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Long-Range Planning

Growth in on-line systems where users have long visible lifetimes
and set long-range goals.

Reputation, promotion, status, individual achievement.

How should we model individual decision-making in these settings
with long-range planning?



Badges

Structural framework for analysis: state space of activities.

User lifetimes correspond to trajectories through state space.

Effort incurs cost, leads to rewards.

On-line domain: badges and related incentives as reward systems.

Social-psychological dimensions [Antin-Churchill 2011]

Game-theoretic [Deterding et al 2011, Easley-Ghosh 2013]

Contest/auction-based [Cavallo-Jain 12, Chawla-Hartline-Sivan 12]



Outline

Model the interaction of incentives and long-range planning
in state spaces representing actions on site.

(1) Cumulative rewards: milestones for effort
[Anderson-Huttenlocher-Kleinberg-Leskovec ]

A basic model of an individual working toward long-range rewards.

Exploration of the model on StackOverflow

Experiments with MOOC forums on Coursera

(2) Incentives and planning with time-inconsistent behavior
[Kleinberg-Oren ]

Start from principles in behavioral economics
[Strotz 1955, Pollak 1968, Akerlof 1991, Laibson 1997]

Develop a graph-theoretic model to represent planning as
path-finding with a behavioral bias.
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First Domain for Analysis: Stack Overflow



Basic Model

A population of users and
a site designer.

Designer wants
certain frequency of
activites.

Designer creates
badges, which have
value to users.



Our Model

Action types A1,A2, . . . ,An.
(ask, answer, vote, off-site, ...)

User’s state is n-dimensional.

User has preferred distribution p
over action types.

User exits system with probability
δ > 0 each step.
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Each badge b is a monotone subset of the state space;
reward Vb is conferred when the user enters this subset.

User can pick distribution x 6= p to get badge more quickly;
comes at a cost g(x, p).

User optimization: Choose xa = (x1a, . . . , x
n
a) in each state a

to optimize utility U(xa).

U(xa) =
∑
b won

Vb − g(xa,p) + (1− δ)
n∑

i=1

xia · U(xa+ei)
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What a Solution Looks Like
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A One-Dimensional Version
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Example: Badge at 25 actions of type 1.

Canonical behavior: user “steers” in A1 direction;
then resets after receiving the badge.



Evaluating Qualitative Predictions
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Questions related to badge-based incentives:

The Badge Placement Problem:
Given a desired mixture of actions, how should one define badges to
(approximately) induce these actions?

How do badges derive their value?
Social / Motivational / Transactional?



An Experiment on Coursera

Thread byline:

Badge ladder:



Planning and Time-Inconsistency

Tacoma Public School System

Our models thus far:

Plans are multi-step.

Agents chooses optimal sequence given costs and benefits.

What could go wrong?

Costs and benefits are unknown, and/or genuinely changing over time.

Time-inconsistency.
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Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next n days.

One-time effort cost c to ship it.

Loss-of-use cost x each day hasn’t been shipped.

An optimization problem:

If shipped on day t, cost is c + tx .

Goal: min
1≤t≤n

c + tx .

Optimized at t = 1.

In Akerlof’s story, he was the agent, and he procrastinated:

Each day he planned that he’d do it tomorrow.

Effect: waiting until day n, when it must be shipped, and
doing it then, at a significantly higher cumulative cost.
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Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next n days.

One-time effort cost c to ship it.

Loss-of-use cost x each day hasn’t been shipped.

A model based on present bias [Akerlof 91; cf. Strotz 55, Pollak 68]

Costs incurred today are more salient: raised by factor b > 1.

On day t:
Remaining cost if sent today is bc.

Remaining cost if sent tomorrow is bx + c.

Tomorrow is preferable if (b − 1)c > bx .

General framework: quasi-hyperbolic discounting [Laibson 1997]

Cost/reward c realized t units in future has present value βδtc

Special case: δ = 1, b = β−1, and agent is naive about bias.

Can model procrastination, task abandonment [O’Donoghue-Rabin08],
and benefits of choice reduction [Ariely and Wertenbroch 02,
Kaur-Kremer-Mullainathan 10]
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Cost Ratio

Cost ratio:

Cost incurred by present-biased agent

Minimum cost achievable

Across all stories in which present bias has an effect,
what’s the worst cost ratio?

max
stories S

cost ratio(S).

???
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A Graph-Theoretic Framework
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Use graphs as basic structure to represent scenarios.

Agent plans to follow cheapest path from s to t.

From a given node, immediately outgoing edges have costs
multplied by b > 1.
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Example: Akerlof’s Story as a Graph
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Node vi = reaching day i without sending the package.



Paths with Rewards
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Variation: agent only continues on path if cost ≤ reward at t.

Can model abandonment: agent stops partway through a
completed path.

Can model benefits of choice reduction: deleting nodes can
sometimes make graph become traversable.
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A More Elaborate Example
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Reward of 16 from finishing the course.

Effort cost in a given week: 1 from doing no project, 4 from doing one,
9 from doing both.

vij = the state in which i weeks of the course are done and
the student has completed j projects.
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Overview
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1 Analyzing present-biased behavior via shortest-path problems.

2 Characterizing instances with high cost ratios.

3 Algorithmic problem: optimal choice reduction to help
present-biased agents complete tasks.

4 Heterogeneity: populations with diverse values of b.



A Bad Example for the Cost Ratio
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Cost ratio can be roughly bn, and this is essentially tight.
(n = #nodes.)

Can we characterize the instances with exponential cost ratio?

Goal, informally stated: Must any instance with large cost
ratio contain Akerlof’s story as a sub-structure?



Characterizing Bad Instances via Graph Minors

Graph H is a minor of graph G if
we can contract connected subsets of G into “super-nodes”
so as to produce a copy of H.

In the example: G has a K4-minor.
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Characterizing Bad Instances via Graph Minors



Characterizing Bad Instances via Graph Minors

The k-fan Fk : the graph consisting of a
k-node path, and one more node that
all others link to.

Theorem

For every λ > 1 there exists ε > 0 such that
if the cost ratio is > λn,
then the underlying undirected graph of the instance
contains an Fk -minor for k = εn.

In subsequent work, tight bound by Tang et al 2015.



Sketch of the Proof

v0

ts

v1

v2

v3

Q0
Q1

Q2

Q3

rank

P

The agent traverses a path P as it tries to reach t.

Let the rank of a node on P be the logarithm of its dist. to t.

Show that every time the rank increases by 1, we can
construct a new path to t that avoids the traversed path P.
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Choice Reduction
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Choice reduction problem: Given G , not traversable by an agent,
is there a subgraph of G that is traversable?

Our initial idea: if there is a traversable subgraph in G ,
then there is a traversable subgraph that is a path.

But this is not the case.

Results:

A characterization of the structure of minimal traversable subgraphs.

NP-completeness [Feige 2014, Tang et al 2015]

Open: Approximation by slightly increasing reward and deleting nodes?
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Further Questions
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Reward systems are a key part of the design space.
Where does the value reside in rewards for long-range planning?
Social, motivational, transactional, ... ?

Sophisticated agents: aware of their own time-inconsistency
[O’Donoghue-Rabin 1999]

How to incorporate sophisticated agents in graph-theoretic model?
[Kleinberg-Oren-Raghavan, 2015]

Multi-player settings: interactions between agents with varying levels of
bias and sophistication.

Connect these ideas back to models and data for badge design.
[Easley-Ghosh13, Anderson et al 13, Immorlica et al 15]


