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Global Alignment

X

Y

S(X,Y ) = max


∑

aligned
i, j

s(xi, yj)− δ#indels
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Si,0 = −iδ S0,j = −jδ

Si,j = max

 Si−1,j−1 + s(xi, yj)
Si−1,j − δ
Si,j−1 − δ


s(xi, yj) =

{
+1 xi = yj
−µ xi 6= yj

S(X,Y ) = Sn,m
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Local Alignment

X

Y

I

J

H(X,Y ) = max {S(I, J) : I ⊂ X, J ⊂ Y }
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Hi,0 = 0 H0,j = 0

Hi,j = max


Hi−1.j−1 + s(xi, yj)
Hi−1,j − δ
Hi,j−1 − δ
0


H(I, J) = maxi,jHi,j

Smith and Waterman J.Mol.Biol.(1981)
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STATISTICS OF SEQUENCE MATCHING

• Global matching of random sequences has results
from subadditive ergodic theory

• Local matching has strong laws and many
distributional results

• Local matching statistics are as important as
computational efficiency in biological database
searching (BLAST)
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Statistics of long matches

• Such matches are rare in random sequences and
occur in an approximately Poisson number of clumps

• HTTTHHHHTHHHTTHTHHT

• number of runs of 3Hs = 3

• number of clumps of 3Hs = 2

• Cannot directly apply Bin(n, p) ≈ Poisson(λ = np)
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Statistics of the number of short words

• w occurs frequently, in overlapping clumps

• Cannot apply Bin(n, p) ≈ Normal(np, np(1− p))

• Nw = number of w occurences in sequence of length n

• σ2
w is a function of self-overlap of w

• (Nw − nP (w))/
√
nσw ≈ N(0, 1)
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Multivariate word counts

Theorem. Let {Ai}i≥1 be a stationary, irreducible,
aperiodic first-order Markov chain. Let W = {w1, . . . , wm}
be a set of words and N = (N1(n), . . . , Nm(n)) be the
count vector. Then n−1N is asymptotically normal with
mean µ and covariance matrix n−1Σ. If det(Σ) 6= 0, then

n1/2Σ−1/2 ( N/n− µ) =⇒ Φ(0,1).

The covariance matrix is calculated using the overlap polynomial
between the words. Results from Lindstrom (1990), thesis
Using Stein’s Method, rates of convergence

Haiyan Huang (2001/2), thesis.
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GLOBAL ALIGNMENT

What do we know about the statistical distribution of global
alignment scores? We assume the sequence letters are iid.

Chavatal-Sankoff in 1975 had a proof that E(Sn) ∼ αn,
but to this day no one knows α for any non trivial example.

Their case study was for length of longest common
subsequence (LCS), which is the global alignment score for
s(a, b) equal 1 if a = b and 0 for all other scoring weights.

We are guaranteed that α is at least P(A = B). For binary
uniformly distributed sequences, α ≥ 0.5. In fact the value
is approximately 0.82, showing the power of alignment.
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Assume A = A1A2 · · ·An and B = B1B2 · · ·Bn with
Ai, Bj iid. We apply Kingman’s subaddative ergodic
theorem.

Define Sn = S(A,B). Then, there is a constant
ρ ≥ E(s(A,B)) such that

limn→∞
Sn

n = ρ

probability 1 and in the mean.
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Azuma-Hoeffding

Assume A = A1A2 · · ·An and B = B1B2 · · ·Bn with
Ai, Bj iid.

Then there is a computable constant c such that,

P(S − ES ≥ γn) ≤ e−γ2n/2c2 .

This large-deviations result is useless for practical p-values,
but is very useful in proving theorems.
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Variance

There is a conjecture credited to me that V ar(Sn) = Θ(n).
Numerical evidence from simulations are the basis of the
conjecture. It is well known (due to Michael Steele) that

V ar(Sn) ≤ κn for a known constant κ.

Chvatal and Sankoff conjectured that V ar(Sn) is of order
o(n2/3), which as it turned out is the same order (when
properly rescaled), as obtained by Baik, Deift and
Johansson in their much celebrated result on the Longest
Increasing Subsequence (LIS) of a random permutation.
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Matzinger and Lember established the Θ(n) variance order
for binary sequences with one symbol having extremely
small probability.

Houdre and Matzinger recently show the conjecture holds
for binary sequences where one symbol has “somewhat
larger score” than the other.

The problem that I would like to see solved is the full
probability distribution for LCS and general global
alignment scores, just as has been established for LIS of a
random permutation.
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LOCAL ALIGNMENT

Consider a coin tossing sequence of length n with
P(H) = p. What is the length of the longest run of heads?

The expected number of clumps of k heads beginning with
a tail (forgetting end effects) is

n(1− p)pk.

If we set this expectation equal to 1 and solve for k, we get

k = log1/p(n) + log1/p(1− p).
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Exact matching

Let A1, A2, . . . , B1, B2, . . . be independent and identically
distributed with 0 < p ≡ P(X1 = Y1) < 1.

