Finding k Simple Shortest Paths and Cycles

Vijaya Ramachandran
University of Texas at Austin, USA

(Joint work with Udit Agarwal)

(http://arxiv.org/pdf/1512.02157v1.pdf)

1/27

k Simple Shortest Paths

Given: Directed graph G = (V, E) with non-negative edge-weights, a
pair of vertices s, t € V, positive integer k; |V| = n, |E| = m.

» Find the k shortest paths from s to t.
Easy: O(m + nlog n+ k) time [Eppstein'98]

» Find the k shortest paths with distinct path lengths from s to t.
Hard: NP-hard even for k = 2 [Lalgudi-Papaefthymiou'97]

> Find the k simple shortest paths from s to t.

O(k - mn) time algorithm [Yen'71]
Even for k = 2, subcubic (for dense graphs) only if APSP has
sub-cubic algorithm [Williams-Williams'10]

e For k =1 all three problems are the same, and efficiently solvable
using Dijkstra's algorithm.

2/27

This Talk: Finding k Simple Shortest Paths and Cycles

Prior work in this topic:

> k simple shortest paths from s to t (k-SiSP) [Yen'71, GL09, RZ12]]:

O(kmn) time.

» Enumeration of k simple cycles (in no particular order):
O(kmn) [Tarjan'73], improved to O(km) in [Johnson'75].

We study the following natural variants:

> k simple shortest paths for all pairs (k-APSiSP).

> k simple shortest cycles through a given vertex (k-SiSC), or through
each vertex in G (k-AVSiSC).

> Enumeration of k simple shortest cycles (k-All-SiSC) and
k simple shortest paths (k-All-SiSP) in G.

3/27

Main Algorithmic Contributions

» New approach: Find simple shortest paths through path extensions:

> Solves 2-APSiSP in O(mn) time & 3-APSiSP in O(mn?) time.

(Improves O(n?) for 2-APSiSP and O(mn?) for 3-APSiSP)

> Solves k-All-SiSP in O(m) time for the first path and
O(min{j, n}) for the j-th path.
(uses different path extensions from the ones for k-APSiSP)

» Algorithms and reductions to obtain O(mn) time algorithms for
2-AVSISC and for k-SiSC, k-All-SiSC, for constant k.

» Also show that all of these problems as at least as hard as finding a
minimum weight cycle (MIN-WT-CvC) in a sparse graph, except
k-All-SiSP (using <(n, » reductions).

421

Reductions and Hardness Class

» The APSP hardness class contains a large collection of problems
that are at least as hard as APSP for sub-cubic algorithms [WW'10].

> But this does not distinguish between dense and sparse graphs.

> We consider reductions that preserve sparsity, and the starting
problem is Min-Wt-Cyc, which has an O(mn) time algorithm.

> So, our hardness class is Sparse Min-Wt-Cyc hardness, and is with
regard to sub-mn algorithms.

» O(m®?) is another (faster) sparse time bound that matches n® in
the dense case, achieved by Min-Wt-Triangle [IR'78].

» But O(mn) appears to be the most common time bound for sparse
versions of problems equivalent to APSP under sub-cubic reductions.

5/27

[PROBLEM | KNOWN RESULTS

NEwW RESULTS

| 2-APSiSP | Upper Bound: O(n®)

Upper Bound: O(mn)

(using DSO) [BK]
3-APSiSP | UB: O(mn3) [Yen] UB: O(mn?)
2-5i5P LB: Min-Wt-A < 2-5iSP
(for subcubic) [WW] LB: Min-Wt-Cyc <y n) 2-SiSP
UB: O(mn) [Yen]
[k-SiSP | LB: Same as 2-SiSP LB: Same as 2-SiSP
UB: O(kmn) [Yen]
k-SiSC — k-SiSP =) k-SiSC
k-AVSiSC = LB: Min-Wt-Cyc <(m.n) 2-AVSISC
UB: (~)(~mn) for (k =2)
and O(kmn?) for (k > 2)
k-ATI-SiSC = LB: Min-Wt-Cyc <(pn) 2-All-SiSC
UB: O(mn) per cycle
[Kk-AlI-SiSP | — UB: amortized O(k) if k < n
and O(n) if k > n per path
after a startup cost of O(m)

Table : Our Main Results. (DSO stands for Distance Sensitivity Oracles.)

