Deterministic Edge Connectivity in
Near-Linear Time

Ken-ichi Kawarabayashi

National Institute of Informatics, Japan

| Mikkel Thorup
University of Copenhagen

Edge connectivity and global min-cut

» Simple graph G = (V, E) (no parallel edges).

Edge connectivity and global min-cut

» Simple graph G = (V, E) (no parallel edges).
» Edge connectivity is smallest number of edges whose
removal disconnects G.

Edge connectivity and global min-cut

» Simple graph G = (V, E) (no parallel edges).
» Edge connectivity is smallest number of edges whose
removal disconnects G.

» Cutdefinedby UC V,0# U=# V.
Two sides Uand T = V' \ U,
cut edges E(U, T) = oU = 0T between sides.

Edge connectivity and global min-cut

» Simple graph G = (V, E) (no parallel edges).
» Edge connectivity is smallest number of edges whose
removal disconnects G.

» Cutdefinedby UC V,0# U=# V.
Two sides Uand T = V' \ U,
cut edges E(U, T) = oU = 0T between sides.

» Result Find edge connectivity including minimum cut
deterministically in near linear time.

History

n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.

History

n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:

History

n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:
» O(A\nm) with Ford Fulkerson [1956], or

History

n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:

» O(A\nm) with Ford Fulkerson [1956], or
» O(nm®/?) time with Even and Tarjan [1975].

History
n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:
» O(A\nm) with Ford Fulkerson [1956], or
» O(nm®/?) time with Even and Tarjan [1975].
» [Podderyugin 1973] global min-cut for simple graphs in
O(An?) = O(nm) time. Same bound [Karzanov and
Timofeev 1986, Matula 1987]

History

n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:
» O(A\nm) with Ford Fulkerson [1956], or
» O(nm®/?) time with Even and Tarjan [1975].

» [Podderyugin 1973] global min-cut for simple graphs in
O(An?) = O(nm) time. Same bound [Karzanov and
Timofeev 1986, Matula 1987]

» [Nagamochi Ibaraki 1990] Global min-cut for weighted
graphs in O(nm + n?log n) time. Same bound and more
[Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

History

n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:
» O(A\nm) with Ford Fulkerson [1956], or
» O(nm®/?) time with Even and Tarjan [1975].

» [Podderyugin 1973] global min-cut for simple graphs in
O(An?) = O(nm) time. Same bound [Karzanov and
Timofeev 1986, Matula 1987]

» [Nagamochi Ibaraki 1990] Global min-cut for weighted
graphs in O(nm + n?log n) time. Same bound and more
[Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

» [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with
O(kn) edges preserving k-edge connectivity (unweighted).

History
n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:
» O(A\nm) with Ford Fulkerson [1956], or
» O(nm®/?) time with Even and Tarjan [1975].

» [Podderyugin 1973] global min-cut for simple graphs in
O(An?) = O(nm) time. Same bound [Karzanov and
Timofeev 1986, Matula 1987]

» [Nagamochi Ibaraki 1990] Global min-cut for weighted
graphs in O(nm + n?log n) time. Same bound and more
[Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

» [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with
O(kn) edges preserving k-edge connectivity (unweighted).

» [Matula 1993] Linear time (2 + ¢)-approximation of the
edge-connectivity .

History
n=|V|, m=|E|, edge conectivity A\ < min-degree § < 2m/n.
» [Gomory Hu 1961] global min-cut via n — 1 min s-t cuts:
» O(A\nm) with Ford Fulkerson [1956], or
» O(nm®/?) time with Even and Tarjan [1975].

» [Podderyugin 1973] global min-cut for simple graphs in
O(An?) = O(nm) time. Same bound [Karzanov and
Timofeev 1986, Matula 1987]

» [Nagamochi Ibaraki 1990] Global min-cut for weighted
graphs in O(nm + n?log n) time. Same bound and more
[Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

» [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with
O(kn) edges preserving k-edge connectivity (unweighted).

» [Matula 1993] Linear time (2 + ¢)-approximation of the
edge-connectivity .

» In O(m) time, find subgraph with O(An) edges and same
edge-connectivity .

— Henceforth assume m = ©(\n).

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).

» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).
» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.

» 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).
» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.

» 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

» [Karger and Stein 1993] Global min-cut in O(n? log® n) time
but randomized Monte Carlo.

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).

» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.

» 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

» [Karger and Stein 1993] Global min-cut in O(n? log® n) time
but randomized Monte Carlo.

» [Karger 1994] Global min-cut in O(v/A m) time but
randomized Monte Carlo.

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).
» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.
» 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

» [Karger and Stein 1993] Global min-cut in O(n? log® n) time
but randomized Monte Carlo.

» [Karger 1994] Global min-cut in O(v/A m) time but
randomized Monte Carlo.

» [Karger 1996] Global min-cut in O(mlog3 n) time even for
weighted graphs but randomized Monte Carlo.

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).

» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.

» 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

» [Karger and Stein 1993] Global min-cut in O(n? log® n) time
but randomized Monte Carlo.

» [Karger 1994] Global min-cut in O(v/A m) time but
randomized Monte Carlo.

