The Model

Introduction

Analysis

Empirical study (MOOCs)

Conclusion

Strong truthfulness in Peer Prediction with Overlapping Tasks

David C. Parkes

Computer Science John A. Paulson School of Engineering Harvard University

November 18, 2015

Joint work with Victor Shnayder and Rafael Frongillo

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
●00000000				

Information Elicitation Without Verification

Illustrative examples:

- Participatory sensing
- Emotional response to content
- Consumer surveys
- Algorithm feedback
- Peer grading in MOOCs

Effort is costly. Need to reward informative responses, but without any ground truth; avoid unintended equilibria, collusion.

How to do this?

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
●00000000				

Information Elicitation Without Verification

Illustrative examples:

- Participatory sensing
- Emotional response to content
- Consumer surveys
- Algorithm feedback
- Peer grading in MOOCs

Effort is costly. Need to reward informative responses, but without any ground truth; avoid unintended equilibria, collusion.

How to do this?

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
●00000000				

Information Elicitation Without Verification

Illustrative examples:

- Participatory sensing
- Emotional response to content
- Consumer surveys
- Algorithm feedback
- Peer grading in MOOCs

Effort is costly. Need to reward informative responses, but without any ground truth; avoid unintended equilibria, collusion.

How to do this?

Introduction o●ooooooo	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Two Kinds	of Mechan	isms		

- Minimal mechanisms : ask agents for information ('signal')
- Non-minimal: ask agents for signal, along with belief about signal of another agent.

Introduction o●ooooooo	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Two Kinds	of Mechani	isms		

Minimal mechanisms : ask agents for information ('signal')

Non-minimal: ask agents for signal, along with belief about signal of another agent.

- Two agents, joint signal distribution $P(X_1, X_2)$
- Signals $i, j \in \{1, \ldots, m\}$
- Take *reports* $\{r_1, r_2\}$, provide payment to each agent:

report
$$r_2$$

1 2
report r_1 2 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(Strict) proper: truthful reporting is a Bayes-Nash equilibrium.

Need $P(X_2 = 1 | X_1 = 1) > P(X_2 = 2 | X_1 = 1)$; and there are uninformative equilibria with greater payment.

- Two agents, joint signal distribution $P(X_1, X_2)$
- Signals $i, j \in \{1, \ldots, m\}$
- Take *reports* $\{r_1, r_2\}$, provide payment to each agent:

report
$$r_2$$

1 2
report r_1 1 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(Strict) proper: truthful reporting is a Bayes-Nash equilibrium.

Need $P(X_2 = 1 | X_1 = 1) > P(X_2 = 2 | X_1 = 1)$; and there are uninformative equilibria with greater payment.

- Two agents, joint *signal distribution* $P(X_1, X_2)$
- Signals $i, j \in \{1, \ldots, m\}$
- Take *reports* $\{r_1, r_2\}$, provide payment to each agent:

report
$$r_2$$

1 2
report r_1 2 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(Strict) proper: truthful reporting is a Bayes-Nash equilibrium.

Need $P(X_2 = 1 | X_1 = 1) > P(X_2 = 2 | X_1 = 1)$; and there are uninformative equilibria with greater payment.

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
00000000	000	00000000	000	000
The Dee	r Dradictio	o Mothod		

Miller, Resnick and Zeckhauser, 2005:

- Receive report r_1 , and form belief $b_1 = P(X_2|X_1 = r_1)$
- Use proper scoring rule $t_1(b_1, r_2)$

Strict proper.

Problems: (1) designer needs model; (2) uninformative equilibria with greater payment.

00000000		0000000			
The Peer Prodiction Method					

Miller, Resnick and Zeckhauser, 2005:

- Receive report r_1 , and form belief $b_1 = P(X_2|X_1 = r_1)$
- Use proper scoring rule $t_1(b_1, r_2)$

Strict proper.

Problems: (1) designer needs model; (2) uninformative equilibria with greater payment.

Introduction 00000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
The Deer	Prodiction	o Mothod		

Miller, Resnick and Zeckhauser, 2005:

- Receive report r_1 , and form belief $b_1 = P(X_2|X_1 = r_1)$
- Use proper scoring rule $t_1(b_1, r_2)$

Strict proper.

Problems: (1) designer needs model; (2) uninformative equilibria with greater payment.

Faltings et al. (2012); Witkowski and Parkes (2012):

■ Assume knowledge of *marginal probability*, *P*(*X*)

report
$$r_{1}$$

 $report r_{1}$
 $1 \begin{pmatrix} \frac{1}{P(1)} & 0 \\ 0 & \frac{1}{P(2)} \end{pmatrix}$

Strict proper (under restrictions for m > 2 signals).

Problems: (1) designer needs marginal probabilities; (2) uninformative equilibria with greater payment.

Faltings et al. (2012); Witkowski and Parkes (2012):

■ Assume knowledge of *marginal probability*, *P*(*X*)

report
$$r_2$$

report r_1 1 $\begin{pmatrix} 1 & 2 \\ \hline P(1) & 0 \\ 2 & 0 & \frac{1}{P(2)} \end{pmatrix}$

Strict proper (under restrictions for m > 2 signals).

Problems: (1) designer needs marginal probabilities; (2) uninformative equilibria with greater payment.

Faltings et al. (2012); Witkowski and Parkes (2012):

■ Assume knowledge of *marginal probability*, *P*(*X*)

report
$$r_2$$

report r_1
2 $\begin{pmatrix} 1 & 2 \\ \hline P(1) & 0 \\ 0 & \frac{1}{P(2)} \end{pmatrix}$

Strict proper (under restrictions for m > 2 signals).

Problems: (1) designer needs marginal probabilities; (2) uninformative equilibria with greater payment.