6/27

(m, n) Reductions

Definition. Given graph problems P and Q, an (m, n) reduction,
P <(m,ny @, means that an input G = (V, E) to P with |V| = n,
|E| = m can be transformed in O(m + n) time to an input G’ = (V’, E’)
to Q with |V/| = O(n) and |E’| = O(m) such that from a solution for @
on G’ we can obtain a solution for P on G in O(m+ n) time.

» Our main reductions:

Min-Wt-Cycle S(mfn) 2-SiSP S(m,n) k-SiSP =(m,n) k-SiSC

Trivially, APSP <(;, »y k-APSISP, k-SiSC <(y, ») k-AVSiSC,
Min-Wt-Cycle <(m.n k-All-SiSC

> Prior related known results:
Min-Wt-Cycle <(,, ,y APSP
2-SiSP <(1m,n) APSP plus O(n?) processing [GL'09]
k-SiSP reduces to k calls to 2-SiSP [RZ'12]

7/21

Reductions: k-SiSP =, ,y k-SiSC

» k-SiSP S(mm) k-SiSC:

» Input is G, with source s and sink t.
» Form G’ by adding a new vertex u’ and zero-weight edges

(v',s), (t,).

» k-th simple s-t path in G is k-th simple cycle in G’ though v'.
» k-SiSC S(m,n) k-SiSP:
> To compute k-SiSC through v in G = (V, E):

Split v into v; and v,.

All incoming edges to v become incoming to v;.

All outgoing edges from v become outgoing from v,.

A simple cycle through vertex v in G is transformed into a
simple path from v, to v; in G’ with same weight.

So k-SiSC S(mfn) k-SiSP.

vV vy vVvYy

v

8/27

Min-Wt-Cycle <(,, ») 2-SiSP

» Cycle to Path: Basic transformation from G to G’ converts each
vertex v into v; and v, with zero-weight edge (v;, v,).

» All incoming edges to v become incoming to v;.
» All outgoing edges from v become outgoing from v,.

€i

di

> A simple cycle through vertex v in G is transformed into a simple
path from v, to v; in G’ with same weight.

9/27

Min-Wt-Cycle <(,, ») 2-SiSP

\8

Po 0 p1 0

> path (po,--- , pn) With zero-weight edges.
» W = n-w, where w is max edge-weight in G.
> edge of weight (n —j + 1)W from p;_; to j, and an edge of weight

JW from j; to p;. .

Refinements Within O(mn)

[TIME BOUND

PROBLEMS ACHIEVING THE TIME BOUND]

m-n

Min-Length-Cycle, Unweighted APSP
(undirected and directed)

m - n-loga(m,n)

Undir Min-Wt-Cycle, Undir Wted APSP [PR’05]

m-n+n?-loglogn

Min-Wt-Cyc,
k-SiSP [Yen'71,GL'09], k-SiSC [here]
(constant k), Directed APSP [Pettie’04]

m~n+n2Iogn

2-APSISP, 2-AVSIiSC, k-All-SiSC [all here]
(constant k)

(m-n+nZlogn)-logn

DSO [BK'09]

n-(m-n+ n®loglog n)

k-AVSiSC, k > 3 [here]

n-(m-n+ n®logn)

3-APSIiSP [here]

n?(m - n+ nZlog nlog n)

k-APSiSP, k > 4 [Yen'71, GL'09]

11/27

Path Extension Algorithms
The rest of the talk will cover:

> The 2-APSiSP algorithm.

» Uses path extensions that may not be detours.

> 3-APSiSP, and k-APSiSP, k > 3.

» Uses recursion, but inefficient for larger k.

> k-All-SiSP.

» Uses a different type of path extension.

12/27

Background for SiSP

> k-SiSP. All known algorithms for k-SiSP (and 2-SiSP) from x to y
compute detours around each edge in a shortest path, and then
choose the shortest x — y path generated by a detour.

> Replacement Paths. This computes, for each edge e on an x-y SP,
a shortest path avoiding e. 2-SiSP from x to y can be computed as
the minimum weight replacement path.

x0
<O

p1 P2 P3

> Lower Bound. O(my/n) lower bound for both 2-SiSP and
Replacement Paths in the path-weight comparison model, assuming
that the algorithm only examines these detours [HSB'07].

> Our 2-APSIiSP algorithm generates and examines paths that are not
detours for any pair of vertices.