» [Karger 1996] Global min-cut in O(mlog® n) time even for
weighted graphs but randomized Monte Carlo.

» [Karger 1996] Most efficient way to verify min-cut (for Las
Vegas) is using Gabow’s deterministic algorithm.

History contd
n=|V|, m= |E|, edge conectivity A\ = ©(m/n).

» [Gabow 1993] Global min-cut in O(Am log(n/\)) time for
simple graphs. Implicit O(Am log n) for multigraphs.

» 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

» [Karger and Stein 1993] Global min-cut in O(n? log® n) time
but randomized Monte Carlo.

» [Karger 1994] Global min-cut in O(v/A m) time but
randomized Monte Carlo.

» [Karger 1996] Global min-cut in O(mlog® n) time even for
weighted graphs but randomized Monte Carlo.

» [Karger 1996] Most efficient way to verify min-cut (for Las
Vegas) is using Gabow’s deterministic algorithm.

» [This paper] Global min-cut deterministically for simple
graphs in O(mlog'2 n) = O(m) time.

Underlying result

» A cutis trivial if one side is a single vertex.

trivial

non—trivial

Underlying result

» A cutis trivial if one side is a single vertex.

» For simple graph with min-degree ¢, in near-linear time,
contract edges producing graph G with m = O(m/)
edges, preserving all non-trivial min-cuts of G.

trivial

non—trivial

Underlying result

» A cutis trivial if one side is a single vertex.

» For simple graph with min-degree 4, in near-linear time,
contract edges producing graph G with m = 5(m/6)
edges, preserving all non-trivial min-cuts of G.

B \
L v h \
, v / v
’ ' h \
Y v h \
. v h \
/ ' '
' | ! ‘
! I | I
i
| I L —
N | | '
\ | \ '
\ | | I
N I ' '
X ' \ '
' \ '
' \ ’
N ' \ /
' \ ’
/

trivial

non—trivial

Underlying result

» A cutis trivial if one side is a single vertex.

» For simple graph with min-degree 4, in near-linear time,
contract edges producing graph G with m = 5(m/6)
edges, preserving all non-trivial min-cuts of G.

B \
L v h \
, v / v
’ ' h \
Y v h \
. v h \
/ ' '
' | ! ‘
! I | I
i
| I L —
N | | '
\ | \ '
\ | | I
N I ' '
X ' \ '
' \ '
' \ ’
N ' \ /
' \ ’
/

trivial

non—trivial

» Multigraph?

Underlying result

» A cutis trivial if one side is a single vertex.

» For simple graph with min-degree 4, in near-linear time,
contract edges producing graph G with m = O(m/)
edges, preserving all non-trivial min-cuts of G.

; .
. 1 1 \
X ' ' v
; ‘ ! ‘
‘
N | | |
\ ! Il I
\ ! l '
! /
,

trivial

non—trivial

» Multigraph?

all edges in non-trivial min-cuts.

Underlying result
» For simple graph with min-degree ¢, in near-linear time,

contract edges producing graph G with m = 5(m/6)
edges, preserving all non-jﬁvial min-cuts of G.

. v ; \
< v ' v
’ v ' '
’ ' I I
! \ ' I v
/ |) '
H ' I L —
')
' ' I
\ /
/ ' ')
\ ' ' I
S I \ I
< ' v '
' v /
' \ |
N ' \ '

trivial

non-—trivial

Underlying result
» For simple graph with min-degree ¢, in near-linear time,

contract edges producing graph G with m = 5(m/6)
edges, preserving all non-jﬁvial min-cuts of G.

. v ; \
< v ' v
; v h '
‘ ' I '
’ \ ' I v
' i ' '
v I I L —
')
' | I
\ /
/ ' ')
| ' ' I
* I \ I
< ' v '
' v /
' \ |
N ' \ '

trivial

non-—trivial

» Run Gabo!v’s min-cut (or cactus) algorithm on G in

O(Am) = O(m) time.

Underlying result

» For simple graph with min-degree 4, in near-linear time,
contract edges producing graph G with m = O(m/¢)
edges, preserving all non-jﬁvial min-cuts of G.

\
'
I
v
'
L —
I

» Run Gabo!v’s min-cut (or cactus) algorithm on G in
O(Am) = O(m) time.

» Check against § to see if trivial min-cuts from G should be
included.

trivial

non-—trivial

Underlying result

» For simple graph with min-degree 4, in near-linear time,
contract edges producing graph G with m = O(m/¢)
edges, preserving all non-jﬁvial min-cuts of G.

\
'
I
v
'
L —
I

» Run Gabo!v’s min-cut (or cactus) algorithm on G in
O(Am) = O(m) time.

» Check against § to see if trivial min-cuts from G should be
included.