Introduction ooooo●ooo	The Model	Analysis oooooooo	Empirical study (MOOCs)	Conclusion
Mechanism	n Desiderat	a		

For peer prediction to be used in practice:

- Minimal mechanism
- (Strictly) Proper
- Low knowledge requirements on designer
- Truthful reports maximize expected payments:
 - *Strong-truthfulness* (in case of a tie ⇒ permutation)
 - Informed-truthfulness (in case of a tie ⇒ informed strategy)
- Heterogeneous agents (i.e., qualities, tastes)

Can assume multiple (independent) tasks.

What do we know?	
 Jurca and Faltings, 2009. n ≥ 4 agents, knock-out pure, uninformative equil. Ignore mixed equilibria, binary-signal only, require model. Dasgupta and Ghosh, 2013. Multiple tasks. Strict-proper, strong-truthful. Binary-signal only Radonovic and Faltings, 2015. Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents. Kamble et al., 2015. Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents. 	ly.

Cai, Daskalakis and Papadimitriou, 2015.

Multiple tasks (with distinct, known context). Non-binary effort. Optimal effort in unique, DSE. *Multi-signal, but ignore misreports (not strong-truthful, not proper.)*

Introduction 0000000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
What d	lo we know?			
JurDaRa	rca and Faltings, n ≥ 4 agents, kr mixed equilibria, sgupta and Ghos Multiple tasks. S donovic and Falt Multiple tasks. S	2009. hock-out pure, u <i>binary-signal o</i> sh, 2013. trict-proper, stro ings, 2015. trict-proper, stro	ninformative equil. <i>Ignol nly, require model.</i> ong-truthful. <i>Binary-signa</i>	re al only.

Introduction 000000000	The Model	Analysis oooooooo	Empirical study (MOOCs)	Conclusion
What do w	e know?			

Jurca and Faltings, 2009.

■ n ≥ 4 agents, knock-out pure, uninformative equil. Ignore mixed equilibria, binary-signal only, require model.

Dasgupta and Ghosh, 2013.

- Multiple tasks. Strict-proper, strong-truthful. Binary-signal only.
- Radonovic and Faltings, 2015.
 - Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents.
- Kamble et al., 2015.

Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents.

Cai, Daskalakis and Papadimitriou, 2015.

Multiple tasks (with distinct, known context). Non-binary effort. Optimal effort in unique, DSE. *Multi-signal, but ignore misreports (not strong-truthful, not proper.)*

Introduction ○○○○○○●○○	The Model	Analysis 0000000	Empirical study (MOOCs)	Conclusion
What do w	e know?			

Jurca and Faltings, 2009.

■ n ≥ 4 agents, knock-out pure, uninformative equil. Ignore mixed equilibria, binary-signal only, require model.

Dasgupta and Ghosh, 2013.

- Multiple tasks. Strict-proper, strong-truthful. Binary-signal only.
- Radonovic and Faltings, 2015.
 - Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents.
- Kamble et al., 2015.

Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents.

Cai, Daskalakis and Papadimitriou, 2015.

Multiple tasks (with distinct, known context). Non-binary effort.
 Optimal effort in unique, DSE. *Multi-signal, but ignore misreports (not strong-truthful, not proper.)*

Introduction ○○○○○○●○○	The Model	Analysis 0000000	Empirical study (MOOCs)	Conclusion
What do w	e know?			

Jurca and Faltings, 2009.

■ n ≥ 4 agents, knock-out pure, uninformative equil. Ignore mixed equilibria, binary-signal only, require model.

Dasgupta and Ghosh, 2013.

- Multiple tasks. Strict-proper, strong-truthful. Binary-signal only.
- Radonovic and Faltings, 2015.
 - Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents.
- Kamble et al., 2015.
 - Multiple tasks. Strict-proper, strong-truthful amongst symmetric strategies. Multi-signal, but results only hold asymptotically, and need homogeneous agents.

Cai, Daskalakis and Papadimitriou, 2015.

Multiple tasks (with distinct, known context). Non-binary effort. Optimal effort in unique, DSE. *Multi-signal, but ignore misreports (not strong-truthful, not proper.)*

Introduction 000000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Experimen	tal evidenc			

Gao, Mao, Chen and Adams, 2014.

This matters! mTurk experiment (see either collusion, or confusion.)

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
00000000				

Our Contributions: Robust, Multi-Signal Methods

 OA-mechanism. Strict-proper and strong-truthful for multi-signal, categorical domains (generalizes DG'13).

With some domain knowledge:

- 01-mechanism. Informed-truthful and proper for general, multi-signal domains (allow heterogeneity).
- ABCD-mechanism. Strong-truthful (symmetric) for general, multi-signal domains w/ het. Not proper, but all equil strictly worse than truth in large system.

Empirical analysis:

~100 questions across ~30 exercises in 17 MOOCs. Around 325,000 peer-evaluation responses.

Our Contributions: Robust, Multi-Signal Methods

 OA-mechanism. Strict-proper and strong-truthful for multi-signal, categorical domains (generalizes DG'13).

With some domain knowledge:

- 01-mechanism. Informed-truthful and proper for general, multi-signal domains (allow heterogeneity).
- ABCD-mechanism. Strong-truthful (symmetric) for general, multi-signal domains w/ het. Not proper, but all equil strictly worse than truth in large system.

Empirical analysis:

~100 questions across ~30 exercises in 17 MOOCs. Around 325,000 peer-evaluation responses.

Our Contributions: Robust, Multi-Signal Methods

 OA-mechanism. Strict-proper and strong-truthful for multi-signal, categorical domains (generalizes DG'13).

With some domain knowledge:

- 01-mechanism. Informed-truthful and proper for general, multi-signal domains (allow heterogeneity).
- ABCD-mechanism. Strong-truthful (symmetric) for general, multi-signal domains w/ het. Not proper, but all equil strictly worse than truth in large system.

Empirical analysis:

~100 questions across ~30 exercises in 17 MOOCs. Around 325,000 peer-evaluation responses.