13/27

Replacement Paths

» Replacement paths for a single pair x,y: O(mn + n?loglog n)
time [Yen'71, GL'09]

| 2

2-SiSP is computed by the same algorithm plus O(n)

additional time to select a minimum weight replacement path.

» Replacement paths for all pairs x,y € V:

>

The output can potentially have size Q(n?), simply for the
weights of all replacement paths.
Instead use compact distance sensitivity oracles (DSO)
[DTCR'08] of size O(n?).
Any specific replacement path can be found from DSO in
constant time.
Current fastest algorithm for DSO runs in
O(mnlog n 4 n?log® n) time [BK'09]
BUT: 2-APSiSP from DSO takes n? time.

(to examine up to n® replacement paths)

14/27

Our Approach

> We first compute k nearly SiSP sets Qk(x, y) (to be defined).

> We then use an algorithm Compute-APSiSP (to be presented) that
computes k-APSiSP from the Q(x,y) sets in O(kn® + n® log n)
time.

15/27

The @, Sets and Distance Sensitivity Oracles

> Definition. The set Qx(x, y) of the two nearly shortest simple
paths from x to y in G contains a shortest path = from x to y, and
a shortest path from x to y in G that avoids the first edge on 7 (if
such a path exists).

> Observation: Using DSO, we can compute the @Q(x, y) sets, in
additional O(n?) time for all pairs.

(We have another method — simpler than DSO — that computes
Qx(x, y) sets directly in O(mn + n?log n).)

16 /27

2-APSIiSP Algorithm

» The 2-APSiSP Algorithm:

» Compute the first path in all Q, sets with an APSP
computation.

» Compute the second path in each Q> set in O(1) time using
distance oracles.

» Compute 2-APSiSP from the @, sets.
(Need an algorithm for this — Compute-APSiSP)

17/27

The Q Sets

Assume that there are k simple paths from x to y, for all x,y € V. Then,

> Pj(x,y) is the set of k simple shortest paths from x to y in G.

> Qk(x,y) is the set of k nearly simple shortest paths from x to y,
defined as follows:

» if all paths in P;_;(x, y) share the same first edge (x, a), then
Qk(x, y) contains all paths in P}_;(x,y), together with the
shortest simple path from x to y that does not start with edge
(x, a), if such a path exists.

» Otherwise, Qx(x,y) = Pi(x,y).

» Task for Algorithm Compute-APSISP.

» If the k — 1 shortest paths in Qk(x, y) all start with the same
edge (x, a) then we need to determine if the k-th simple
shortest path from x to y also starts with edge (x, a).

» Otherwise, Qi(x,y) = Pi(x,y).

18/27

Algorithm CoMPUTE-APSISP

> Algorithm CoMPUTE-APSISP computes k-APSiSP in
O(k - n*> + n?log n) time, for any k > 2, given the Qx(x,y) sets.

* Recall: Only if the k — 1 shortest paths in Qk(x, y) all start with
the same edge (x, a) then COMPUTE-APSISP needs to determine
if the k-th simple shortest path from x to y also starts with edge
(x,a). (Otherwise Q«(x,y) = Pi(x,y).)

» The pairs x, y for which * holds can be determined by scanning the
Qx sets, which are input to CoMPUTE-APSISP.

> For these pairs, COMPUTE-APSISP uses the following Lemma 1 to
find the k-th path.

Lemma 1. If all paths in P} (x,y) start with the same first edge (x, a)
then P} (a, y) consists of the right subpaths of the paths in P} (x,y).

19/27

Lemma 1

Lemma 1. If all paths in Pj(x,y) start with the same first edge (x, a)
then the right subpath of the /-th simple shortest path from x to y has
weight equal to the weight of the i-th simple shortest path from a to y,

/%

a b
O
d
XM ONNNNANNNSO Y
a b
O
d

20/27

Algorithm Compute-APSiSP

> Algorithm CoMpPUTE-APSISP maintains a set Extensions(a, y) for
each pair of vertices a, y.

> Extensions(a, y) contains those edges (x, a), incoming to a, that are
the first edge on the k — 1 simple shortest paths from x to y.

» So, if the k — 1 shortest paths in Qx(x,y)) all start with (x, a)
then (x, a) is placed in Extensions(a, y)

» Lemma 1 shows that we may need to ‘pre-extend to x,’ the k-th
simple shortest path from a to y in order to compute the k-th
simple shortest path from x to y that uses (x, a) as the first edge.