» Gives min-cut (or cactus) for original G in 5(m) total time.

trivial

non-—trivial

Involving cut conductance

» The volume of vertex set U C V is # edge end-points in U:
vol(U) = > d(v).
velU
» RecalloU = E(U, V \ U).
» Conductance of cut around U is
_ 10U
*(U) = min{vol(U), 2m — vol(U)}

= o(V\ V)

Involving cut conductance

» The volume of vertex set U C V is # edge end-points in U:
vol(U) = > d(v).
velU
» RecalloU = E(U, V \ U).
» Conductance of cut around U is
_ 10U
*(U) = min{vol(U), 2m — vol(U)}

o =1/4

= o(V\ V)

trivial

non—trivial

Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut S has conductance < 1/6.

Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut S has conductance < 1/6.

> [0S] = [S](6 — (IS = 1))

Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut S has conductance < 1/6.

> [0S] = [S](6 — (IS = 1))
» [0S <dand|S|>1 = |§]| >.

Non-trivial min-cuts have low-conductance
Obs Any non-trivial min-cut S has conductance < 1/6.
> [0S] = [S](6 — (IS = 1))

» 0S| <dand |S|>1 = [S| >9.
» 50 vol(S) > 62 and &(S) = |0S]/vol(S) < 1/4.

Non-trivial min-cuts have low-conductance
Obs Any non-trivial min-cut S has conductance < 1/6.
> [0S] = [S](6 — (IS = 1))
» [0S <dand|S|>1 = |§]| >.
» so vol(S) > 62 and &(S) = |0S]/vol(S) < 1/6.

We assume min-degree ¢ > Ig® n; otherwise apply Gabow.

Certify-or-cut
Obs Any non-trivial min-cut S has conductance < 1/6.

We assume min-degree § > Ig® n; otherwise apply Gabow.

Certify-or-cut
Obs Any non-trivial min-cut S has conductance < 1/6.
We assume min-degree ¢ > Ig® n; otherwise apply Gabow.

Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(i) find cut T with conductance o(1/log m).

Certify-or-cut
Obs Any non-trivial min-cut S has conductance < 1/6.
We assume min-degree ¢ > Ig® n; otherwise apply Gabow.

Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(i) find cut T with conductance o(1/log m).

Both (i) and (ii) alone are difficult deterministically.

Certify-or-cut
Obs Any non-trivial min-cut S has conductance < 1/6.
We assume min-degree ¢ > Ig® n; otherwise apply Gabow.

Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(i) find cut T with conductance o(1/log m).

Both (i) and (ii) alone are difficult deterministically.

(i) As hard as certifying edge connectivity k

4—connected?

Certify-or-cut
Obs Any non-trivial min-cut S has conductance < 1/6.
We assume min-degree ¢ > Ig® n; otherwise apply Gabow.

Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(i) find cut T with conductance o(1/log m).

Both (i) and (ii) alone are difficult deterministically.

(i) As hard as certifying edge connectivity k

4—connected?

(i) Using PageRank, need to guess good vertex in S.

Overall algorithm

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree %6.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %6.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %6.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk

» Set H=G.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %6.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» Set H=G.
» While some component C of H has not been certified.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» SetH=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» SetH=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
(i) certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» SetH=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.
Lemma Most edges remain in components C of H:

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
(i) certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» SetH=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.
Lemma Most edges remain in components C of H:
» charge cut edges as o(1/log m) per small-side edge.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
(i) certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
» SetH=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.
Lemma Most edges remain in components C of H:
» charge cut edges as o(1/log m) per small-side edge.
» each edge land in small side Ilg m times. O

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
(i) certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G.
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G.
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.

Need to recurse, but contractions create parallel edges.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G.
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.
Need to recurse, but contractions create parallel edges.

Thm After enough recursions G has 5(m/5) edges and
preserves all original non-trivial min-cuts.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut(C, G) C subgraph of G with min-degree %5.
() certify no min-cut of G splits more than 2 vertices from C.
(i) find a cut (A, B) of conductance o(1/logm) of C
Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G.
» Set H=G.
» While some component C of H has not been certified.
» Certify-or-cut(C, G)
» if we get low-conductance cut (A, B) of C
» remove cut edges E(A, B) from H.
> repeatedly remove v with dy(v) < 2dg(v).
» Contract cores of components C of H in G.
Need to recurse, but contractions create parallel edges.

Thm After enough recursions G has 5(m/5) edges and
preserves all original non-trivial min-cuts. Many details in paper.

Certify-or-cut
Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(i) find a cut U of conductance o(1/1g m).

Certify-or-cut
Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(i) find a cut U of conductance o(1/1g m).

Recall both (i) and (ii) alone are difficult.

(i) As hard as certifying edge connectivity k

4—connected?

(i) Using PageRank, need to guess good vertex in S.

Certify-or-cut
Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(i) find a cut U of conductance o(1/1g m).

» We use PageRank emulating random walk.

Certify-or-cut
Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(i) find a cut U of conductance o(1/1g m).

» We use PageRank emulating random walk.

» Normally PageRank is Monte Carlo randomized that needs
to guess good start vertex to find low-conductance cut.

Certify-or-cut
Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(i) find a cut U of conductance o(1/1g m).

» We use PageRank emulating random walk.

» Normally PageRank is Monte Carlo randomized that needs
to guess good start vertex to find low-conductance cut.

» We need success (ii) only if non-trivial min-cut exists —(i).

