Subquadratic Algorithms for Succinct Stable Matching

Daniel Moeller

University of California, San Diego

Joint work with Mohan Paturi and Stefan Schneider

The Stable Matching Setting

 Many situations involve matching members of two disjoint sets

These situations can often be in flux

The Stable Marriage Problem

- Given:
 - Two disjoint sets of participants (men/women)
 - A preference list for each participant
- Find a matching with no blocking pairs

Gale – Shapley

- Deferred Acceptance Algorithm
 - Men make proposals in order of their preference list until they are accepted
 - Quadratic time

Hardness

- Input size is quadratic
- Quadratic lower bound for finding and verifying a stable matching
 - [Ng, Hirschberg '90]
 - [Segal '07]
 - [Gonczarowski, Nisan, Ostrovsky, Rosenbaum '15]

Succinct Preferences

- Preferences can have structure
- It may be infeasible to list all participants
- d-list and d-attribute model
 - [Bhatnagar, Greenberg, Randall '08]

d-Attribute Preferences

- Sometimes participants can be ranked by several attributes
 - online dating (income, height, sense of humor)
 - universities (academics, social life, sports)
- There are d fixed attributes
- Each participant's preferences are determined by the weight they place on each attribute

3-attribute Preferences Example

• *m*'s weight vector

$$\left(0,\frac{1}{2},\frac{1}{2}\right)$$

• *m*'s preference list

$$W_1, W_3, W_4, W_2$$

Woman	Attribute Values
w_1	(1,4,8)
W_2	(5,2,1)
w_3	(3,6,2)
W_4	(7,2,4)

d-List Preferences

- Groups might share the same preferences
 - student athletes
 - sorority members
 - engineers
- d lists
 - Each participant uses one of them
 - Special case of the d-attribute setting

2-list Preferences Example

Preference Lists

σ_1	σ_2	π_1	π_2
m_1	m_3	w_1	W_4
m_2	m_1	W_2	W_3
m_3	m_4	W_3	W_2
m_4	m_2	W_4	w_1

Man	List
m_1	π_2
m_2	π_1
m_3	π_2
m_4	π_1

Woman	List
w_1	σ_2
W_2	σ_1
W_3	σ_2
W_4	σ_2

Questions?

- Subquadratic algorithms?
- Finding a stable matching
 - Arbitrary attributes and weights
 - Small integers/Boolean
 - d-list preferences
- Verifying a stable matching
 - Arbitrary attributes and weights
 - Small integers/Boolean
 - d-list preferences

Algorithmic Results

- Finding a stable matching
 - $-\tilde{O}(n^{2-1/\lfloor d/2 \rfloor})$ algorithm for the one-sided, d-attribute model
 - ullet Strongly subquadratic for constant d
 - $-O(C^{2d}n(d + \log n))$ algorithm when weights and attributes are integers from a set of size C
 - Strongly subquadratic for $d < \frac{1}{2} \log_{\mathbb{C}} n$

Algorithmic Results

- Verifying a stable matching
 - $-\tilde{O}(n^{2-1/2d})$ algorithm for the d-attribute model
 - Strongly subquadratic for constant d
 - -O(dn) algorithm for the d-list model
 - Subquadratic for d = o(n)
 - $-\tilde{O}(n^{2-1/O(c\log^2c)})$ randomized algorithm for Boolean attributes and weights
 - Where $d = c \log n$
 - [Alman, Williams '15]

Hardness Result

- No strongly subquadratic algorithm for $d = \omega(\log n)$
 - Assuming the Strong Exponential Time Hypothesis (SETH)
 - Reduction from Maximum Inner Product

Hardness Sketch

(Boolean) Maximum Inner Product

• Given:

- sets of vectors $U, V \subseteq \{0,1\}^d$ with |U| = |V| = n
- threshold l
- Decide if there is a $u \in U$ and $v \in V$ such that $\langle u, v \rangle \geq l$.

Reduction to Stable Matching

- For $u \in U$ create a man m_u with attribute values u and weight values u.
- For $v \in V$ create a woman w_v with attribute values v and weight values v.
 - Each man prefers a woman who possesses the attributes he possesses.

$$m_u >_{w_v} m_{u'} \iff \langle u, v \rangle > \langle u', v \rangle$$

Reduction to Stable Matching

d-list Stability Verification Sketch

Preference Lists

σ_1	σ_2	π_1	π_2
m_1	m_3	w_1	W_4
m_2	m_1	W_2	W_3
m_3	m_4	W_3	W_2
m_4	m_2	W_4	w_1

Man	List
m_1	π_2
m_2	π_1
m_3	π_2
m_4	π_1

Woman	List
w_1	σ_2
w_2	σ_1
W_3	σ_2
W_4	σ_2

Candidate Matching

$$(m_1w_1, m_2w_2, m_3w_3, m_4w_4)$$

Man	List
m_1	π_1
m_2	π_2
m_3	π_2
m_4	π_1

Woman	List
w_1	σ_2
w_2	σ_1
w_3	σ_2
W_4	σ_2

 $(m_1w_1, m_2w_2, m_3w_3, m_4w_4)$

Man	List
m_1	π_1
m_2	π_2
m_3	π_2
m_4	π_1

Woman	List
w_1	σ_2
W_2	σ_1
W_3	σ_2
W_4	σ_2

Not Stable $(m_1w_1, m_2w_2, m_3w_3, m_4w_4)$

Man	List
m_1	π_1
m_2	π_2
m_3	π_2
m_4	π_1

Woman	List
w_1	σ_2
W_2	σ_1
W_3	σ_2
W_4	σ_2

Stable

 $(m_1w_1, m_2w_2, m_3w_4, m_4w_3)$

O(dn)

d-attribute Algorithms

- Convert to Ray-shooting
 - Dynamic data structures
 - [Matousek, Schwarzkopf '92]
- Finding a stable matching

$$-\tilde{O}(n^{2-1/\lfloor d/2 \rfloor})$$

- One-sided
- Verifying a stable matching

$$-\tilde{O}(n^{2-1/2d})$$

Finding vs. Verifying

- *d*-attribute
 - One-sided vs. two-sided
- *d*-list
 - $-O(n^2)$ vs. O(dn)

Future Directions

- Subquadratic algorithm for finding a stable matching in the full d-attribute case
 - 2-list case is still open
- Other succinct preference models
- Applying attributes to other preference markets
 - Stable Roommates
 - Housing Allocation

Thank you!