Define Hn = max{m : Ai+k = Bj+k for k = 1 to m, 0 ≤
i, j ≤ n−m}.

Then

P

(
lim
n→∞

Hn

log1/p(n)
= 2

)
= 1.

Note that 2 log1/p(n) is the solution for k in

1 = n2pk
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Matching sequences with different
distributions

Let A1, A2, . . . be distributed as ξ, B1, B2, . . . be
distributed as ν with all letters independent and
p = P(X1 = Y1) ∈ (0, 1).

Then there is a constant C(ξ, ν) ∈ [1, 2] such that

P
(

lim
n→∞

Hn/ log1/p(n) = C(ξ, ν)
)

= 1.
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In addition

C(ξ, ν) = sup
γ

min

{
log(1/p)

H(γ, ξ)
,

log(1/p)

H(γ, ν)
,

2 log(1/p)

log(1/p) +H(γ, β)

}

where βa ≡ ξaνa/p, H(β, ν) =
∑
a βa log(βa/νa), and γ

ranges over the probability distributions on the alphabet.
Here log can be to any base.
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And

C(ξ, γ) = 2 if and only if

max{H(β, ν),H(β, ξ)} ≤
(

1

2

)
log(1/p).
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Let’s take an example.

Let A1, A2, . . . have P(Ai = H) = P(Ai = T ) = 1/2 and
B1, B2, . . . have P(Bi = H) = θ = 1− P(Bi = T ) where
θ = [0, 1].

p = P(Ai = Bi) = 1/2θ + 1/2(1− θ) = 1/2
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For θ = 1 (or 0), the value Hn = length of the longest run
of H’s (or T s) in A.. Therefore in both cases,
Hn ∼ log2(n). However, if θ = 1/2, Ai and Bi have the
same distribution and Hn ∼ 2 log2(n). The theorem tells us

Hn ∼ C log2(n), C ∈ [1, 2],

and C = 2 if and only if

max{H(β, ν),H(β, ξ)} ≤ 1/2 log(2).

if and only if θ is in [0.11002786 . . . , 0.88997214 . . .].
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Poisson approximation

The log(n) results hold for scoring too. Here we set
deletion weights (g(k) =∞ for all k), E(s(A,B)) < 0 and
s∗ = max s(a, b) > 0.

For p the largest root of 1 = E(λ−s(A,B))

P( lim
n→∞

Hn/ log1/p(n
2) = 1).

Therefore for the case of no indels we know the center of
the score is 2 log1/p(n).
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A Chen-Stein style theorem can be proved.

Under the above assumptions, there is a constant γ > 0
such that

P(H(A,B) > log1/p(nm) + c) ≈ 1− e−γnmp
c

.

While this result has not been proved for the usual
alignment problem with indels, it is indication of the range
of validity of Poisson approximation.

The e-values in BLAST are from a version of this result.
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A Phase Transition

The result below is true for much more general scoring but
for simplicity we study

s(a, b) = {+1, a = b; −µ, a 6= b}

and g(k) = −δk where (µ, δ) ∈ [0,∞]2.

The following limit exists by Kingman:

ρ = ρ(µ, δ) = lim
k→∞

E(Sk)

k
= sup

k≥1

E(Sk)

k
.
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The solution of ρ = ρ(µ, δ) = 0 is a line in parameter space.

(I) Obviously when ρ = ρ(µ, δ) > 0 the score Hn grows
linearly.

(II) Much less obviously when ρ = ρ(µ, δ) < 0 the score
Hn grows logarithmically.
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LAST CONJECTURE

Poisson Approximation is valid in the logarithmic
region.

No one is close to proving this. It is probably further away
than the full distribution of LCS.
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STATISTICS OF NO. OF SHORT WORDS
IN A SEQUENCE

• w occurs frequently, in overlapping clumps

• Cannot apply Bin(n, p) ≈ Normal(np, np(1− p))

• Nw = number of w occurences in sequence of length n

• σ2
w is a function of self-overlap of w

• (Nw − nP (w))/
√
nσw ≈ N(0, 1)
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MULTIVARIATE WORD COUNTS IN A
SINGLE SEQUENCE

Theorem. Let {Ai}i≥1 be a stationary, irreducible,
aperiodic first-order Markov chain. Let W = {w1, . . . , wm}
be a set of words and N = (N1(n), . . . , Nm(n)) be the
count vector. Then n−1N is asymptotically normal with
mean µ and covariance matrix n−1Σ. If det(Σ) 6= 0, then

n1/2Σ−1/2 ( N/n− µ) =⇒ Φ(0,1).

The covariance matrix is calculated using the overlap polynomial
between the words. Results from Lindstrom (1990), thesis
Using Stein’s Method, rates of convergence

Haiyan Huang (2001/2), thesis.
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We start with two sequences of iid letters

A = A1A2 · · ·An
B = B1B2 · · ·Bm

fa = P (Ai = a) = P (Bj = a), a ∈ A

pk =
∑
a∈A

fka .