Certify-or-cut
Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(i) find a cut U of conductance o(1/1g m).

v

We use PageRank emulating random walk.

v

Normally PageRank is Monte Carlo randomized that needs
to guess good start vertex to find low-conductance cut.

We need success (ii) only if non-trivial min-cut exists —(i).

This gives us enough structure for deterministic algorithm,
bypassing the need for guessing.

v

v

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)

initial mass distribution p° : V' — Rxq, p°(V) =>_,cv P°(v) =1
teleportation constant o = 1/1g° n

slack ¢ € (0, 1).

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V' — Rxq, p°(V) =>_,cv P°(v) =1
teleportation constant a = 1/1g° n
slack e € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V' — Rxq, p°(V) =>_,cv P°(v) =1
teleportation constant a = 1/1g° n
slack e € (0, 1).

» residual mass distribution r = p°

» settled mass distribution p = 0V

» while v € V with residual density r(v)/d(v) > ¢

» Push(a, v):

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V' — Rxq, p°(V) =>_,cv P°(v) =1
teleportation constant a = 1/1g° n
slack e € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with residual density r(v)/d(v) > ¢
» Push(a, v):
» p(v) = p(v) +ar(v)
» for (v,w) € Edo r(w) =r(w)+ (1 —a)r(v)/d(v)
» r(v) =0.

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V' — Rxq, p°(V) =>_,cv P°(v) =1
teleportation constant a = 1/1g° n
slack e € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with residual density r(v)/d(v) > ¢
» Push(a, v):
» p(v) = p(v) +ar(v)
» for (v,w) € Edo r(w) =r(w)+ (1 —a)r(v)/d(v)
» r(v) =0.

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V' — Rxq, p°(V) =>_,cv P°(v) =1
teleportation constant a = 1/1g° n
slack e € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with residual density r(v)/d(v) > ¢
» Push(a, v):
» p(v) = p(v) +ar(v)
» for (v,w) € Edo r(w) =r(w)+ (1 —a)r(v)/d(v)
» r(v) =0.

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V. — Rxq, p°(V) =1
teleportation constant a = 1/1g° n
slack e € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with r(v)/d(v) > ¢
> Push(a v):
p(v) = p(v) + ar(v)
> for(,w)e Edor(w)=r(w)+(1—-a)r(v)/d(v)
r(v) =0.

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)

initial mass distribution p° : V. — Rxq, p°(V) =1
teleportation constant a = 1/1g° n

slack e € (0, 1).

» residual mass distribution r = p°

settled mass distribution p = 0V

while v € V with r(v)/d(v) > ¢

» Push(a, v):

> p(v) = p(v) + ar(v)
» for (v,w) e Edor(w)=r(w)+ (1 —a)r(v)/d(v)
» r(v) =0.

order vertices v by decreasing density p(v)/d(v).

find best cuts defined by any prefix.

v

v

v

v

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)

initial mass distribution p° : V. — Rxq, p°(V) =1
teleportation constant a = 1/1g° n

slack e € (0, 1).

» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with r(v)/d(v) > ¢
» Push(a, v):
> p(v) = p(v) + ar(v)
» for (v,w) e Edor(w)=r(w)+ (1 —a)r(v)/d(v)
» r(v) =0.
» order vertices v by decreasing density p(v)/d(v).
» find best cuts defined by any prefix.

Pushing over O(1/(a¢)) edges in total, so O(1/(«a«)) total time.

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)

initial mass distribution p° : V. — Rxq, p°(V) =1
teleportation constant a = 1/1g° n

slack e € (0, 1).

» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with r(v)/d(v) > ¢
» Push(a, v):
> p(v) = p(v) + ar(v)
» for (v,w) e Edor(w)=r(w)+ (1 —a)r(v)/d(v)
» r(v) =0.
» order vertices v by decreasing density p(v)/d(v).
» find best cuts defined by any prefix.

Pushing over O(1/(a¢)) edges in total, so O(1/(«a«)) total time.

But when can we promise finding low-conductance cut?

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V — Rxg, p°(V) =1
teleportation constant a = 1/1g° n
slack ¢ € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with r(v)/d(v) > ¢
» Push(a, v):
> p(v) = p(v) + ar(v)
» for (v,w) e Edo r(w) =r(w)+ (1 —a)r(v)/d(v)
» r(v)=0

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V — Rxg, p°(V) =1
teleportation constant a = 1/1g° n
slack ¢ € (0, 1).

» residual mass distribution r = p°

» settled mass distribution p = 0V

» while v € V with r(v)/d(v) > ¢

> Push(a v):

p(v

) = p(v) +ar(v)
» for (v,

v) =

)

w) € Edo r(w) =r(w)+ (1 —a)r(v)/d(v)
r(0
Unique (abstract limit mass distribution p* <— p for e — 0.

