) if
HARDBss(P) U EASYBss(P) = C".
Clearly, if Pc & NP¢, HARDpggs(P) NEASY gss(P) = 0.

(ii) WDPP is not a dichtomy property, but SDPP a dichotomy property.

(iii) The two versions of DPP have a quantitative aspect:

EASY ggg(P) is small.
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Graph polynomials with the DPP, 1

SDPP: The Tutte polynomial (our paradigma).

SDPP: the cover polynomial C(G, z,y) introduced
by Chung and Graham (1995)
by Blaser, Dell 2007, Blaser, Dell, Fouz 2011

SDPP: the bivariate matching polynomial for multigraphs,
by Averbouch and JAM, 2007

WDPP: the Bollobas-Riordan polynomial, generalizing the Tutte polynomial
and introduced by Bollobas and Riordan (1999),
by Blaser, Dell and JAM 2008, 2010.

WDPP: theinterlace polynomial (aka Martin polynomial) introduced by Mar-
tin (1977) and independently by Arratia, Bollobas and Sorkin (2000),
by Blaser and Hoffmann, 2007, 2008

ISKIp partition functions]
Back to outlinel
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Partition functions as graph polynomials

o Let A e C™™™ a symmetric and G be a graph. Let
ZAG= Y I Awew
o V(G)—[n] (v,w)EE(G)

Z 4 is called a partition function.

e Let X be the matrix (X; ;)i j<n Of indeterminates.
Then Zx is a graph polynomial in n? indeterminates,
Z 4 IS an evaluation of Zx, and Zx is MSOL-definable.
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Partition functions have the SDPP

e J. Cai, X. Chen and P. Lu (2010),
building on A. Bulatov and M. Grohe (2005),
proved a dichotomy theorem for Zx where R = C.

e Analyzing their proofs reveals:
Zx satisfies the SDPP for R = C.

e T here are various generalizations of this to Hermitian matrices,
M. Thurley (2009),
and beyond.

ISKIp conjectures]

[Back to outlinel
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The DPP conjectures for graph polynomials definable
in SOL or MSOL, 1

The graph polynomials discussed in the literature all are definable in the
formalism of SOL-definable graph polynomials.

Actually, many of the prominent graph polynomials are MSOL-definable
using an ordering on the vertices or edges.

Among them the chromatic polynomial, the Tutte poynomials, the matching
polynomials, etc.

Here we only need these definability criterion to formulate our conjectures.

Details can be found in

e J.A. Makowsky,

From a Zoo to a Zoology: Towards a general theory of graph polynomials,
Theory of Computing Systems, vol. 43 (2008), pp. 542-562.

e T. Kotek, J.A. Makowsky and B. Zilber,
On counting generalized colorings
Contemporary Mathematics, vol. 558 (2011), pp. 207-242
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The DPP conjectures for graph polynomials
definable in SOL or MSOL 1II

Let P be anaSOL-definable graph polynomial in n indeterminates.

Assume that for some a € C" evaluation of P(—,a) is BSS-NP-hard over C.

Weak DPP Conjecture: Then P has the WDPP.

Strong DPP Conjecture: Then P has the SDPP.
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DPP for univariate graph polynomials, 1

In

J.A. Makowsky and T. Kotek and E.V. Ravve,

A Computational Framework for the Study of

Partition Functions and Graph Polynomials,

Proceedings of the 12th Asian Logic Conference '11, (2013), pp. 210-230

we (frivolously) conjectured that,
for a very large class of graph polynomials,
some form of DPP would hold.

It turns out we were overreaching.

We took the very large class to be
all SOL-definable graph polynomials.
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DPP for univariate graph polynomials, II

We now discuss this for univariate graph polynomials:

What we really had in mind was to

analyze the possible distribution

of the evaluation points of graph polynomials

which are easy,

i.,ein FP or in FPp for R=R or R =C
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DPP for univariate graph polynomials, III

Let P(G; X) be a univariate graph polynomial.
To analize the situation one may need the following:

(i) Find a point a € N for which P(—;a) € #P and is fP-complete.