Introduction	The Model ●○○	Analysis 0000000	Empirical study (MOOCs)	Conclusion
Basic Se	at-un			

- Agents 1, 2
- Tasks $k (\geq 3)$; Signals $i, j \in \{1, \dots, m\}$ (require effort)
- Joint distribution $P(X_1 = i, X_2 = j)$ (possibly asymmetric)
- Overlapping tasks: shared K_s , agent 1 K_1 , agent 2 K_2 .
- Multi-task peer prediction: for each $k \in K_s$, payment $\{r_1^k, r_2^k, r_1^{K_1}, r_2^{K_2}\} \mapsto \mathbb{R}$
- Strategies: $F_{ir} = P(r_1 = r | X_1 = i)$ $G_{jr} = P(r_2 = r | X_2 = j)$
 - In Informed strategy: $F_{lr} \neq F_{lr}$, some $i \neq j$, some r
 - In Truthful strategy: F^{*}

Introduction	The Model ●○○	Analysis 0000000	Empirical study (MOOCs)	Conclusion
Basic Se	at-un			

- Agents 1, 2
- Tasks $k (\geq 3)$; Signals $i, j \in \{1, \dots, m\}$ (require effort)
- Joint distribution $P(X_1 = i, X_2 = j)$ (possibly asymmetric)
- Overlapping tasks: shared K_s , agent 1 K_1 , agent 2 K_2 .
- *Multi-task peer prediction*: for each $k \in K_s$, payment $\{r_1^k, r_2^k, r_1^{K_1}, r_2^{K_2}\} \mapsto \mathbb{R}$
- Strategies: $F_{ir} = P(r_1 = r | X_1 = i)$ $G_{jr} = P(r_2 = r | X_2 = j)$
 - Informed strategy: $F_{ir} \neq F_{jr}$, some $i \neq j$, some r
 - Inuthful strategy: F

Introduction	The Model ●○○	Analysis 0000000	Empirical study (MOOCs)	Conclusion
Rasic Se	at_un			

- Agents 1, 2
- Tasks $k (\geq 3)$; Signals $i, j \in \{1, \dots, m\}$ (require effort)
- Joint distribution $P(X_1 = i, X_2 = j)$ (possibly asymmetric)
- Overlapping tasks: shared K_s , agent 1 K_1 , agent 2 K_2 .
- *Multi-task peer prediction*: for each $k \in K_s$, payment $\{r_1^k, r_2^k, r_1^{K_1}, r_2^{K_2}\} \mapsto \mathbb{R}$
- Strategies: $F_{ir} = P(r_1 = r | X_1 = i)$ $G_{jr} = P(r_2 = r | X_2 = j)$

Informed strategy: F_{ir} ≠ F_{jr}, some i ≠ j, some r
 Truthful strategy: F*

occoccocc	The Model ●00	Analysis	Empirical study (MOOCs)	000		
Basic Set-up						

- Agents 1, 2
- Tasks $k (\geq 3)$; Signals $i, j \in \{1, \dots, m\}$ (require effort)
- Joint distribution $P(X_1 = i, X_2 = j)$ (possibly asymmetric)
- Overlapping tasks: shared K_s , agent 1 K_1 , agent 2 K_2 .
- *Multi-task peer prediction*: for each $k \in K_s$, payment $\{r_1^k, r_2^k, r_1^{K_1}, r_2^{K_2}\} \mapsto \mathbb{R}$
- Strategies: $F_{ir} = P(r_1 = r | X_1 = i)$ $G_{jr} = P(r_2 = r | X_2 = j)$
 - Informed strategy: $F_{ir} \neq F_{jr}$, some $i \neq j$, some r
 - Truthful strategy: F*

Introduction	The Model ○●○	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Solution	Concepts			

- *E*(*F*, *G*): *expected payment* for a shared task
- Bayes-Nash equil.
- (Strict) Proper: $E(F^*, G^*) \ge E(F, G^*)$, for all $F \neq F^*$
- Strong-truthful: $E(F^*, G^*) \ge E(F, G)$, for all F, G (tie \Rightarrow permutation); also strict proper
- Informed-truthful: $E(F^*, G^*) \ge E(F, G)$, for all F, G (tie \Rightarrow informed); also proper

Introduction	The Model ○●○	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Solution	Concepts			

- *E*(*F*, *G*): *expected payment* for a shared task
- Bayes-Nash equil.
- (Strict) Proper: $E(F^*, G^*) \ge E(F, G^*)$, for all $F \neq F^*$
- Strong-truthful: $E(F^*, G^*) \ge E(F, G)$, for all F, G (tie \Rightarrow permutation); also strict proper
- Informed-truthful: $E(F^*, G^*) \ge E(F, G)$, for all F, G (tie \Rightarrow informed); also proper

Introduction	The Model ○●○	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Solution	Concepts			

- *E*(*F*, *G*): *expected payment* for a shared task
- Bayes-Nash equil.
- (Strict) Proper: $E(F^*, G^*) \ge E(F, G^*)$, for all $F \neq F^*$
- Strong-truthful: $E(F^*, G^*) \ge E(F, G)$, for all F, G (tie \Rightarrow permutation); also strict proper
- Informed-truthful: $E(F^*, G^*) \ge E(F, G)$, for all F, G (tie \Rightarrow informed); also proper

Parameterized by score $S : \{1, ..., m\} \times \{1, ..., m\} \mapsto \mathbb{R}$

- Assign agents to tasks, get reports
- For shared $k \in K_s$, pay both 1 and 2

$$S(r_1^k,r_2^k)-S(r_1^\ell,r_2^m),$$

for $\ell \in K_1$ and $m \in K_2$ (can also take empirical average)

Idea: Reward 'excess agreement' not 'default agreement.'

- Zero payment if say '1' all the time, or random report.
- For *S* as the identify (output-agreement) matrix, this is multi-signal generalization of DG'13.