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V — Rxg, p°(V) =1
teleportation constant a = 1/1g° n
slack ¢ € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with r(v)/d(v) > ¢
> Push(a v):
p(v) =
» for (v, w
r(v)=0
Unique (abstract) limit mass distribution p* «+ p fore — 0.
PR.(p°) = p* linear transformation such that

PRa(p°) = p+ PRa(r)

p(v) +ar(v)
) € Edo r(w) = r(w) + (1 —a)r(v)/d(v)

PageRank [Andersen, Chung, Lang FOCS’06]

PageRank(p®, a,)
initial mass distribution p° : V — Rxg, p°(V) =1
teleportation constant a = 1/1g° n
slack ¢ € (0, 1).
» residual mass distribution r = p°
» settled mass distribution p = 0V
» while v € V with r(v)/d(v) > ¢
> Push(a v):
p(v) =
» for (v, w
r(v)=0
Unique (abstract) limit mass distribution p* «+ p fore — 0.
PR.(p°) = p* linear transformation such that

PRa(p°) = p+ PRa(r)

Stationary mass distribution g = PR,(q) iff
all v € V have same density g(v)/d(v) =

p(v) +ar(v)
) € Edo r(w) = r(w) + (1 —a)r(v)/d(v)

Limit concentration and cuts

Thm [ACLO06] If S C V has p*(S) — vol(S)/(2m) = Q(1) then
PageRank finds T with conductance ®(T) = o(1/log m)
with vol(T) = O(vol(S)) in O(vol(T)) time.

Limit concentration and cuts

Thm [ACLO06] If S C V has p*(S) — vol(S)/(2m) = Q(1) then
PageRank finds T with conductance ®(T) = o(1/log m)
with vol(T) = O(vol(S)) in O(vol(T)) time.

In [ACLOB], if ®(S) < 1/1g'"® m and we start with p°(v) = 1 from
random v € S, we get p*(S) — vol(S)/(2m) = Q(1) with good
probability, but here we do not want to guess..

Limit concentration and cuts
Thm [ACLO06] If S C V has p*(S) — vol(S)/(2m) = Q(1) then
PageRank finds T with conductance ®(T) = o(1/log m)
with vol(T) = O(vol(S)) in O(vol(T)) time.
In [ACLOB], if ®(S) < 1/1g'"® m and we start with p°(v) = 1 from
random v € S, we get p*(S) — vol(S)/(2m) = Q(1) with good
probability, but here we do not want to guess..

We will prove that if S non-trivial min-cut and we start with
p°(v) =1forany v € S, we get p*(S) — vol(S)/(2m) = Q(1).

Limit concentration and cuts
Thm [ACLO06] If S C V has p*(S) — vol(S)/(2m) = Q(1) then
PageRank finds T with conductance ®(T) = o(1/log m)
with vol(T) = O(vol(S)) in O(vol(T)) time.
In [ACLOB], if ®(S) < 1/1g'"® m and we start with p°(v) = 1 from
random v € S, we get p*(S) — vol(S)/(2m) = Q(1) with good
probability, but here we do not want to guess..

We will prove that if S non-trivial min-cut and we start with
p°(v) =1forany v € S, we get p*(S) — vol(S)/(2m) = Q(1).

and if that fails we have
New analysis of end-game

ThmIf v e Vhas1/(2m) — p*(v)/d(v) = Q(1/(2m)) then
PageRank finds T, vol(T) < m, with ®(T) = o(1/log m)
either in O(vol(T)) time

or T contains all v with p*(v)/d(v) = (1 —Q(1))/(2m).

Mass flows from ACL06

Recall
» Push(a, v):
> p(v) = p(v) +ar(r)
» for (v,w) e Edor(w)=r(w)+ (1 —a)r(v)/d(v)
» r(v)=0

Mass flows from ACL06

Recall
» Push(a, v):
> p(v) = p(v) +ar(r)
» for (v,w) e Edor(w)=r(w)+ (1 —a)r(v)/d(v)
» r(v)=0

Mass flows from ACL06

Recall
» Push(a, v):

> p(v) = p(v) + ar(r)
> for (v, w) € E do r(w) = r(w) + (1 — a)r(v)/d(v)
0

> r(v) =

Lemma Starting from p°, with settled mass p, netflow over

(u,v) was (1 — a)(p(u)/d(u) — p(v)/d(v))/c.

Mass flows from ACL06

Recall
» Push(a, v):

> p(v) = p(v) + ar(r)
> for (v, w) € E do r(w) = r(w) + (1 — a)r(v)/d(v)
0

> r(v) =

Lemma Starting from p°, with settled mass p, netflow over
(u,v) was (1 —a)(p(u)/d(u) = p(v)/d(v))/a.

Lemma If r(v)/d(v) < o for all v € V, henceforth, netflow over
any edge < o(1 —a)/a < o/a.

Starting from any vertex on small side of min-cut

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.
» Let S with vol(S) < m/2 be small side of min-cut.

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.
» Let S with vol(S) < m/2 be small side of min-cut.
» For arbitrary v € S, start with p°(v) = 1 and push from v

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.
» Let S with vol(S) < m/2 be small side of min-cut.
» For arbitrary v € S, start with p°(v) = 1 and push from v

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.
» Let S with vol(S) < m/2 be small side of min-cut.
» For arbitrary v € S, start with p°(v) = 1 and push from v

Starting from any vertex on small side of min-cut

v

We have min-degree 6 > Ig® nand o = 1/1g° n.
Let S with vol(S) < m/2 be small side of min-cut.
For arbitrary v € S, start with p°(v) = 1 and push from v

vy

v

At least half mass stays in S.

