
Finding k Simple Shortest Paths and Cycles

Vijaya Ramachandran
University of Texas at Austin, USA

(Joint work with Udit Agarwal)

(http://arxiv.org/pdf/1512.02157v1.pdf)

1 / 27

k Simple Shortest Paths

Given: Directed graph G = (V ,E) with non-negative edge-weights, a
pair of vertices s, t ∈ V , positive integer k ; |V | = n, |E | = m.

I Find the k shortest paths from s to t.

Easy: O(m + n log n + k) time [Eppstein’98]

I Find the k shortest paths with distinct path lengths from s to t.

Hard: NP-hard even for k = 2 [Lalgudi-Papaefthymiou’97]

I Find the k simple shortest paths from s to t.

Õ(k ·mn) time algorithm [Yen’71]

Even for k = 2, subcubic (for dense graphs) only if APSP has
sub-cubic algorithm [Williams-Williams’10]

• For k = 1 all three problems are the same, and efficiently solvable
using Dijkstra’s algorithm.

2 / 27

This Talk: Finding k Simple Shortest Paths and Cycles

Prior work in this topic:

I k simple shortest paths from s to t (k-SiSP) [Yen’71, GL09, RZ12]]:
Õ(kmn) time.

I Enumeration of k simple cycles (in no particular order):
O(kmn) [Tarjan’73], improved to O(km) in [Johnson’75].

We study the following natural variants:

I k simple shortest paths for all pairs (k-APSiSP).

I k simple shortest cycles through a given vertex (k-SiSC), or through
each vertex in G (k-AVSiSC).

I Enumeration of k simple shortest cycles (k-All-SiSC) and
k simple shortest paths (k-All-SiSP) in G .

3 / 27

Main Algorithmic Contributions

I New approach: Find simple shortest paths through path extensions:

I Solves 2-APSiSP in Õ(mn) time & 3-APSiSP in Õ(mn2) time.
(Improves Õ(n3) for 2-APSiSP and Õ(mn3) for 3-APSiSP)

I Solves k-All-SiSP in O(m) time for the first path and
Õ(min{j , n}) for the j-th path.
(uses different path extensions from the ones for k-APSiSP)

I Algorithms and reductions to obtain Õ(mn) time algorithms for
2-AVSiSC and for k-SiSC, k-All-SiSC, for constant k.

I Also show that all of these problems as at least as hard as finding a
minimum weight cycle (Min-Wt-Cyc) in a sparse graph, except
k-All-SiSP (using ≤(m,n) reductions).

4 / 27

Reductions and Hardness Class

I The APSP hardness class contains a large collection of problems
that are at least as hard as APSP for sub-cubic algorithms [WW’10].

I But this does not distinguish between dense and sparse graphs.

I We consider reductions that preserve sparsity, and the starting
problem is Min-Wt-Cyc, which has an Õ(mn) time algorithm.

I So, our hardness class is Sparse Min-Wt-Cyc hardness, and is with
regard to sub-mn algorithms.

I O(m3/2) is another (faster) sparse time bound that matches n3 in
the dense case, achieved by Min-Wt-Triangle [IR’78].

I But O(mn) appears to be the most common time bound for sparse
versions of problems equivalent to APSP under sub-cubic reductions.

5 / 27

Problem Known Results New Results

2-APSiSP Upper Bound: Õ(n3) Upper Bound: Õ(mn)

(using DSO) [BK]

3-APSiSP UB: Õ(mn3) [Yen] UB: Õ(mn2)

2-SiSP LB: Min-Wt-∆ ≤ 2-SiSP
(for subcubic) [WW] LB: Min-Wt-Cyc ≤(m,n) 2-SiSP

UB: Õ(mn) [Yen]

k-SiSP LB: Same as 2-SiSP LB: Same as 2-SiSP

UB: Õ(kmn) [Yen]
k-SiSC — k-SiSP ≡(m,n) k-SiSC

k-AVSiSC — LB: Min-Wt-Cyc ≤(m,n) 2-AVSiSC

UB: Õ(mn) for (k = 2)

and Õ(kmn2) for (k > 2)
k-All-SiSC — LB: Min-Wt-Cyc ≤(m,n) 2-All-SiSC

UB: Õ(mn) per cycle

k-All-SiSP — UB: amortized Õ(k) if k < n

and Õ(n) if k ≥ n per path
after a startup cost of O(m)

Table : Our Main Results. (DSO stands for Distance Sensitivity Oracles.)