Parameterized by score $S : \{1, \dots, m\} \times \{1, \dots, m\} \mapsto \mathbb{R}$

- Assign agents to tasks, get reports
- For shared $k \in K_s$, pay both 1 and 2

$$S(r_1^k,r_2^k)-S(r_1^\ell,r_2^m),$$

for $l \in K_1$ and $m \in K_2$ (can also take empirical average) *Idea*: Reward 'excess agreement' not 'default agreement.'

Zero payment if say '1' all the time, or random report.
 For S as the identify (output-agreement) matrix, this is

Parameterized by score $S : \{1, \ldots, m\} \times \{1, \ldots, m\} \mapsto \mathbb{R}$

- Assign agents to tasks, get reports
- For shared $k \in K_s$, pay both 1 and 2

$$S(r_1^k,r_2^k)-S(r_1^\ell,r_2^m),$$

for $\ell \in K_1$ and $m \in K_2$ (can also take empirical average) *Idea*: Reward 'excess agreement' not 'default agreement.'

- Zero payment if say '1' all the time, or random report.
- For S as the identify (output-agreement) matrix, this is multi-signal generalization of DG'13.

Introduction 000000000	The Model	Analysis ●ooooooo	Empirical study (MOOCs)	Conclusion
Analysis	: Expected	Pavment		

For identity score-matrix:

$$E(F,G) = \sum_{ij} P(i,j) \sum_{r} F_{ir}G_{jr} - \sum_{ij} P(i)P(j) \sum_{r} F_{ir}G_{jr}$$
$$= \sum_{ij} \Delta_{ij} \sum_{r} F_{ir}G_{jr}.$$

Delta matrix:

 $\Delta_{ij} = P(i, j) - P(i)P(j); \text{ if } \Delta_{ij} > 0 \text{ then } P(j|i) > P(j)$

Example: P: $\begin{pmatrix} 0.4 & 0.15 \\ 0.15 & 0.3 \end{pmatrix} \Delta \approx \begin{pmatrix} 0.1 & -0.1 \\ -0.1 & 0.1 \end{pmatrix}$ or, $\begin{pmatrix} + & - \\ - & + \end{pmatrix}$

For general S:

$$E(F,G) = \sum_{ij} \Delta_{ij} \sum_{r_1,r_2} S_{r_1,r_2} F_{ir_1} G_{jr_2}$$
Apolygia	Evportor	Dovmont		
Introduction	The Model	Analysis •0000000	Empirical study (MOOCs)	Conclusion

For identity score-matrix:

$$E(F,G) = \sum_{ij} P(i,j) \sum_{r} F_{ir}G_{jr} - \sum_{ij} P(i)P(j) \sum_{r} F_{ir}G_{jr}$$
$$= \sum_{ij} \Delta_{ij} \sum_{r} F_{ir}G_{jr}.$$

Delta matrix:

$$\Delta_{ij} = P(i, j) - P(i)P(j); \text{ if } \Delta_{ij} > 0 \text{ then } P(j|i) > P(j)$$

Example: P:
$$\begin{pmatrix} 0.4 & 0.15 \\ 0.15 & 0.3 \end{pmatrix} \Delta \approx \begin{pmatrix} 0.1 & -0.1 \\ -0.1 & 0.1 \end{pmatrix}$$
 or, $\begin{pmatrix} + & - \\ - & + \end{pmatrix}$

For general S:

$$E(F,G) = \sum_{ij} \Delta_{ij} \sum_{r_1, r_2} S_{r_1, r_2} F_{ir_1} G_{jr_2}$$

Introduction	The Model	Analysis ●0000000	Empirical study (MOOCs)	Conclusion 000
Analysis	: Expected	Payment		

For identity score-matrix:

$$E(F,G) = \sum_{ij} P(i,j) \sum_{r} F_{ir}G_{jr} - \sum_{ij} P(i)P(j) \sum_{r} F_{ir}G_{jr}$$
$$= \sum_{ij} \Delta_{ij} \sum_{r} F_{ir}G_{jr}.$$

Delta matrix:

$$\Delta_{ij} = P(i, j) - P(i)P(j); \text{ if } \Delta_{ij} > 0 \text{ then } P(j|i) > P(j)$$

Example: P:
$$\begin{pmatrix} 0.4 & 0.15 \\ 0.15 & 0.3 \end{pmatrix} \Delta \approx \begin{pmatrix} 0.1 & -0.1 \\ -0.1 & 0.1 \end{pmatrix}$$
 or, $\begin{pmatrix} + & - \\ - & + \end{pmatrix}$

For general S:

$$E(F,G) = \sum_{ij} \Delta_{ij} \sum_{r_1,r_2} S_{r_1,r_2} F_{ir_1} G_{jr_2}$$

Introduction 00000000		The ood	The Model		Analysis o●oooooo	Empirical study (MOOCs)	Conclusion	
D .				0				

Deterministic Strategies

Lemma 1

Deterministic F, G maximize E(F, G).

$E(F,G) = \max_{F} \max_{G} h(F,G) = \max_{F} OBJ(F),$

where h(F, G) is linear in either argument. Fixing F, opt G is deterministic. OBJ(F) is convex, and opt F is deterministic.

Can focus on deterministic strategies:

- sufficient to prove strong-truthful, or and informed-truthful.
- sufficient to check for deviations from truthful

Introduction 00000000	The Model	Analysis o●oooooo	Empirical study (MOOCs)	Conclusion
Determinis	tic Strategi	es		

Lemma 1

Deterministic F, G maximize E(F, G).

$$E(F,G) = \max_{F} \max_{G} h(F,G) = \max_{F} OBJ(F),$$

where h(F, G) is linear in either argument. Fixing *F*, opt *G* is deterministic. *OBJ*(*F*) is convex, and opt *F* is deterministic.