Starting from any vertex on small side of min-cut

v

We have min-degree 6 > Ig® nand o = 1/1g° n.
Let S with vol(S) < m/2 be small side of min-cut.
For arbitrary v € S, start with p°(v) = 1 and push from v

vy

v

At least half mass stays in S.
On every vertex u, residual mass r(u) <1/d(v) <1/

v

Starting from any vertex on small side of min-cut

We have min-degree 6 > Ig® nand o = 1/1g° n.
Let S with vol(S) < m/2 be small side of min-cut.
For arbitrary v € S, start with p°(v) = 1 and push from v

vV Vvyy

v

At least half mass stays in S.
On every vertex u, residual mass r(u) <1/d(v) <1/
On every vertex u, residual density r(u)/d(u) < 1/62.

vy

Starting from any vertex on small side of min-cut

v

We have min-degree 6 > Ig® nand o = 1/1g° n.
Let S with vol(S) < m/2 be small side of min-cut.
For arbitrary v € S, start with p°(v) = 1 and push from v

vy

At least half mass stays in S.

On every vertex u, residual mass r(u) <1/d(v) <1/
On every vertex u, residual density r(u)/d(u) < 1/42.

Henceforth pushing, netflow over any edge < 1/(a6?),

vVvyYyyswy

Starting from any vertex on small side of min-cut

We have min-degree 6 > Ig® nand o = 1/1g° n.
Let S with vol(S) < m/2 be small side of min-cut.
For arbitrary v € S, start with p°(v) = 1 and push from v

vV Vvyy

At least half mass stays in S.

On every vertex u, residual mass r(u) <1/d(v) <1/
On every vertex u, residual density r(u)/d(u) < 1/42.
Henceforth pushing, netflow over any edge < 1/(a6?),
so \/(a6?) < 1/lgm = o(1) flow over edges leaving S.

vV VvV vy Vvyy

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.
» Let S with vol(S) < m/2 be small side of min-cut.
» For arbitrary v € S, start with p°(v) = 1 and push from v

At least half mass stays in S.

On every vertex u, residual mass r(u) <1/d(v) <1/
On every vertex u, residual density r(u)/d(u) < 1/42.
Henceforth pushing, netflow over any edge < 1/(a6?),
so \/(a6?) < 1/lgm = o(1) flow over edges leaving S.
Thus 1/2 — o(1) mass remains in S, so

p*(v) —vol(S)/(2m) > 1/2 — o(1) — (m/2)/(2m) = Q(1).

vV VvV vy VvYyYVvYyy

Starting from any vertex on small side of min-cut

» We have min-degree 6 > Ig® nand o = 1/1g° n.
» Let S with vol(S) < m/2 be small side of min-cut.
» For arbitrary v € S, start with p°(v) = 1 and push from v

At least half mass stays in S.

On every vertex u, residual mass r(u) <1/d(v) <1/
On every vertex u, residual density r(u)/d(u) < 1/42.
Henceforth pushing, netflow over any edge < 1/(a6?),
so \/(a6?) < 1/lgm = o(1) flow over edges leaving S.
Thus 1/2 — o(1) mass remains in S, so

p*(v) —vol(S)/(2m) > 1/2 — o(1) — (m/2)/(2m) = Q(1).
» By ACL, PageRank finds T with ®(T) = o(1/log m)

vV VvV vy VvYyYVvYyy

Balanced min-cut

Balanced min-cut

» Suppose min-cut side S with m/2 < vol(S) < 3m/2.

Balanced min-cut

» Suppose min-cut side S with m/2 < vol(S) < 3m/2.
» < 16 vertices incident to > /8 cut edges.

Balanced min-cut

» Suppose min-cut side S with m/2 < vol(S) < 3m/2.
» < 16 vertices incident to > /8 cut edges.
» Trying 16 vertices separately.

Balanced min-cut

v

Suppose min-cut side S with m/2 < vol(S) < 3m/2.
< 16 vertices incident to > §/8 cut edges.

Trying 16 vertices separately.

One v has 7/8 neighbors on same side.

v

v

v

Balanced min-cut

v

Suppose min-cut side S with m/2 < vol(S) < 3m/2.
< 16 vertices incident to > §/8 cut edges.

Trying 16 vertices separately.

One v has 7/8 neighbors on same side.

Pushing to limit from v, we get

v

v

v

v

p*(S) —vol(S)/(2m) = 7/8 — o(1) — (3m/2)/(2m) = Q(1).

Balanced min-cut

v

Suppose min-cut side S with m/2 < vol(S) < 3m/2.
< 16 vertices incident to > §/8 cut edges.

Trying 16 vertices separately.

One v has 7/8 neighbors on same side.

Pushing to limit from v, we get

v

v

v

v

p*(S) —vol(S)/(2m) = 7/8 — o(1) — (3m/2)/(2m) = Q(1).

