
Joint work with

Markus Jalsenius and Benjamin Sach

Raphaël Clifford

Lower Bounds and Open Problems in Streams

Cell-probe model

︸ ︷︷ ︸
w bits

0
1
2
3
4
5...

Cells

Cell probes

Read

Write

The CPU does not remember
anything in between
operations.

Cell-probe model

︸ ︷︷ ︸
w bits

0
1
2
3
4
5...

Cells

Cell probes

Read

Write

The CPU does not remember
anything in between
operations.

The CPU has unlimited
computational power.

Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

Best lower bound

Ω

(
log n

log log n

)

Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

First Ω (log n) lower bound using information
transfer.

M. Pǎtraşcu and E. Demaine
Tight bounds for the partial-sums problem
SODA 2004

Convolution

x1 x2 x3 x4 x5 x6 x7 ?

︸ ︷︷ ︸
n

v0

x0

v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x8 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x9 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x10 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x9x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x11 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x10x9x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x12 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x11x10x9x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x13 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x12x11x10x9x8x1 x2 x3 x4 x5 x6 x7

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x13 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x12x11x10x9x8x1 x2 x3 x4 x5 x6 x7

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Lower bound: Ω

(
δ

w
log n

)
δ = log q, word size w.
C., Jalsenius. Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011

Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Offline cell probe complexity is linear!
⇒

online upper bound of O(log n)

Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Better online lower bound
⇒

super linear lower bound for
offline convolution and multiplication

Yao’s minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Algorithm Input

Worst case

Algorithm Input

Deterministic Random

Randomised

Yao’s minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Input

Worst case

Algorithm Input

Deterministic Random

Algorithm

Deterministic

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

?

Fixed value Memory cells

Cell written during
the -inputs

t

?

Information transfer

Unknown value
chosen uniformly
at random from [q]

??

?

Fixed value Memory cells

Cell written during
the -inputs

t

?

Information transfer

Unknown value
chosen uniformly
at random from [q]

???

?

Fixed value Memory cells

Cell written during
the -inputs

t

?

Information transfer

Unknown value
chosen uniformly
at random from [q]

????

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

?????

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

?????? ?

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

`︷ ︸︸ ︷

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Cell written during
the -inputs

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

`︷ ︸︸ ︷t

?

`︷ ︸︸ ︷

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

The cells in IT (t, `)
provide sufficient
information in order to give
correct output during

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

Information transfer

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

Information transfer

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

Cell Address Contents

︸ ︷︷ ︸
w bits

︸ ︷︷ ︸
w bits

34123|IT (t, `)|


92540

00124

01882

76112

88819

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

w bits to encode
|IT (t, `)|

Information transfer

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

Cell Address Contents

︸ ︷︷ ︸
w bits

︸ ︷︷ ︸
w bits

34123|IT (t, `)|


92540

00124

01882

76112

88819

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

w bits to encode
|IT (t, `)|

00000 00000

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

How much information about do we need

in order to give correct outputs during ?

??? ?

????

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

How much information about do we need

in order to give correct outputs during ?

??? ?

????

Depends on the fixed vector

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

Output is always 0 (no information)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1︸ ︷︷ ︸
Contributes to the dot product
with the same value at each
alignment
(δ = log q bits of information)

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

0110100010000000100000

4816

if the position is a power of 21

12

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷

Information transfer

?

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ?? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷
R

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

?

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷
R R

?

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷
R R R

?

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

?

`=8︷ ︸︸ ︷

Conclusion: If ` is a power of 2 then we recover `
2

values

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

The conditional entropy

H(the outputs during | all fixed) > `
2
δ

`︷ ︸︸ ︷

Conclusion: If ` is a power of 2 then we recover `
2

values

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

The conditional entropy

H(the outputs during | all fixed) > `
2
δ

`︷ ︸︸ ︷
The conditional information transfer

E [|IT (t, `)| | all fixed] > δ
4w
`− 1

2

w bits per cell

t

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

The conditional information transfer

E [|IT (t, `)| | all fixed] > δ
4w
`− 1

2

w bits per cell

t

Suppose that all values (and) from the stream are
chosen uniformly at random from [q].