Can focus on deterministic strategies:

- sufficient to prove strong-truthful, or and informed-truthful.
- sufficient to check for deviations from truthful

Introduction	The Model	Analysis o●oooooo	Empirical study (MOOCs)	Conclusion
Determinis	stic Strate	egies		

Lemma 1

Deterministic F, G maximize E(F, G).

$$E(F,G) = \max_{F} \max_{G} h(F,G) = \max_{F} OBJ(F),$$

where h(F, G) is linear in either argument. Fixing *F*, opt *G* is deterministic. *OBJ*(*F*) is convex, and opt *F* is deterministic.

Can focus on deterministic strategies:

- sufficient to prove strong-truthful, or and informed-truthful.
- sufficient to check for deviations from truthful

Introduction 00000000	The Model	Analysis oo●ooooo	Empirical study (MOOCs)	Conclusion
Simplified a	analysis			

Deterministic strategies F(i), G(j).

For identity-matrix S:

$$E(F,G) = \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j))$$

For general score matrix S:

$$E(F,G) = \sum_{ij} \Delta_{ij} S_{F(i),G(j)}$$

The game is to find 'which scores to pick' for each (i,j) pair.

Introduction 00000000	The Model	Analysis oo●ooooo	Empirical study (MOOCs)	Conclusion
Simplified a	analysis			

Deterministic strategies F(i), G(j).

I

For identity-matrix S:

$$\mathsf{E}(F,G) = \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j))$$

For general score matrix *S*:

$$E(F,G) = \sum_{ij} \Delta_{ij} S_{F(i),G(j)}$$

The game is to find 'which scores to pick' for each (i,j) pair.

Introduction 00000000	The Model	Analysis oo●ooooo	Empirical study (MOOCs)	Conclusion
Simplified a	analysis			

Deterministic strategies F(i), G(j).

I

For identity-matrix S:

$$\mathsf{E}(F,G) = \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j))$$

For general score matrix *S*:

$$E(F,G) = \sum_{ij} \Delta_{ij} S_{F(i),G(j)}$$

The game is to find 'which scores to pick' for each (i,j) pair.

Introduction 000000000	The Model	Analysis ooo●oooo	Empirical study (MOOCs)	Conclusion
The OA-N	lechanisn	n		

S is the identity matrix.

Categorical domain:

$$\operatorname{sig}(\Delta):\left(\begin{array}{cc} + & - & - \\ - & + & - \\ - & - & + \end{array}\right)$$

Image labeling {swim, fly, walk}, vs. grading {76, 78, 79, ...}

Theorem 1

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

Obtain DG'13 as a corollary. Theorem is tight.

Introduction 000000000	The Model	Analysis ooo●oooo	Empirical study (MOOCs)	Conclusion
The OA-N	lechanisn	n		

S is the identity matrix.

Categorical domain:

$$\operatorname{sig}(\Delta): \begin{pmatrix} + & - & - \\ - & + & - \\ - & - & + \end{pmatrix}$$

Image labeling {swim, fly, walk}, vs. grading {76, 78, 79, ...}

Theorem 1

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

Obtain DG'13 as a corollary. Theorem is tight.

Introduction 000000000	The Model	Analysis ooo●oooo	Empirical study (MOOCs)	Conclusion
The OA-N	lechanisn	n		

S is the identity matrix.

Categorical domain:

$$\operatorname{sig}(\Delta): \begin{pmatrix} + & - & - \\ - & + & - \\ - & - & + \end{pmatrix}$$

Image labeling {swim, fly, walk}, vs. grading {76, 78, 79, ...}

Theorem 1

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

Obtain DG'13 as a corollary. Theorem is tight.

Introduction	The Model	Analysis ○○○○●○○○	Empirical study (MOOCs)	Conclusion
The $\bigcap A_{-r}$	nochanier	n		

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

$$E(F^*, G^*) = \sum_i \Delta_{ii} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j)) = E(F, G),$$

for all *F*, *G*. Also need: tie in payment \Rightarrow permutation strategy.

- Case 1: Not permutation, and symmetric. Must be two *i*, *j* $(i \neq j)$ that map to *r*. Assign $\Delta_{ij} < 0$ pair to score $S_{r,r} = 1$. Worsel
- Gase 2: Asymmetric, e.g., agent 1 strategy $i \rightarrow r$, agent 2 strategy $i \rightarrow r'$. Assign $\Delta_{ii} > 0$ pair to score $S_{\alpha r'} = 0$. Worsel

Introduction	The Model	Analysis 0000●000	Empirical study (MOOCs)	Conclusion
The OA-r	nechanisn	n		

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

$$E(F^*, G^*) = \sum_i \Delta_{ii} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j)) = E(F, G),$$

for all F, G.

Also need: tie in payment \Rightarrow permutation strategy.

- Case 1: Not permutation, and symmetric. Must be two *i*, *j* $(i \neq j)$ that map to *r*. Assign $\Delta_{ij} < 0$ pair to score $S_{r,r} = 1$. Worsel
- Case 2: Asymmetric, e.g., agent 1 strategy $i \rightarrow r$, agent 2 strategy $i \rightarrow r'$. Assign $\Delta_{ii} > 0$ pair to score $S_{\alpha r'} = 0$. Worsel

Introduction	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
The OA-r	nechanisr	n		

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

$$E(F^*, G^*) = \sum_i \Delta_{ii} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j)) = E(F, G),$$

for all *F*, *G*. Also need: tie in payment \Rightarrow permutation strategy.

- Case 1: Not permutation, and symmetric. Must be two *i*, *j* $(i \neq j)$ that map to *r*. Assign $\Delta_{ij} < 0$ pair to score $S_{r,r} = 1$. Worse!
- Case 2: Asymmetric, e.g., agent 1 strategy $i \mapsto r$, agent 2 strategy $i \mapsto r'$. Assign $\Delta_{ii} > 0$ pair to score $S_{r,r'} = 0$. Worse!