» By ACL, PageRank finds T with ®(T) = o(1/log m)

Any non-trivial min-cut

Any non-trivial min-cut

» For some s < m/2, know vol(S) < s for any min-cut S.

Any non-trivial min-cut

» For some s < m/2, know vol(S) < s for any min-cut S.
» Look for min-cut S with 1 < s/2 < vol(S) < s.

Any non-trivial min-cut

» For some s < m/2, know vol(S) < s for any min-cut S.
» Look for min-cut S with 1 < s/2 < vol(S) < s.
» Using ACL, in O(s) time,

if v € § for min-cut S’ with vol(S’) < s,

find T with ®(T) < o(1/log m).

Any non-trivial min-cut

v

For some s < m/2, know vol(S) < s for any min-cut S.
Look for min-cut S with 1 < s/2 < vol(S) < s.

Using ACL, in O(s) time,

if v € § for min-cut S’ with vol(S’) < s,

find T with ®(T) < o(1/log m).

Try 8m/(s«) different v in O(m) time. None succeeds.

v

v

v

Any non-trivial min-cut

» For some s < m/2, know vol(S) < s for any min-cut S.
» Look for min-cut S with 1 < s/2 < vol(S) < s.
» Using ACL, in O(s) time,

if v € § for min-cut S’ with vol(S’) < s,

find T with ®(T) < o(1/log m).
» Try 8m/(sa) different v in O(m) time. None succeeds.
» Give each of them initial mass sa//(8m)

and density < sa/(8mod). Apply page rank.

G T

O O

Any non-trivial min-cut

» For some s < m/2, know vol(S) < s for any min-cut S.
» Look for min-cut S with 1 < s/2 < vol(S) < s.
» Using ACL, in O(s) time,

if v € § for min-cut S’ with vol(S’) < s,

find T with ®(T) < o(1/log m).
» Try 8m/(sa) different v in O(m) time. None succeeds.
» Give each of them initial mass sa//(8m)

and density < sa/(8mod). Apply page rank.

[ot
& O O

» Netflow over min-cut into S < A\(sa/(8md))/a < s/(8m).

Any non-trivial min-cut

>

For some s < m/2, know vol(S) < s for any min-cut S.

> Look for min-cut S with 1 < s/2 < vol(S) < s.

Using ACL, in O(s) time,

if v e § for min-cut S’ with vol(S’) < s,

find T with ®(T) < o(1/log m).

Try 8m/(s«) different v in O(m) time. None succeeds.

» Give each of them initial mass sa//(8m)

and density < sa/(8mod). Apply page rank.

Netflow over min-cut into S < A(sa/(8md))/a < s/(8m).
So average limit density in Sis

p*(S)/vol(S) < (s/(8m))/(s/2) = 1/(4m).

Any non-trivial min-cut

>

For some s < m/2, know vol(S) < s for any min-cut S.

> Look for min-cut S with 1 < s/2 < vol(S) < s.

Using ACL, in O(s) time,

if v e § for min-cut S’ with vol(S’) < s,

find T with ®(T) < o(1/log m).

Try 8m/(s«) different v in O(m) time. None succeeds.

» Give each of them initial mass sa//(8m)

and density < sa/(8mod). Apply page rank.

Netflow over min-cut into S < A(sa/(8md))/a < s/(8m).
So average limit density in Sis

p*(S)/vol(S) < (s/(8m))/(s/2) = 1/(4m).
By new end-game theorem, get T with ®(T)-< o(1/log m).

Cores to contract in full algorithm

» C subgraph of G with min-degree £6.
» Certified: no min-cut of G splits > 2 vertices from C.

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.
All other vertics of C in core.

v

v

v

v

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.
All other vertics of C in core.

v

v

v

v

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.

All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

vV v vVvYy

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.

All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

vV v vVvYy

» Consider non-trivial min-cut (U, T) of G.

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.

All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

vV v vVvYy

» Consider non-trivial min-cut (U, T) of G.
» If (U, T) cuts C, at most two verteces, v and win UnN C.

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.

All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

vV v vVvYy

» Consider non-trivial min-cut (U, T) of G.
» If (U, T) cuts C, at most two verteces, v and win UnN C.
» Suppose v not loose with > d(v)/2 + 2 neighbors in C.

Cores to contract in full algorithm

C subgraph of G with min-degree 4.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.
All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

vV v vVvYy

Consider non-trivial min-cut (U, T) of G.

If (U, T) cuts C, at most two verteces, vand win Un C.
Suppose v not loose with > d(v)/2 + 2 neighbors in C.
Then > d(v)/2 + 1 neighbors in T N C,

vV v.vVvy

Cores to contract in full algorithm

C subgraph of G with min-degree 2.

Certified: no min-cut of G splits > 2 vertices from C.
Vertex v € C loose if < d(v)/2 + 1 neighbors in C.
All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.

vV v vVvYy

Consider non-trivial min-cut (U, T) of G.

If (U, T) cuts C, at most two verteces, vand win Un C.
Suppose v not loose with > d(v)/2 + 2 neighbors in C.
Then > d(v)/2 + 1 neighbors in T N C,

so smaller cut if we move v to T.

vV vy vy VY

Concluding remarks

Concluding remarks

» Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.