?

By linearity of expectation. . .

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷t

Suppose that all values (and) from the stream are
chosen uniformly at random from [q].

?

By linearity of expectation. . .

The conditional information transfer

E [|IT (t, `)| | all fixed] > δ
4w
`− 1

2

w bits per cell

]

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000

?

IT (t = 1, ` = 1)

︸ ︷︷ ︸
n

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

?

IT (t = 3, ` = 1)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ?

IT (t = 1, ` = 2)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

?

IT (t = 5, ` = 1)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

?

IT (t = 7, ` = 1)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ?

IT (t = 5, ` = 2)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ? ? ?

IT (t = 1, ` = 4)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ? ? ? ? ? ? ?

IT (t = 1, ` = 8)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

? ? ? ? ? ? ? ?

IT (t = 1, ` = 8)

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

? ? ? ? ? ? ? ?

IT (t = 1, ` = 8)

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

The expected number of cell reads is at least

E

[∑
internal node v

|IT (tv, `v)|

]
=

∑
internal node v

E [|IT (tv, `v)|]

>
∑

internal node v

δ

4w
`v −

1

2

= Ω

(
δ

w
· n log n

)

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

The expected number of cell reads is at least

E

[∑
internal node v

|IT (tv, `v)|

]
=

∑
internal node v

E [|IT (tv, `v)|]

>
∑

internal node v

δ

4w
`v −

1

2

= Ω

(
δ

w
· n log n

)So. . .
The amortised time lower
bound per output is
Ω
(
δ
w log n

)

What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

Ω

(
log n

w

)
= Ω(1).

But...

I What if each output is in {0, . . . , n}?

I Total entropy of n/ log n outputs could therefore be Ω(n).

I We could then use a new lop-sided information transfer
technique instead.

What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

Ω

(
log n

w

)
= Ω(1).

But...

I What if each output is in {0, . . . , n}?

I Total entropy of n/ log n outputs could therefore be Ω(n).

I We could then use a new lop-sided information transfer
technique instead.

Pattern matching with address errors

Message sent: eleven plus two

Message received: twelve plus one

I The L2-rearrangement distance defined to be
minπ∈Π

∑n−1
j=0 (j − π(j))2 (AABLLPSV:2009)

I Online: O(log2 n) time per arriving symbol (CS:2011).

Example

The L2-rearrangement distance of 11100 and 10110 is
02 + 12 + 12 + 22 + 02 = 6.

Pattern matching with address errors

Message sent: eleven plus two
Message received: twelve plus one

I The L2-rearrangement distance defined to be
minπ∈Π

∑n−1
j=0 (j − π(j))2 (AABLLPSV:2009)

I Online: O(log2 n) time per arriving symbol (CS:2011).

Example

The L2-rearrangement distance of 11100 and 10110 is
02 + 12 + 12 + 22 + 02 = 6.

Pattern matching with address errors

Message sent: eleven plus two
Message received: twelve plus one

I The L2-rearrangement distance defined to be
minπ∈Π

∑n−1
j=0 (j − π(j))2 (AABLLPSV:2009)

I Online: O(log2 n) time per arriving symbol (CS:2011).

Example

The L2-rearrangement distance of 11100 and 10110 is
02 + 12 + 12 + 22 + 02 = 6.

Pattern matching with address errors

For binary inputs, our new lower bound is:

Ω

(
lg2 n

w · lg lg n

)

To do this we must find an input distribution such that:

I The conditional entropy of the outputs is high.

I It is possible to sum the contributions from many interval
lengths without double counting.

Lop-sided information transfer - Mind the gap

To sum contributions, we introduce a gap:

U

t0 = t t1 t2 t3

the first interval the second intervalthe gap

`
4`

logn`log `

The lengths ` are taken from:{
n1/4 · (lg n)2i

∣∣∣∣ i ∈
{

0, 1, 2, . . . ,
lg n

4 lg lg n

} }
.