Introduction The Medel Analysia Empirical study (MOOCo) Conclusion	Introduction 000000000	The Model	Analysis oooo●ooo	Empirical study (MOOCs)	Conclusion

The OA-mechanism

Theorem 1

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

$$E(F^*, G^*) = \sum_i \Delta_{ii} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j)) = E(F, G),$$

for all *F,* G.

Also need: tie in payment \Rightarrow permutation strategy.

- Case 1: Not permutation, and symmetric. Must be two *i*, *j* $(i \neq j)$ that map to *r*. Assign $\Delta_{ij} < 0$ pair to score $S_{r,r} = 1$. Worse!
- Case 2: Asymmetric, e.g., agent 1 strategy $i \mapsto r$, agent 2 strategy $i \mapsto r'$. Assign $\Delta_{ii} > 0$ pair to score $S_{r,r'} = 0$. Worse!

Introduction	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
The OA-r	nechanisr	n		

The OA-mechanism is strict-proper and strongly-truthful if the world is categorical.

$$E(F^*, G^*) = \sum_i \Delta_{ii} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge \sum_{ij} \Delta_{ij} \mathbb{I}(F(i) = G(j)) = E(F, G),$$

for all F, G.

Also need: tie in payment \Rightarrow permutation strategy.

- Case 1: Not permutation, and symmetric. Must be two *i*, *j* $(i \neq j)$ that map to *r*. Assign $\Delta_{ij} < 0$ pair to score $S_{r,r} = 1$. Worse!
- Case 2: Asymmetric, e.g., agent 1 strategy i → r, agent 2 strategy i → r'. Assign Δ_{ii} > 0 pair to score S_{r,r'} = 0. Worse!

Are we done? Let's look at some data.

- Peer-evaluation responses to 100 questions across 30 exercises in 17 MOOCs
- Vast majority of questions have $m \in \{2, 3, 4\}$.
 - Example rubric element: "Not much of a style at all", "Communicative style", and "Strong, flowing writing style".

Introduction 00000000	The Model	Analysis ooooooooo	Empirical study (MOOCs)	Conclusion

$$S_{ij} = \left\{ \begin{array}{ccc} 1 & , \text{ if } \Delta_{ij} > 0 \\ 0 & \text{ o.w.} \end{array} \right. \Delta = \left(\begin{array}{ccc} + & + & - \\ + & + & - \\ - & - & + \end{array} \right) S = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Theorem 2

For general domains, the 01-mechanism is informed truthful (and proper).

$$E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge E(F, G), \quad \forall F, G$$

Also need to show uninformed \Rightarrow strictly less payment. Fix G, consider uninformed F (e.g., F(i) = `1', for all i). Have $E(F, G) = \sum_{ij} \Delta_{ij} S_{1,G(j)} < E(F^*, G^*).$

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
		00000000		

$$S_{ij} = \left\{ \begin{array}{ccc} 1 & , \text{ if } \Delta_{ij} > 0 \\ 0 & \text{ o.w.} \end{array} \right. \Delta = \left(\begin{array}{ccc} + & + & - \\ + & + & - \\ - & - & + \end{array} \right) S = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Theorem 2

For general domains, the 01-mechanism is informed truthful (and proper).

$$E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge E(F, G), \quad \forall F, G$$

Also need to show uninformed \Rightarrow strictly less payment. Fix *G*, consider uninformed *F* (e.g., *F*(*i*) = '1', for all *i*). Have $E(F, G) = \sum_{ij} \Delta_{ij} S_{1,G(j)} < E(F^*, G^*).$

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
		00000000		

$$S_{ij} = \left\{ \begin{array}{ccc} 1 & , \text{ if } \Delta_{ij} > 0 \\ 0 & \text{ o.w.} \end{array} \right. \Delta = \left(\begin{array}{ccc} + & + & - \\ + & + & - \\ - & - & + \end{array} \right) S = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Theorem 2

For general domains, the 01-mechanism is informed truthful (and proper).

$$E(F^*,G^*) = \sum_{ij} \Delta_{ij} S_{ij} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge E(F,G), \quad \forall F,G$$

Also need to show uninformed \Rightarrow strictly less payment. Fix G, consider uninformed F (e.g., F(i) = '1', for all *i*). Have $E(F,G) = \sum_{ij} \Delta_{ij} S_{1,G(j)} < E(F^*, G^*).$

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
		00000000		

$$S_{ij} = \left\{ \begin{array}{ccc} 1 & , \text{ if } \Delta_{ij} > 0 \\ 0 & \text{ o.w.} \end{array} \right. \Delta = \left(\begin{array}{ccc} + & + & - \\ + & + & - \\ - & - & + \end{array} \right) S = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Theorem 2

For general domains, the 01-mechanism is informed truthful (and proper).

$$E(F^*,G^*) = \sum_{ij} \Delta_{ij} S_{ij} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge E(F,G), \quad \forall F,G$$

Also need to show uninformed \Rightarrow strictly less payment. Fix *G*, consider uninformed *F* (e.g., *F*(*i*) = '1', for all *i*). Have $E(F,G) = \sum_{ij} \Delta_{ij} S_{1,G(j)} < E(F^*, G^*).$

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
		00000000		

$$S_{ij} = \left\{ \begin{array}{ccc} 1 & , \text{ if } \Delta_{ij} > 0 \\ 0 & \text{ o.w.} \end{array} \right. \Delta = \left(\begin{array}{ccc} + & + & - \\ + & + & - \\ - & - & + \end{array} \right) S = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Theorem 2

For general domains, the 01-mechanism is informed truthful (and proper).

$$E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge E(F, G), \quad \forall F, G$$

Also need to show uninformed \Rightarrow strictly less payment. Fix *G*, consider uninformed *F* (e.g., *F*(*i*) = '1', for all *i*). Have $E(F, G) = \sum_{ij} \Delta_{ij} S_{1,G(j)} < E(F^*, G^*).$

