On-Line Social Systems with Long-Range Goals

Jon Kleinberg

Cornell University

Including joint work with Ashton Anderson, Dan Huttenlocher, Jure Leskovec, and Sigal Oren.

Long-Range Planning

Growth in on-line systems where users have long visible lifetimes and set long-range goals.

Reputation, promotion, status, individual achievement.

How should we model individual decision-making in these settings with long-range planning?

Badges

Structural framework for analysis: state space of activities.

- User lifetimes correspond to trajectories through state space.
- **Effort incurs cost, leads to rewards.**

On-line domain: badges and related incentives as reward systems.

- Social-psychological dimensions [Antin-Churchill 2011]
- Game-theoretic [Deterding et al 2011, Easley-Ghosh 2013]
- Contest/auction-based [Cavallo-Jain 12, Chawla-Hartline-Sivan 12]

Model the interaction of incentives and long-range planning in state spaces representing actions on site.

- (1) Cumulative rewards: milestones for effort [Anderson-Huttenlocher-Kleinberg-Leskovec]
	- A basic model of an individual working toward long-range rewards.
	- Exploration of the model on StackOverflow
	- Experiments with MOOC forums on Coursera

Model the interaction of incentives and long-range planning in state spaces representing actions on site.

- (1) Cumulative rewards: milestones for effort [Anderson-Huttenlocher-Kleinberg-Leskovec]
	- A basic model of an individual working toward long-range rewards.
	- Exploration of the model on StackOverflow
	- Experiments with MOOC forums on Coursera
- (2) Incentives and planning with time-inconsistent behavior [Kleinberg-Oren]
	- **•** Start from principles in behavioral economics [Strotz 1955, Pollak 1968, Akerlof 1991, Laibson 1997]
	- Develop a graph-theoretic model to represent planning as path-finding with a behavioral bias.

First Domain for Analysis: Stack Overflow

1 Answer

active oldest

votes

SciPy has a connected components algorithm. It expects as input the adjacency matrix of your graph in one of its sparse matrix formats and handles both the directed and undirected cases.

- A population of users and a site designer.
	- **o** Designer wants certain frequency of activites.
	- **o** Designer creates badges, which have value to users.

Connected components in a graph with 100 million nodes

- Action types A_1, A_2, \ldots, A_n . (ask, answer, vote, off-site, ...)
- O User's state is *n*-dimensional.
- **· User has preferred distribution p** over action types.
- User exits system with probability $\delta > 0$ each step.

- \bullet Action types A_1, A_2, \ldots, A_n . (ask, answer, vote, off-site, ...)
- O User's state is *n*-dimensional.
- User has preferred distribution p over action types.
- User exits system with probability $\delta > 0$ each step.

 \bullet Each badge *b* is a monotone subset of the state space; reward V_h is conferred when the user enters this subset.

- \bullet Action types A_1, A_2, \ldots, A_n . (ask, answer, vote, off-site, ...)
- O User's state is *n*-dimensional.
- User has preferred distribution p over action types.
- User exits system with probability $\delta > 0$ each step.

- \bullet Each badge *b* is a monotone subset of the state space; reward V_b is conferred when the user enters this subset.
- **•** User can pick distribution $x \neq p$ to get badge more quickly; comes at a cost $g(x, p)$.

- \bullet Action types A_1, A_2, \ldots, A_n . (ask, answer, vote, off-site, ...)
- **Q** User's state is *n*-dimensional.
- User has preferred distribution p over action types.
- User exits system with probability $\delta > 0$ each step.

- \bullet Each badge *b* is a monotone subset of the state space; reward V_b is conferred when the user enters this subset.
- **•** User can pick distribution $x \neq p$ to get badge more quickly; comes at a cost $g(x, p)$.
- User optimization: Choose $x_a = (x_a^1, \ldots, x_a^n)$ in each state a to optimize utility $U(\mathbf{x}_a)$.

- \bullet Action types A_1, A_2, \ldots, A_n . (ask, answer, vote, off-site, ...)
- **Q** User's state is *n*-dimensional.
- User has preferred distribution p over action types.
- User exits system with probability $\delta > 0$ each step.

- \bullet Each badge *b* is a monotone subset of the state space; reward V_b is conferred when the user enters this subset.
- **•** User can pick distribution $x \neq p$ to get badge more quickly; comes at a cost $g(x, p)$.
- User optimization: Choose $x_a = (x_a^1, \ldots, x_a^n)$ in each state a to optimize utility $U(\mathbf{x}_a)$.

$$
\mathit{U}(\mathbf{x_a}) = \sum_{b \text{ won}} V_b - g(\mathbf{x_a}, \mathbf{p}) + (1 - \delta) \sum_{i=1}^{n} \mathbf{x_a}^i \cdot U(\mathbf{x_{a+e_i}})
$$

What a Solution Looks Like

Number of A_1 actions

A One-Dimensional Version

Example: Badge at 25 actions of type 1.