6 / 27

(m, n) Reductions

Definition. Given graph problems P and Q, an (m, n) reduction,
P ≤(m,n) Q, means that an input G = (V ,E) to P with |V | = n,
|E | = m can be transformed in O(m + n) time to an input G ′ = (V ′,E ′)
to Q with |V ′| = O(n) and |E ′| = O(m) such that from a solution for Q
on G ′ we can obtain a solution for P on G in O(m + n) time.

I Our main reductions:

Min-Wt-Cycle ≤(m,n) 2-SiSP ≤(m,n) k-SiSP ≡(m,n) k-SiSC

Trivially, APSP ≤(m,n) k-APSiSP, k-SiSC ≤(m,n) k-AVSiSC,
Min-Wt-Cycle ≤(m,n) k-All-SiSC

I Prior related known results:

Min-Wt-Cycle ≤(m,n) APSP

2-SiSP ≤(m,n) APSP plus O(n2) processing [GL’09]

k-SiSP reduces to k calls to 2-SiSP [RZ’12]

7 / 27

Reductions: k-SiSP ≡(m,n) k-SiSC

I k-SiSP ≤(m,n) k-SiSC:

I Input is G , with source s and sink t.
I Form G ′ by adding a new vertex u′ and zero-weight edges

(u′, s), (t, u′).
I k-th simple s-t path in G is k-th simple cycle in G ′ though u′.

I k-SiSC ≤(m,n) k-SiSP:

I To compute k-SiSC through v in G = (V ,E):

I Split v into vi and vo .
I All incoming edges to v become incoming to vi .
I All outgoing edges from v become outgoing from vo .
I A simple cycle through vertex v in G is transformed into a

simple path from vo to vi in G ′ with same weight.
I So k-SiSC ≤(m,n) k-SiSP.

8 / 27

Min-Wt-Cycle ≤(m,n) 2-SiSP

I Cycle to Path: Basic transformation from G to G ′ converts each
vertex v into vi and vo with zero-weight edge (vi , vo).

I All incoming edges to v become incoming to vi .
I All outgoing edges from v become outgoing from vo .

vi voao

bo

co

di

ei

v
a

b

c

d

e
0

I A simple cycle through vertex v in G is transformed into a simple
path from vo to vi in G ′ with same weight.

9 / 27

Min-Wt-Cycle ≤(m,n) 2-SiSP

1o 1i

2o 2i

3o 3i

p0 p1 p2 p3

G ′

0 0 0

3W

2W W

W

2W

3W

I path 〈p0, · · · , pn〉 with zero-weight edges.

I W = n · w , where w is max edge-weight in G .

I edge of weight (n − j + 1)W from pj−1 to jo and an edge of weight
jW from ji to pj .

10 / 27

Refinements Within Õ(mn)

Time Bound Problems Achieving the Time Bound

m · n Min-Length-Cycle, Unweighted APSP
(undirected and directed)

m · n · logα(m, n) Undir Min-Wt-Cycle, Undir Wted APSP [PR’05]

m · n + n2 · log log n Min-Wt-Cyc,
k-SiSP [Yen’71,GL’09], k-SiSC [here]
(constant k), Directed APSP [Pettie’04]

m · n + n2 log n 2-APSiSP, 2-AVSiSC, k-All-SiSC [all here]
(constant k)

(m · n + n2 log n) · log n DSO [BK’09]

n · (m · n + n2 log log n) k-AVSiSC, k ≥ 3 [here]
n · (m · n + n2 log n) 3-APSiSP [here]

n2(m · n + n2 log n log n) k-APSiSP, k ≥ 4 [Yen’71, GL’09]

11 / 27

Path Extension Algorithms

The rest of the talk will cover:

I The 2-APSiSP algorithm.

I Uses path extensions that may not be detours.

I 3-APSiSP, and k-APSiSP, k ≥ 3.

I Uses recursion, but inefficient for larger k .

I k-All-SiSP.

I Uses a different type of path extension.

12 / 27

Background for SiSP

I k-SiSP. All known algorithms for k-SiSP (and 2-SiSP) from x to y
compute detours around each edge in a shortest path, and then
choose the shortest x − y path generated by a detour.

I Replacement Paths. This computes, for each edge e on an x-y SP,
a shortest path avoiding e. 2-SiSP from x to y can be computed as
the minimum weight replacement path.

x p1 p2 p3 y

I Lower Bound. O(m
√
n) lower bound for both 2-SiSP and

Replacement Paths in the path-weight comparison model, assuming
that the algorithm only examines these detours [HSB’07].

I Our 2-APSiSP algorithm generates and examines paths that are not
detours for any pair of vertices.