Introduction	The Model	Analysis	Empirical study (MOOCs)	Conclusion
		00000000		

$$S_{ij} = \left\{ \begin{array}{ccc} 1 & , \text{ if } \Delta_{ij} > 0 \\ 0 & \text{ o.w.} \end{array} \right. \Delta = \left(\begin{array}{ccc} + & + & - \\ + & + & - \\ - & - & + \end{array} \right) S = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Theorem 2

For general domains, the 01-mechanism is informed truthful (and proper).

$$E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij} = \sum_{ij:\Delta_{ij}>0} \Delta_{ij} \ge E(F, G), \quad \forall F, G$$

Also need to show uninformed \Rightarrow strictly less payment. Fix *G*, consider uninformed *F* (e.g., *F*(*i*) = '1', for all *i*). Have $E(F, G) = \sum_{ij} \Delta_{ij} S_{1,G(j)} < E(F^*, G^*).$

Introduction 00000000	The Model	Analysis ooooooo●	Empirical study (MOOCs)	Conclusion

Parameterized
$$0 \le a < b < c < d$$

Scores: $S_{ii} = \begin{cases} b & \text{, if } \Delta_{ii} \le 0 \\ c & \text{o.w.} \end{cases}$ $S_{ij} = \begin{cases} a & \text{, if } \Delta_{ij} \le 0 \\ d & \text{o.w.} \end{cases}$

Theorem 3

For general domains, the ABCD-mechanism is strong-truthful amongst symmetric strategies.

Expected payment $E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij}$ Consider a non-permutation, symmetric strategy. Must be *i*, $(i \neq j)$ that map to same *r*. Assigns score $S_{r,r} \in \{b, c\}$ to (*i* and (*j*, *i*), worse because $a < \{b, c\} < d$.

Introduction 00000000	The Model	Analysis ○○○○○○●	Empirical study (MOOCs)	Conclusion
-				

Parameterized
$$0 \le a < b < c < d$$

Scores: $S_{ii} = \begin{cases} b & \text{, if } \Delta_{ii} \le 0 \\ c & \text{o.w.} \end{cases}$ $S_{ij} = \begin{cases} a & \text{, if } \Delta_{ij} \le 0 \\ d & \text{o.w.} \end{cases}$

Theorem 3

For general domains, the ABCD-mechanism is strong-truthful amongst symmetric strategies.

Expected payment $E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij}$ Consider a non-permutation, symmetric strategy. Must be *i*, *j* $(i \neq j)$ that map to same *r*. Assigns score $S_{r,r} \in \{b, c\}$ to (i, j) and (j, i), worse because $a < \{b, c\} < d$.

Introduction	The Model	Analysis ○○○○○○●	Empirical study (MOOCs)	Conclusion

Parameterized
$$0 \le a < b < c < d$$

Scores: $S_{ii} = \begin{cases} b & \text{, if } \Delta_{ii} \le 0 \\ c & \text{o.w.} \end{cases}$ $S_{ij} = \begin{cases} a & \text{, if } \Delta_{ij} \le 0 \\ d & \text{o.w.} \end{cases}$

Theorem 3

For general domains, the ABCD-mechanism is strong-truthful amongst symmetric strategies.

Expected payment $E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij}$

Consider a non-permutation, symmetric strategy. Must be *i*, *j* $(i \neq j)$ that map to same *r*. Assigns score $S_{r,r} \in \{b, c\}$ to (i, j) and (j, i), worse because $a < \{b, c\} < d$.

Introduction	The Model	Analysis ○○○○○○●	Empirical study (MOOCs)	Conclusion

Parameterized
$$0 \le a < b < c < d$$

Scores: $S_{ii} = \begin{cases} b & \text{, if } \Delta_{ii} \le 0 \\ c & \text{o.w.} \end{cases}$ $S_{ij} = \begin{cases} a & \text{, if } \Delta_{ij} \le 0 \\ d & \text{o.w.} \end{cases}$

Theorem 3

For general domains, the ABCD-mechanism is strong-truthful amongst symmetric strategies.

Expected payment $E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij}$ Consider a non-permutation, symmetric strategy. Must be *i*, *j* $(i \neq j)$ that map to same *r*. Assigns score $S_{r,r} \in \{b, c\}$ to (i, j) and (j, i), worse because $a < \{b, c\} < d$.

Introduction	The Model	Analysis ○○○○○○●	Empirical study (MOOCs)	Conclusion

Parameterized
$$0 \le a < b < c < d$$

Scores: $S_{ii} = \begin{cases} b & \text{, if } \Delta_{ii} \le 0 \\ c & \text{o.w.} \end{cases}$ $S_{ij} = \begin{cases} a & \text{, if } \Delta_{ij} \le 0 \\ d & \text{o.w.} \end{cases}$

Theorem 3

For general domains, the ABCD-mechanism is strong-truthful amongst symmetric strategies.

Expected payment $E(F^*, G^*) = \sum_{ij} \Delta_{ij} S_{ij}$ Consider a non-permutation, symmetric strategy. Must be *i*, *j* $(i \neq j)$ that map to same *r*. Assigns score $S_{r,r} \in \{b, c\}$ to (i, j)and (j, i), worse because $a < \{b, c\} < d$.

Introduction 000000000	The Model	Analysis 00000000	Empirical study (MOOCs) •oo	Conclusion
Delta matri	ices: MOO	C Data		

■ 17 courses, 104 questions, ~325,000 reports.

Positive correlation.

For models of size 4 and 5, see failure of categorical (e.g., score 2 is +ve correlated with score 3.) *Ordinal domain*.

Introduction 00000000	The Model	Analysis 00000000	Empirical study (MOOCs) •oo	Conclusion
Delta matri	ces: MOO	C Data		

■ 17 courses, 104 questions, ~325,000 reports.

Positive correlation.

For models of size 4 and 5, see failure of categorical (e.g., score 2 is +ve correlated with score 3.) *Ordinal domain*.