(ii) Find a way apply a generalization of Linial’s trick.
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When Can we prove the same for
generalized univariate graph polynomials?

e | Proper edge colorings and total (vertex and edge) colorings|

e | Connected components colorings,.

e | Convex colorings,.

e | Complete colorings and harmonious colorings.

e | mcc(t)-colorings|.

e ctc.

77777
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Proper edge colorings xeqque(G; X), 1

Surprisingly, the complexity of counting proper edge colorings was proven
tP-hard only recently:

Theorem: (J. Y. Cai, H. Guo, T. Williams, 2014):
e f#i-EdgeColoring is #P-hard over planar r-regular graphs for all &k > r > 3.
e It is trivially tractable when k > r > 3 does not hold.

J. Y. Cai, H. Guo, T. Williams

The complexity of counting edge colorings and a dichotomy

for some higher domain Holant problems,

FOCS 2014 (full paper on arXiv http://arxiv.org/pdf/1404.4020.pdf, 75 pages)

Problem: Find an elementary proof of the complexity result.
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Proper edge colorings x,qq4e(G; X), 1I

Furthermore, we have
Xedge(G > KQ; X + |V(G)| + 1) — Xedge(G; X) ’ (|V(G)| + 1)'

This gives us that SDPP holds.

The same holds for Total (vertex and edge) colorings.
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Connected components

Here we |look at colorings where neighboring vertices must have the same
color:

Xeonnected (G k) iS the number of these colorings with at most k£ colors.

® Yeonnected(G:m) = mFE where k(G) is the number of connected compo-
nents of G.

o Clearly, Xeconnected(G; X) is easily computable for all X = a with a € R or
oany other field.

This gives us that SDPP holds in a trivial way
(as there are no difficult points).
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Convex colorings

Joint work with A. Goodall and S. Noble

Recall: A convex (vertex) coloring with k colors is convex if every monochro-
matic set of vertices inudces a connected graph.

T heorem:

e The problem of counting the number of colorings of the vertices of
a graph with at most two colours, such that the color classes induce
connected subgraphs is f{P-complete.

A. Goodall and S. Noble, 2008 (http://arxiv.org/pdf/1404.4020.pdf)
® Xconvez (G U K1; X + 1) = X - Xconvex (G X)
o Computing Xconvez(G;0) and Xconvez(G; 1) is €asy.
This gives us that SDPP holds.

Note that, for xconnectea(G; k), Where each color class is a connected component
of G, we have Xconnected (G k) = <A:()§¥))’ which is easy to compute.
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Complete and harmonious colorings

Joint work with T. Kotek

Recall that a coloring is
e complete if every pair of colors occurs along some edge.

e harmonious if every pair of colors occurs
at most once along some edge.

® Xcompiete(G; k) is not a polynomial in k.

The exact complexity for fixed k seemingly is open......
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Harmonious colorings, continued.

Proposition: For every k € N xpum(—; k) is easy to compute for k € N,
because there are only finitely many graphs without isolated vertices which
admit a harmonious coloring with k-colors.

However, this is not uniform: For each k a different polynomial time Turing
machine is used.

Theorem: For each xz € C — N the evaluation of xp.m(G;x) is §P-hard.

This gives us that SDPP does not hold
for harmonious colorings.

ISKIp proof]
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Harmonious colorings, proof, I

We show that for each z € C — N the evaluation of xnum(G; z) is tP-hard.
® ®

CYe. o—o ® S(G)

We add a red vertex on each edge of G (making two black edges out of it)
and then add red edges such that the red vertices form a clique.