 \bullet Canonical behavior: user "steers" in A_1 direction; then resets after receiving the badge.

Evaluating Qualitative Predictions

Questions related to badge-based incentives:

- **The Badge Placement Problem:** Given a desired mixture of actions, how should one define badges to (approximately) induce these actions?
- \bullet How do badges derive their value? Social / Motivational / Transactional?

An Experiment on Coursera

Thread byline:

Connorelly \bullet 2 \bullet 1 \bullet 1 \bullet 1 \cdot 2 months ago $\%$

Badge ladder:

Badge Series (2 earned)

BRONZE SILVER GOLD **DIAMOND The Reader** To earn the next badge (Silver), you must read 30 threads from your classmates. **The Supporter** To earn the next badge (Silver), you must vote on 15 posts that you find interesting or useful. **The Contributor** To earn the next badge (Bronze), you must post 3 $\sim 10^{-1}$ replies that your classmates find interesting. **The Conversation Starter** To earn the next badge (Bronze), you must start 3 threads that your classmates find interesting. **Top Posts STAR STAR** To earn the next badge (Bronze), you must write a post that gets 5 upvotes from your classmates.

Planning and Time-Inconsistency

Tacoma Public School System

Our models thus far:

- Plans are multi-step.
- Agents chooses optimal sequence given costs and benefits.

What could go wrong?

- Costs and benefits are unknown, and/or genuinely changing over time.
- \bullet Time-inconsistency.

Planning and Time-Inconsistency

MFMRFRSH

Get your gym only membership for just £19.95 a month and no contract. Now there's a better way to keep fit.

Join online today >>

Our models thus far:

- Plans are multi-step.
- Agents chooses optimal sequence given costs and benefits.

What could go wrong?

- Costs and benefits are unknown, and/or genuinely changing over time.
- \bullet Time-inconsistency.

Agent must ship a package sometime in next n days.

- One-time effort cost c to ship it.
- \bullet Loss-of-use cost x each day hasn't been shipped.

Agent must ship a package sometime in next *days.*

- One-time effort cost c to ship it.
- \bullet Loss-of-use cost x each day hasn't been shipped.

An optimization problem:

- If shipped on day t, cost is $c + tx$.
- Goal: min $1 \leq t \leq n$ $c + tx$.
- Optimized at $t = 1$.

Agent must ship a package sometime in next *days.*

- \bullet One-time effort cost c to ship it.
- \bullet Loss-of-use cost x each day hasn't been shipped.

- If shipped on day t, cost is $c + tx$.
- Goal: min $1 \leq t \leq n$ $c + tx$.
- Optimized at $t = 1$.

In Akerlof's story, he was the agent, and he *procrastinated*:

- Each day he planned that he'd do it tomorrow.
- **•** Effect: waiting until day n , when it must be shipped, and doing it then, at a significantly higher cumulative cost.

Agent must ship a package sometime in next *days.*

- One-time effort cost c to ship it.
- \bullet Loss-of-use cost x each day hasn't been shipped.
- A model based on present bias [Akerlof 91; cf. Strotz 55, Pollak 68]
	- Costs incurred today are more salient: raised by factor $b > 1$.

On day t:

- \bullet Remaining cost if sent today is bc.
- Remaining cost if sent tomorrow is $bx + c$.
- Tomorrow is preferable if $(b-1)c > bx$.

Agent must ship a package sometime in next *days.*

- One-time effort cost c to ship it.
- \bullet Loss-of-use cost x each day hasn't been shipped.

• Costs incurred today are more salient: raised by factor $b > 1$.

On day t:

- \bullet Remaining cost if sent today is bc.
- Remaining cost if sent tomorrow is $bx + c$.
- **•** Tomorrow is preferable if $(b-1)c > bx$.

General framework: quasi-hyperbolic discounting [Laibson 1997]

- Cost/reward c realized t units in future has present value $\beta \delta^t c$
- Special case: $\delta = 1$, $b = \beta^{-1}$, and agent is naive about bias.
- Can model procrastination, task abandonment [O'Donoghue-Rabin08], and benefits of choice reduction [Ariely and Wertenbroch 02, Kaur-Kremer-Mullainathan 10]

Cost Ratio

Get your gym only membership for just £19.95 a month and no contract. Now there's a better way to keep fit.

Join online today >>

Cost ratio:

Cost incurred by present-biased agent Minimum cost achievable

Across all stories in which present bias has an effect, what's the worst cost ratio?

$$
\max_{\text{stories } S} \text{ cost ratio}(S).
$$

Cost Ratio

Get your gym only membership for just £19.95 a month and no contract. Now there's a better way to keep fit.

Join online today >>

Cost ratio:

Cost incurred by present-biased agent Minimum cost achievable

Across all stories in which present bias has an effect, what's the worst cost ratio?

$$
\max_{\text{stories } S} \text{ cost ratio}(S).
$$

A Graph-Theoretic Framework

Use graphs as basic structure to represent scenarios.