Introduction	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Delta matr	ices: MOO	C Data		
	1000 100	2x2 Δ matrices		
	3x3 🛆 i	matrices		
			0.10 0.05 0.00	

Introduction	The Model	Analysis 0000000	Empirical study (MOOCs)	Conclusion
Empirical	observat	ions		

All mechanisms are strong-truthful and strict-proper.

In the other 70 worlds:

- OA-mechanism not strong-truthful or proper.
- 01-mechanism is informed-truthful and proper. It is also strict-proper in 19/70 worlds.
- ABCD-mechanism is strong-truthful (symmetric). It is also strict-proper in 12/70 worlds.
- An incomplete, heuristic search for score matrices yields strong-truthful mechanisms in 49/70 worlds.

Introduction	The Model	Analysis 00000000	Empirical study (MOOCs) ○○●	Conclusion
Empirica	l observati	ons		

All mechanisms are strong-truthful and strict-proper. In the other 70 worlds:

- OA-mechanism not strong-truthful or proper.
- 01-mechanism is informed-truthful and proper. It is also strict-proper in 19/70 worlds.
- ABCD-mechanism is strong-truthful (symmetric). It is also strict-proper in 12/70 worlds.
- An incomplete, heuristic search for score matrices yields strong-truthful mechanisms in 49/70 worlds.

Introduction	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Empirical	observatio	ns		

All mechanisms are strong-truthful and strict-proper. In the other 70 worlds:

- OA-mechanism not strong-truthful or proper.
- 01-mechanism is informed-truthful and proper. It is also strict-proper in 19/70 worlds.
- ABCD-mechanism is strong-truthful (symmetric). It is also strict-proper in 12/70 worlds.
- An incomplete, heuristic search for score matrices yields strong-truthful mechanisms in 49/70 worlds.

Introduction 00000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Empirical c	bservation	S		

All mechanisms are strong-truthful and strict-proper. In the other 70 worlds:

- OA-mechanism not strong-truthful or proper.
- 01-mechanism is informed-truthful and proper. It is also strict-proper in 19/70 worlds.
- ABCD-mechanism is strong-truthful (symmetric). It is also strict-proper in 12/70 worlds.
- An incomplete, heuristic search for score matrices yields strong-truthful mechanisms in 49/70 worlds.

Introduction 00000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion
Empirical c	bservation	S		

All mechanisms are strong-truthful and strict-proper.

In the other 70 worlds:

- OA-mechanism not strong-truthful or proper.
- 01-mechanism is informed-truthful and proper. It is also strict-proper in 19/70 worlds.
- ABCD-mechanism is strong-truthful (symmetric). It is also strict-proper in 12/70 worlds.
- An incomplete, heuristic search for score matrices yields strong-truthful mechanisms in 49/70 worlds.
| Introduction
00000000 | The Model | Analysis
00000000 | Empirical study (MOOCs) | Conclusion |
|--------------------------|------------|----------------------|-------------------------|------------|
| Empirical o | bservation | S | | |

34 of 104 worlds are categorical:

All mechanisms are strong-truthful and strict-proper.

In the other 70 worlds:

- OA-mechanism not strong-truthful or proper.
- 01-mechanism is informed-truthful and proper. It is also strict-proper in 19/70 worlds.
- ABCD-mechanism is strong-truthful (symmetric). It is also strict-proper in 12/70 worlds.
- An incomplete, heuristic search for score matrices yields strong-truthful mechanisms in 49/70 worlds.

Introduction 00000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion ●○○

Review: Our Results

- OA-mechanism (generalizes DG'13) is strong-truthful (and strict-proper) for categorical domains.
- 01-mechanism is informed-truthful (and proper) for general domains. Needs knowledge of sign structure of correlations.
- ABCD-mechanism is strong-truthful (symmetric) for general domains, may not be proper. Needs knowledge of sign structure of correlations.
- Empirical analysis supports the need for these mechanisms.

Introduction 00000000	The Model	Analysis 0000000	Empirical study (MOOCs)	Conclusion ●○○
Review: O	ur Results			

- OA-mechanism (generalizes DG'13) is strong-truthful (and strict-proper) for categorical domains.
- 01-mechanism is informed-truthful (and proper) for general domains. Needs knowledge of sign structure of correlations.
- ABCD-mechanism is strong-truthful (symmetric) for general domains, may not be proper. Needs knowledge of sign structure of correlations.
- Empirical analysis supports the need for these mechanisms.

000000000	000	0000000	000	●00
D ·				

Review: Our Results

- OA-mechanism (generalizes DG'13) is strong-truthful (and strict-proper) for categorical domains.
- 01-mechanism is informed-truthful (and proper) for general domains. Needs knowledge of sign structure of correlations.
- ABCD-mechanism is strong-truthful (symmetric) for general domains, may not be proper. Needs knowledge of sign structure of correlations.
- Empirical analysis supports the need for these mechanisms.

Introduction 00000000	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion ●○○
Review: O	ur Results			

- OA-mechanism (generalizes DG'13) is strong-truthful (and strict-proper) for categorical domains.
- 01-mechanism is informed-truthful (and proper) for general domains. Needs knowledge of sign structure of correlations.
- ABCD-mechanism is strong-truthful (symmetric) for general domains, may not be proper. Needs knowledge of sign structure of correlations.
- *Empirical analysis* supports the need for these mechanisms.

Introduction	The Model	Analysis 00000000	Empirical study (MOOCs)	Conclusion ○●○
Discussion				

- Is there a proper and strong-truthful (symmetric) mechanism for general domains? Perhaps leveraging two S matrices?
- Can heterogeneity be handled (e.g., "pushing" reports towards categorical)?
- Prior-free design: can we use observed data to design and then apply a score matrix?
- Population learning: does strong- or informed-truthful promote convergence to truthful equilibrium?
- Richer models of effort.
- Experiments and applications.

Introduction

The Model

Analysis

Empirical study (MOOCs)

Conclusion ○○●

Thank you