13 / 27

Replacement Paths

I Replacement paths for a single pair x , y : O(mn + n2 log log n)
time [Yen’71, GL’09]

I 2-SiSP is computed by the same algorithm plus O(n)
additional time to select a minimum weight replacement path.

I Replacement paths for all pairs x , y ∈ V :

I The output can potentially have size Ω(n3), simply for the
weights of all replacement paths.

I Instead use compact distance sensitivity oracles (DSO)
[DTCR’08] of size Õ(n2).

I Any specific replacement path can be found from DSO in
constant time.

I Current fastest algorithm for DSO runs in
O(mn log n + n2 log2 n) time [BK’09]

I BUT: 2-APSiSP from DSO takes n3 time.
(to examine up to n3 replacement paths)

14 / 27

Our Approach

I We first compute k nearly SiSP sets Qk(x , y) (to be defined).

I We then use an algorithm Compute-APSiSP (to be presented) that
computes k-APSiSP from the Qk(x , y) sets in O(kn2 + n2 log n)
time.

15 / 27

The Q2 Sets and Distance Sensitivity Oracles

I Definition. The set Q2(x , y) of the two nearly shortest simple
paths from x to y in G contains a shortest path π from x to y , and
a shortest path from x to y in G that avoids the first edge on π (if
such a path exists).

x b

c

d y

f g

I Observation: Using DSO, we can compute the Q2(x , y) sets, in
additional O(n2) time for all pairs.

(We have another method – simpler than DSO – that computes
Q2(x , y) sets directly in O(mn + n2 log n).)

16 / 27

2-APSiSP Algorithm

I The 2-APSiSP Algorithm:

I Compute the first path in all Q2 sets with an APSP
computation.

I Compute the second path in each Q2 set in O(1) time using
distance oracles.

I Compute 2-APSiSP from the Q2 sets.
(Need an algorithm for this – Compute-APSiSP)

17 / 27

The Qk Sets

Assume that there are k simple paths from x to y , for all x , y ∈ V . Then,

I P∗k (x , y) is the set of k simple shortest paths from x to y in G .

I Qk(x , y) is the set of k nearly simple shortest paths from x to y ,
defined as follows:

I if all paths in P∗k−1(x , y) share the same first edge (x , a), then
Qk(x , y) contains all paths in P∗k−1(x , y), together with the
shortest simple path from x to y that does not start with edge
(x , a), if such a path exists.

I Otherwise, Qk(x , y) = P∗k (x , y).

I Task for Algorithm Compute-APSiSP.

I If the k − 1 shortest paths in Qk(x , y) all start with the same
edge (x , a) then we need to determine if the k-th simple
shortest path from x to y also starts with edge (x , a).

I Otherwise, Qk(x , y) = P∗k (x , y).

18 / 27

Algorithm Compute-APSiSP

I Algorithm Compute-APSiSP computes k-APSiSP in
O(k · n2 + n2 log n) time, for any k ≥ 2, given the Qk(x , y) sets.

* Recall: Only if the k − 1 shortest paths in Qk(x , y) all start with
the same edge (x , a) then Compute-APSiSP needs to determine
if the k-th simple shortest path from x to y also starts with edge
(x , a). (Otherwise Qk(x , y) = P∗k (x , y).)

I The pairs x , y for which * holds can be determined by scanning the
Qk sets, which are input to Compute-APSiSP.

I For these pairs, Compute-APSiSP uses the following Lemma 1 to
find the k-th path.

Lemma 1. If all paths in P∗k (x , y) start with the same first edge (x , a)
then P∗k (a, y) consists of the right subpaths of the paths in P∗k (x , y).

19 / 27

Lemma 1

Lemma 1. If all paths in P∗k (x , y) start with the same first edge (x , a)
then the right subpath of the i-th simple shortest path from x to y has
weight equal to the weight of the i-th simple shortest path from a to y ,
1 ≤ i ≤ k.

x
a b

c

d

y

x
a b

d

y

20 / 27

Algorithm Compute-APSiSP

I Algorithm Compute-APSiSP maintains a set Extensions(a, y) for
each pair of vertices a, y .

I Extensions(a, y) contains those edges (x , a), incoming to a, that are
the first edge on the k − 1 simple shortest paths from x to y .

I So, if the k − 1 shortest paths in Qk(x , y)) all start with (x , a)
then (x , a) is placed in Extensions(a, y)

I Lemma 1 shows that we may need to ‘pre-extend to x ,’ the k-th
simple shortest path from a to y in order to compute the k-th
simple shortest path from x to y that uses (x , a) as the first edge.