Lop-sided information transfer - Mind the gap

Upper bound on entropy

H(A`,t | Ũ`,t = ũ`,t) ≤ 2w + 2w · E[I`,t + G`,t | Ũ`,t = ũ`,t].

Lower bound on entropy

Lemma
For the L2-rearrangement distance problem there exists a hard
input distribution such that

H(A`,t | Ũ`,t = ũ`,t) ≥ κ · ` · lg n,

for any fixed ũ`,t .

Lop-sided information transfer - Mind the gap

Upper bound on entropy

H(A`,t | Ũ`,t = ũ`,t) ≤ 2w + 2w · E[I`,t + G`,t | Ũ`,t = ũ`,t].

Lower bound on entropy

Lemma
For the L2-rearrangement distance problem there exists a hard
input distribution such that

H(A`,t | Ũ`,t = ũ`,t) ≥ κ · ` · lg n,

for any fixed ũ`,t .

Lop-sided information transfer - Mind the gap

We remove the conditioning by taking expectation over Ũ`,t under
random U giving:

E[I`,t] ≥
κ · ` · lg n

2w
− 1− E[G`,t].

By carefully choosing T` we get:

E

∑
`∈L

∑
t∈T`

I`,t

 ∈ Ω

(
n · lg2 n

w · lg lg n

)
.

The hard distribution for L2-rearrangement
We let the incoming streaming be randomly sampled from:

{0101, 1010}∗

Different bits of the output give different bits of the stream.

U`

`+ 4`− 4

F`,0 F`,1 F`,2 F`,3F`

`̀`̀`̀``̀`̀`̀

denotes a repeated stretch of 1001)((

F 0
` F 1

` F 2
` F 3

`

U1
` U3

` U5
` U7

`U0
` U2

` U4
` U6

`

1010

output = 9 = 0 0 11 (in binary)

0101 1010

8 4 2 1

0101

The hard distribution for L2-rearrangement
We let the incoming streaming be randomly sampled from:

{0101, 1010}∗

Different bits of the output give different bits of the stream.

U`

`+ 4`− 4

F`,0 F`,1 F`,2 F`,3F`

`̀`̀`̀``̀`̀`̀

denotes a repeated stretch of 1001)((

F 0
` F 1

` F 2
` F 3

`

U1
` U3

` U5
` U7

`U0
` U2

` U4
` U6

`

1010

output = 9 = 0 0 11 (in binary)

0101 1010

8 4 2 1

0101

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

I What is the entropy of n/ log n consecutive overlapping inner
products?

111011←→

1 0 1 1
1 1 0 1
1 1 1 0


Conjecture

Let x ∈ {0, 1}` be sampled at random. There exist `/ log ` by `
Toeplitz matrices M such such that H(Mx) ∈ Ω(`).

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

I What is the entropy of n/ log n consecutive overlapping inner
products?

111011←→

1 0 1 1
1 1 0 1
1 1 1 0


Conjecture

Let x ∈ {0, 1}` be sampled at random. There exist `/ log ` by `
Toeplitz matrices M such such that H(Mx) ∈ Ω(`).

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

I What is the entropy of n/ log n consecutive overlapping inner
products?

111011←→

1 0 1 1
1 1 0 1
1 1 1 0


Conjecture

Let x ∈ {0, 1}` be sampled at random. There exist `/ log ` by `
Toeplitz matrices M such such that H(Mx) ∈ Ω(`).

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

I What is the entropy of n/ log n consecutive overlapping inner
products?

111011←→

1 0 1 1
1 1 0 1
1 1 1 0


Conjecture

Let x ∈ {0, 1}` be sampled at random. There exist `/ log ` by `
Toeplitz matrices M such such that H(Mx) ∈ Ω(`).

Thank you!