First we note that

Xhar(S(G); k + 6) = X(G, k) . (k _(: e)e!

where e = |E(G)| and x(G; k) is the chromatic polynomial.
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Harmonious colorings, proof, II

March, 31 2016

e Now for k = a we have
Xhar(S(G); a) —

(c)e!

e It remains to be shown that

X(Gia—e)

x(G;a —e)
is is gP-hard for every a € C — N.

e \We use Linial's Trick:
Let v = |V(G)| and |[E(Gxt K1)| = e+ v:

(G Kija—(e+v)+1)=(a—-(e+v)+1) x(Ga—(e+v))

Which can be used for every a € C — N.
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Harmonious colorings, analysis

e It was shown by T. Kotek and JAM (CSL-2012), that
Xnar(G; k) is not MSOL-definable.

e [ here are infinitely many easy points.
e [ he easy points form a discrete subset of C.
e [ he easy points are exactly N.

How shall we formulate a new version of DPP?

For univariate generalized chromatic polynomials
the set of easy points is either
(a) C, or (b) N, or (¢) a finite subset of N.
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mec(t)-colorings

Joint work with Miki Hermann

Let t € N.

Recall that a coloring f : V(G) — [k] is an mcc(t) -coloring with k colors, if
the connected components of each color class have size at most ¢.

Let x,t)(G; k) be the corresponding graph polynomial.

Theorem: Computing X,...;)(G; 2) is fP-hard.
Proof: Reduction to fNAE3SAT.
INAE3SAT is fP-complete by

Creignou, Nadia, and Miki Hermann.
" Complexity of generalized satisfiability counting problems.”
Information and Computation 125.1 (1996): 1-12.

We don't know how to use a version of Linial's Trick.

Open Problem: Is the set of easy points finite 7
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More generalized chromatic polynomials

Let f: V(G) — [k] be a coloring of the vertices of G = (V(G), E(Q)).

(i) f is t-improper if for every i € [k] the counter-image [f~1(i)] induces a
graph of maximal degree t..

(ii) f is H-free if for every i € [k] the counter-image [f~1(i)] induces an H-free
graph.

(iii) f is acyclic if for every ,5 € [k] the union [f~1(i)] U [f~1(3)] induces an
acyclic graph.

By Kotek, JAM, Zilber (2008), for all the above properties,
counting the number of colorings is a polynomial in k.
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More graph polynomials with the DPP

T. Kotek and JAM (2011) have shown
SDPP: The graph polynomial for t-improper colorings (for multigraphs).

SDPP: The bivariate chromatic polynomial introduced by Dohmen, PoOnitz
and Tittman in 2003.

WDPP: The graph polynomial for acyclic colorings.

C. Hoffmann's PhD thesis (written under M. Blaser, 2010) contains a general
sufficient criterion which allows to establish the WDPP for a wide class of

(mostly non-prominent) graph polynomials.
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A good test problem: H-free colorings, I

We look at the generalized chromatic polynomial xu—¢r(G; k), which, for
k € N counts the number of H-free colorings of G.

o For H = K3, xu—_tree(G; k) = x(G; k), and we have the SDPP.

o For H = K3, xu-free(G; k) counts the triangle free-colorings.
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A good test problem: H-free colorings, II

e From [ABCMOI8] it follows that xp_tr(G; k) is #P-hard for every k > 3
and H of size at least 2.

D. Achlioptas, J. Brown, D. Corneil, and M. Molloy. The existence of uniquely -G
colourable graphs. Discrete Mathematics, 179(1-3):1-11, 1998.

e In [Achlioptas97] it is shown that computing xu—fr(G; 2) is NP-hard for
every H of size at most 2.

D. Achlioptas. The complexity of G-free colourability. DMATH: Discrete Mathematics,
165, 1997.

e Characterize H for which xy_..(G; k) satisfies the SDPP (WDPP).
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What did we learn 7

e [ here are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

- Hamlet (1.5.167-8), Hamlet to Horatio

e [ here are more graph polynomials in heaven and earth,
George David Birkhoff,

Than are dreamt of in your mathematics.

e What we don’t understand:
How are the difficulties of different evaluations related?
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And the problems 7

e Study the complexity of generalized chromatic polynomials.

e Study the complexity of graph polynomials
defined as generating functions

where G[A] € P

G[A] is the induced subgraph generated by A in G, and P is any graph
property.

e Find criteria on graph polynomials which imply versions of DPP
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Thank you for your attention !
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