D2 has been defined as the dot product of the k-word
count vectors. It is computed in linear time.
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D2 =
∑

w∈k−word

nA(w)nB(w)

Define the match indicator Ci,j = 1{Ai = Bj}, and the
k-word match indicator at position (i, j)

Yi,j = Ci,jCi+1,j+1 · · ·Ci+k−1,j+k−1.

Note: ECi,j = p2 and EYi,j = pk2

D2 =
∑
v∈I

Yv.
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MOTIVATION: To find useful distributions
for D2 and p-values

For LARGER k

We should have approximately a Poisson number of clumps
of matching k-words
Each clump has a geometric number of matching k-words
since a clump implies k matches and additional matches
occur with probability p2

Therefore using Chen-Stein we expect to obtain a
compound Poisson approximation
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For SMALLER k

We have (n− k + 1)(n− k + 1) rv’s Ci,j which are 1 with
probability pk and 0 otherwise.
If Cs are independent, D2 is Bin(n, p2), n large.
That is, approximately a normal.

Therefore using Stein’s method we expect to obtain a
normal approximation.
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W = D2−ED2√
Var(D2)

=
∑
v

Yv−EYv√
Var(D2)

.

Stein-Rinot-Rotar. Let Xj ∈ Rd, and let
W =

∑n
j=1Xj .

|Xj | ≤ B.

Let |Si| and |Ni| be subsets of {1, . . . , n},
i ∈ Si ⊂ Ni, i = 1, . . . , n. Constants C1 ≤ C2 :

max{|Si|, i = 1, . . . , n} ≤ C1; max{|Ni|, i = 1, . . . , n} ≤ C2,

where for sets | · | denotes cardinality.
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Then, there exists a universal constant c such that

sup
h∈C
|Eh(W )− Φh| ≤ c{2C2B + n(2 +

√
EW 2)C1C2B3

+χ1 + χ2 + χ3}.

where
χ1 =

∑n
j=1E|E(Xj |

∑
k 6∈Sj Xk)|,

χ2 =
∑n
j=1E|E(Xj(

∑
k∈Sj Xk)T )

−E(Xj(
∑
k∈Sj Xk)T |

∑
l 6∈Nj Xl)|

χ3 = |I −
∑n
j=1 E(Xj(

∑
k∈Sj Xk)T )|.
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n = m, k = − α
log(p2)

log(n) and n >> k

suph∈cxH |Eh(W )− Φh| ≤ c{2C2B + n2(2 + 1)C1C2B
3}

≤ c{8 k
1
2

(p3/p22−1)
1
2 n

1
2
−α + 12 k

1
2

(p3/p22−1)
3
2 n

1
2
−3α
} which has a

rate

O(

√
log(n)

n
1
2−3α

)

as n goes to ∞.

When α < 1
6 , the error bound will go to zero.

For k = α log1/p2(n) with 0 < α < 1/6, D2 is
approximately normal.
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THE GLITCH:

When uniformly distributed p3 = p22 and p3/p
2
2 − 1 = 0

For the uniform we have NO bound, it is the exceptional
case!
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The Non-Normal Case

Alphabet is {0, 1},
P (0 appears ) = p, P (1 appears ) = q.

Denote # of 0, 1 in the two sequences by X and Y
respectively, then

D2 = XY + (n−X)(n− Y ).

E(D2) = n2(1− 2pq),

and

Var(D2) = 2n2pq(1− 2pq) + 2n2(n− 1)pq(p− q)2
= O(n2) if p = q = 1

2 ; = O(n3)ifp 6= q

27



Next:

D2−E(D2)
σ = 2npq

σ (X−np√
npq )(Y−np√

npq )

+n(2p− 1)
√
npq

σ (Y−np√
npq )

+n(2p− 1)
√
npq

σ (X−np√
npq )

= 2npq
σ

(X−np)√
npq

(Y−np)√
npq : p = q = 1

2

So the limit is normal if p 6= q and the product of
independent normals if p = q
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X̃w = Xw − n̄pw and Ỹw = Yw − m̄pw;

D∗2 =
∑

w∈Ak
X̃wỸw.

D2 = D∗2 + n̄
∑

w∈Ak
pwYw + m̄

∑
w∈Ak

pwXw − m̄n̄
∑

w∈Ak
p2w.
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Shepp

In 1964 Larry Shepp observed that, if X and Y are
independent mean zero normals, X with variance σ2

X , Y
with variance σ2

Y , then XY√
X2+Y 2

is again normal, with

variance τ such that 1
τ = 1

σX
+ 1

σY
.

We introduce

DS
2 =

∑
w∈Ak

X̃wỸw√
X̃2

w + Ỹ 2
w

.
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We also use

D∗vc2 =
∑
w

X̃wỸw√
n̄m̄p̂w

,

This statistic comes from the normalized∑
w

X̃wỸw√
V̂arXwV̂arYw

, but as the variance is costly to

compute, replacing it by the estimated mean of the word
occurrence across the two sequences when the size of the
word pattern is large by Poisson approximation.
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Thanks for listening!
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Thanks for listening!
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