Concluding remarks

» Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.

» For simple graph G with n nodes, m edges, min-degree 4,
we contracted all but O(m/¢) edges while preserving all
non-trivial min-cuts of G.

Concluding remarks

» Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.

» For simple graph G with n nodes, m edges, min-degree 4,
we contracted all but O(m/¢) edges while preserving all
non-trivial min-cuts of G. B

» Can futher contract down to graph with O(n) edges and
5(n/5) vertices, preserving all non-trivial cuts of size at
most (2 — ¢)d for any constant ¢ > 0.

Concluding remarks

» Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.

» For simple graph G with n nodes, m edges, min-degree 4,
we contracted all but O(m/¢) edges while preserving all
non-trivial min-cuts of G. _

» Can futher contract down to graph with O(n) edges and
O(n/?) vertices, preserving all non-trivial cuts of size at
most (2 — ¢)d for any constant ¢ > 0.

» So with edge connectivity A there are at most
n+ O((n/5)?) cuts of size at most (2 — ¢)\.

Concluding remarks

>

Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.
For simple graph G with n nodes, m edges, min-degree 4,
we contracted all but O(m/¢) edges while preserving all
non-trivial min-cuts of G. B

Can futher contract down to graph with O(n) edges and
5(n/5) vertices, preserving all non-trivial cuts of size at
most (2 — ¢)d for any constant ¢ > 0.

So with edge connectivity A there are at most

n+ O((n/5)?) cuts of size at most (2 — ¢)\.

What about multi-graphs or weighted graphs?

Concluding remarks

>

Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.
For simple graph G with n nodes, m edges, min-degree 4,
we contracted all but O(m/¢) edges while preserving all
non-trivial min-cuts of G. B

Can futher contract down to graph with O(n) edges and
5(n/5) vertices, preserving all non-trivial cuts of size at
most (2 — ¢)d for any constant ¢ > 0.

So with edge connectivity A there are at most

n+ O((n/5)?) cuts of size at most (2 — ¢)\.

» What about multi-graphs or weighted graphs?

Explore ramifications of new end-game analysis for other
PageRank related algorithms.

Concluding remarks

>

Presented deterministic near-linear time algorithm to find
edge-connectivity, min-cut, and cactus of simple graph.
For simple graph G with n nodes, m edges, min-degree 4,
we contracted all but O(m/¢) edges while preserving all
non-trivial min-cuts of G. B

Can futher contract down to graph with O(n) edges and
5(n/5) vertices, preserving all non-trivial cuts of size at
most (2 — ¢)d for any constant ¢ > 0.

So with edge connectivity A there are at most

n+ O((n/5)?) cuts of size at most (2 — ¢)\.

» What about multi-graphs or weighted graphs?

Explore ramifications of new end-game analysis for other
PageRank related algorithms.

How about s-t-edge connectivity As ¢ in simple graph? Can
we beat (N)()\s,tm) time by Ford-Fulkerson [1956], or the
randomized @(m + As,tn) expected time by Karger and
Levine [STOC’02].

Is my graph safely connected against k arbitrary
edge-cuts?

» We did have other near-linear time answers:

Is my graph safely connected against k arbitrary
edge-cuts?

» We did have other near-linear time answers:

» Matula [1993] “perhaps not k, but almost k/2”
—(2 + ¢)-approximation in linear time.

Is my graph safely connected against k arbitrary
edge-cuts?

» We did have other near-linear time answers:

» Matula [1993] “perhaps not k, but almost k/2”
—(2 + ¢)-approximation in linear time.

» Karger [1996] “most likely, but perhaps not”
—Monte Carlo randomization in near-linear time.

Is my graph safely connected against k arbitrary
edge-cuts?

>

>

We did have other near-linear time answers:
Matula [1993] “perhaps not k, but almost k/2”
—(2 + ¢)-approximation in linear time.

Karger [1996] “most likely, but perhaps not”
—Monte Carlo randomization in near-linear time.

Such weak answers very interesting if we cannot find exact
deterministic solution, but

Is my graph safely connected against k arbitrary
edge-cuts?

>

>

We did have other near-linear time answers:
Matula [1993] “perhaps not k, but almost k/2”
—(2 + ¢)-approximation in linear time.

Karger [1996] “most likely, but perhaps not”
—Monte Carlo randomization in near-linear time.

Such weak answers very interesting if we cannot find exact
deterministic solution, but

We can now give exact answer deterministically in
near-linear time.

Is my graph safely connected against k arbitrary
edge-cuts?

>
>

We did have other near-linear time answers:

Matula [1993] “perhaps not k, but almost k/2”

—(2 + ¢)-approximation in linear time.

Karger [1996] “most likely, but perhaps not”

—Monte Carlo randomization in near-linear time.

Such weak answers very interesting if we cannot find exact
deterministic solution, but

We can now give exact answer deterministically in
near-linear time.

For more fun with algorithms, do PhD/Postdoc in Copenhagen.

<

=]

>

o«

Q>