I Compute-APSiSP performs these path extensions and may
create paths that are not detours.

21 / 27

Algorithm Compute-APSiSP(G = (V ,E),wt, k, {Qk (x , y),∀x , y})
1: Initialize:
2: H ← φ {H is a priority queue.}
3: for all x , y ∈ V , x 6= y do
4: P∗k (x , y)← Qk (x , y)
5: if the k−1 shortest paths in P∗k (x , y) have the same first edge, say (x , a) then
6: Add (x , a) to the set Extensions(a, y)
7: if |Qk (a, y)| = k then
8: π ← the path of largest weight in Qk (a, y)
9: π′ ← (x , a) ◦ π
10: Add π′ to H with weight wt(x , a) + wt(π)

11: Main Loop:
12: while H 6= φ do
13: π ← Extract-min(H)
14: Let π = (xa, y) and let the path of largest weight in P∗k (x , y) be π′

15: if |P∗k (x , y)| = k − 1 then add π to P∗k (x , y) and set update flag
16: else if wt(π) < wt(π′) then replace π′ with π in P∗k (x , y) and set update flag
17: if update flag is set then
18: for all (x ′, x) ∈ Extensions(x , y) do
19: add (x ′, x) ◦ π to H with weight wt(x ′, x) + wt(π)

22 / 27

Analysis of Compute-APSiSP

I Lemma 2. Algorithm Compute-APSiSP correctly computes the
sets P∗k (x , y) ∀x , y ∈ V .

I Lemma 3. Algorithm Compute-APSiSP runs in
O(kn2 + n2 log n) time.

I Corollary 1. Using DSO, 2-APSiSP can be computed by an
O(mn log n + n2 log2 n) time randomized algorithm.

I Corollary 2. 2-APSiSP can be computed in O(mn + n2 log n)
time.
(This uses an algorithm that computes the Q2 sets without
using DSO.)

23 / 27

3-APSiSP and k-APSiSP

I 3-APSiSP:

I Compute the Q3 sets by recursively calling 2-APSiSP on G ,
with incoming edges to v removed, for each v ∈ V .

I Call Compute-APSiSP with the Q3 sets.

I Run-time is O(mn2 + n3 log n) (dominated by the recursive calls).

I Previous best method was to run the 3-SiSP algorithm Θ(n2) times,
which takes O(mn3 + n4 log log n).

I k-APSiSP:

The Qk sets can be computed by the same recursive method, but
the running time degrades with larger k .

24 / 27

Algorithm for k-All-SiSP

All-SiSP(G = (V ,E);wt)

1: Initialization:
2: for all (x , y) ∈ E do
3: Add (x , y) to priority queue H with wt(x , y) as key
4: Add (x , y) to L(〈y〉) and R(〈x〉)
5: Main loop:
6: while H 6= φ do
7: π ← Extract-min(H)
8: Add π to the output sequence of simple paths
9: Let πxb = `(π) and πay = r(π) ((x , a) and (b, y) are first and last edges on π)
10: for all πx′b ∈ L(πxb) with x ′ 6= y do
11: Form πx′y ← (x ′, x) ◦ π and add πx′y to H with wt(πx′y) as key
12: Add πx′y to L(πxy) and to R(πx′b)

13: for all πay′ ∈ R(πay) with y ′ 6= x do perform steps complementary to Steps 11
and 12

Lemma 4. Algorithm All-SiSP computes the shortest path in O(m)
time and each succeeding simple shortest path in amortized O(k + log n)
time if k = O(n) and O(n + log k) time if k = Ω(n).

25 / 27

Summary

I Simple Shortest Paths and Cycles

I New algorithm, using path extensions, for 2-APSiSP with the
same time bound as 2-SiSP (to within a log factor), and for
3-APSiSP.

I Reductions between sparse graphs for most versions of finding
k simple shortest paths and cycles, showing hardness relative
to Sparse Min-Wt-Cyc.

I Very fast algorithm for k-All-SiSP, again with path extensions.

I Further Research

I Can we compute the Qk sets more efficiently?
I Space usage is high in our all-pairs algorithms.

Can we obtain more space-efficient algorithms?

I Hardness relative to Sparse Min-Wt-Cycle.
I Can we show equivalence to APSP in sparse graphs?
I More generally, can we further extend the class of problems

hard for ‘sub-mn’ computations?

26 / 27

I Udit Agarwal, Vijaya Ramachandran, “Finding k simple shortest
paths and cycles,” arXiv:1512.02157v1, 2015.

27 / 27