» CoMPUTE-APSISP performs these path extensions and may
create paths that are not detours.

21/27

Algorithm CoMPUTE-APSISP(G = (V, E), wt, k, { Qk(x,y),Vx,y})

Initialize:

H <+ ¢ {H is a priority queue.}

cforall x,y € V,x #y do

PE(x,y) < Qu(x.y)
if the k — 1 shortest paths in P} (x, y) have the same first edge, say (x,a) then
Add (x, a) to the set Extensions(a,y)
if |Qx(a,y)| = k then
m < the path of largest weight in Qk(a,y)
7w+ (x,a)om
Add 7’ to H with weight wt(x, a) + wt(m)

: Main Loop:
. while H # ¢ do

7w < EXTRACT-MIN(H)
Let 7 = (xa, y) and let the path of largest weight in P;(x,y) be 7’
if |P(x,y)| = k — 1 then add 7 to P;(x,y) and set update flag
else if wt(m) < wt(n") then replace ©" with 7 in P}(x,y) and set update flag
if update flag is set then
for all (x’, x) € Extensions(x,y) do
add (x/,x) o to H with weight wt(x’, x) + wt(m)

22/27

Analysis of COMPUTE-APSISP

» Lemma 2. Algorithm CoMPUTE-APSISP correctly computes the
sets Pi(x,y) Vx,y € V.

» Lemma 3. Algorithm COMPUTE-APSISP runs in
O(kn? 4+ n?log n) time.

» Corollary 1. Using DSO, 2-APSiSP can be computed by an
O(mnlog n 4 n?log? n) time randomized algorithm.

» Corollary 2. 2-APSiSP can be computed in O(mn + n? log n)
time.
(This uses an algorithm that computes the @, sets without
using DSO.)

23/27

3-APSiSP and k-APSiSP

> 3-APSiSP:

» Compute the Qs sets by recursively calling 2-APSISP on G,
with incoming edges to v removed, for each v € V.
» Call ComPUTE-APSISP with the Qs sets.

» Run-time is O(mn? + n3log n) (dominated by the recursive calls).

» Previous best method was to run the 3-SiSP algorithm ©(n?) times,
which takes O(mn® + n*log log n).
> k-APSiSP:

The Qx sets can be computed by the same recursive method, but
the running time degrades with larger k.

2427

Algorithm for k-All-SiSP

ALL-SISP(G = (V, E); wt)
1: Initialization:
2: for all (x,y) € E do
Add (x, y) to priority queue H with wt(x, y) as key
Add (x,y) to L({y)) and R(({x}))
Main loop:
while H # ¢ do
7 < EXTRACT-MIN(H)
Add 7 to the output sequence of simple paths

Let myp = £(m) and may = r(w) ((x,a) and (b, y) are first and last edges on)
10: for all 7/, € L(myp) with x’ # y do

LN W

11: Form 7, < (x',x) om and add 7./, to H with wt(m,/,) as key

12: Add 7,1y, to L(mxy) and to R(m.p)

13: for all 7.,/ € R(may) with y’ # x do perform steps complementary to Steps 11
and 12

Lemma 4. Algorithm ALL-SISP computes the shortest path in O(m)
time and each succeeding simple shortest path in amortized O(k + log n)
time if k = O(n) and O(n + log k) time if k = Q(n).

25/27

Summary

» Simple Shortest Paths and Cycles

» New algorithm, using path extensions, for 2-APSiSP with the
same time bound as 2-SiSP (to within a log factor), and for
3-APSISP.

» Reductions between sparse graphs for most versions of finding
k simple shortest paths and cycles, showing hardness relative
to Sparse Min-Wt-Cyc.

» Very fast algorithm for k-All-SiSP, again with path extensions.

» Further Research

» Can we compute the Qy sets more efficiently?
» Space usage is high in our all-pairs algorithms.
Can we obtain more space-efficient algorithms?

» Hardness relative to Sparse Min-Wt-Cycle.
» Can we show equivalence to APSP in sparse graphs?
> More generally, can we further extend the class of problems
hard for ‘sub-mn’ computations?

26 /27

» Udit Agarwal, Vijaya Ramachandran, “Finding k simple shortest
paths and cycles,” arXiv:1512.02157v1, 2015.

27 /27