- \bullet Agent plans to follow cheapest path from s to t.
- From a given node, immediately outgoing edges have costs multplied by $b > 1$.

A Graph-Theoretic Framework

Use graphs as basic structure to represent scenarios.

- \bullet Agent plans to follow cheapest path from s to t.
- From a given node, immediately outgoing edges have costs multplied by $b > 1$.

A Graph-Theoretic Framework

Use graphs as basic structure to represent scenarios.

- \bullet Agent plans to follow cheapest path from s to t.
- From a given node, immediately outgoing edges have costs multplied by $b > 1$.

Example: Akerlof's Story as a Graph

Node v_i = reaching day *i* without sending the package.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ii} = the state in which *i* weeks of the course are done and the student has completed *projects.*

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ii} = the state in which *i* weeks of the course are done and the student has completed j projects.

 $2 + 9 = 11$

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ii} = the state in which *i* weeks of the course are done and the student has completed j projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ii} = the state in which *i* weeks of the course are done and the student has completed *projects.*

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ij} = the state in which *i* weeks of the course are done and the student has completed *projects.*

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ii} = the state in which *i* weeks of the course are done and the student has completed j projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \bullet v_{ij} = the state in which *i* weeks of the course are done and the student has completed *projects.*

- **1** Analyzing present-biased behavior via shortest-path problems.
- **2** Characterizing instances with high cost ratios.
- ³ Algorithmic problem: optimal choice reduction to help present-biased agents complete tasks.
- \bullet Heterogeneity: populations with diverse values of b.

A Bad Example for the Cost Ratio

Cost ratio can be roughly b^n , and this is essentially tight. $(n = #nodes.)$

Can we characterize the instances with exponential cost ratio?

Goal, informally stated: Must any instance with large cost ratio contain Akerlof's story as a sub-structure?

Graph H is a *minor* of graph G if we can contract connected subsets of G into "super-nodes" so as to produce a copy of H.

 \bullet In the example: G has a K_4 -minor.

Graph H is a *minor* of graph G if we can contract connected subsets of G into "super-nodes" so as to produce a copy of H.

 \bullet In the example: G has a K_4 -minor.

Graph H is a *minor* of graph G if we can contract connected subsets of G into "super-nodes" so as to produce a copy of H.

 \bullet In the example: G has a K_4 -minor.

The k-fan \mathcal{F}_k : the graph consisting of a k-node path, and one more node that all others link to.

Theorem

For every $\lambda > 1$ there exists $\varepsilon > 0$ such that if the cost ratio is $> \lambda^n$, then the underlying undirected graph of the instance contains an \mathcal{F}_k -minor for $k = \varepsilon n$.

In subsequent work, tight bound by Tang et al 2015.

- The agent traverses a path P as it tries to reach t .
- \bullet Let the rank of a node on P be the logarithm of its dist. to t.
- Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P .

- The agent traverses a path P as it tries to reach t .
- \bullet Let the rank of a node on P be the logarithm of its dist. to t.
- Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P .

- The agent traverses a path P as it tries to reach t .
- \bullet Let the rank of a node on P be the logarithm of its dist. to t.
- Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P .

- The agent traverses a path P as it tries to reach t .
- \bullet Let the rank of a node on P be the logarithm of its dist. to t.
- Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P .

- The agent traverses a path P as it tries to reach t .
- \bullet Let the rank of a node on P be the logarithm of its dist. to t.
- Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P .

Choice Reduction

Choice reduction problem: Given G, not traversable by an agent, is there a subgraph of G that is traversable?

- \bullet Our initial idea: if there is a traversable subgraph in G , then there is a traversable subgraph that is a path.
- **But this is not the case.**

Results:

- A characterization of the structure of minimal traversable subgraphs.
- NP-completeness [Feige 2014, Tang et al 2015]
- Open: Approximation by slightly increasing reward and deleting nodes?

Choice Reduction

Choice reduction problem: Given G, not traversable by an agent, is there a subgraph of G that is traversable?

- \bullet Our initial idea: if there is a traversable subgraph in G , then there is a traversable subgraph that is a path.
- **But this is not the case.**

Results:

- A characterization of the structure of minimal traversable subgraphs.
- NP-completeness [Feige 2014, Tang et al 2015]
- Open: Approximation by slightly increasing reward and deleting nodes?

Further Questions

Reward systems are a key part of the design space.

- Where does the value reside in rewards for long-range planning? Social, motivational, transactional, ... ?
- **•** Sophisticated agents: aware of their own time-inconsistency [O'Donoghue-Rabin 1999] How to incorporate sophisticated agents in graph-theoretic model? [Kleinberg-Oren-Raghavan, 2015]
- Multi-player settings: interactions between agents with varying levels of bias and sophistication.
- Connect these ideas back to models and data for badge design. [Easley-Ghosh13, Anderson et al 13, Immorlica et al 15]