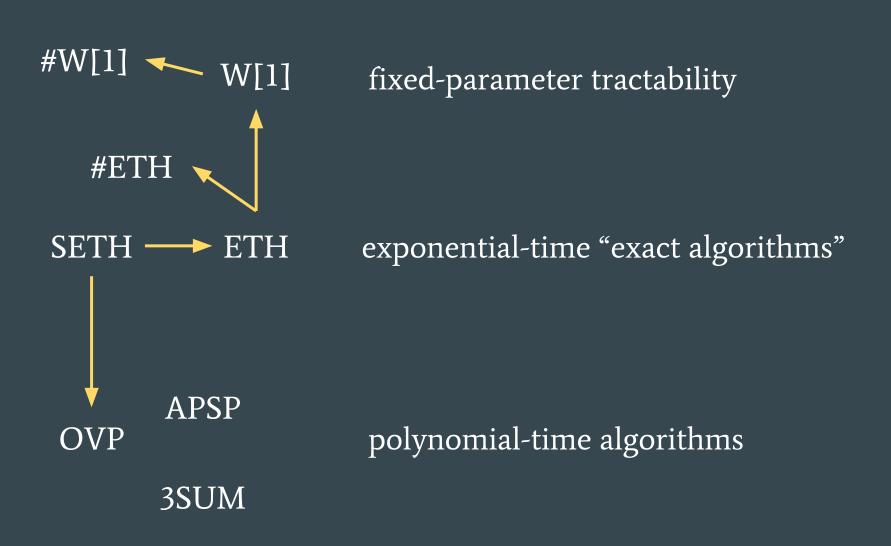
Fine-Grained Counting Complexity I

 $\bullet \bullet \bullet$

Holger Dell

Saarland University and Cluster of Excellence (MMCI) & Simons Institute for the Theory of Computing

50 Shades of Fine-Grained



Outline

- classical counting complexity
- fine-grained lens
- specific problems
- structural results
- open problems

The classics

Decision

VS.

Counting

#SAT

How many satisfying assignments are there?

#P

problems $f : \{0,1\}^* \rightarrow N$ that reduce to #SAT

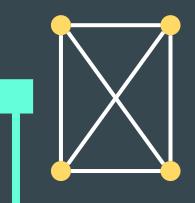
SAT

Is the CNF formula satisfiable?

NP

problems L : $\{0,1\}^* \rightarrow \{0,1\}$ that reduce to SAT

Example: Counting Hamiltonian Cycles reduces to #SAT



Three Hamiltonian Cycles

Circuit C Input variables **x**

Three satisfying assignments

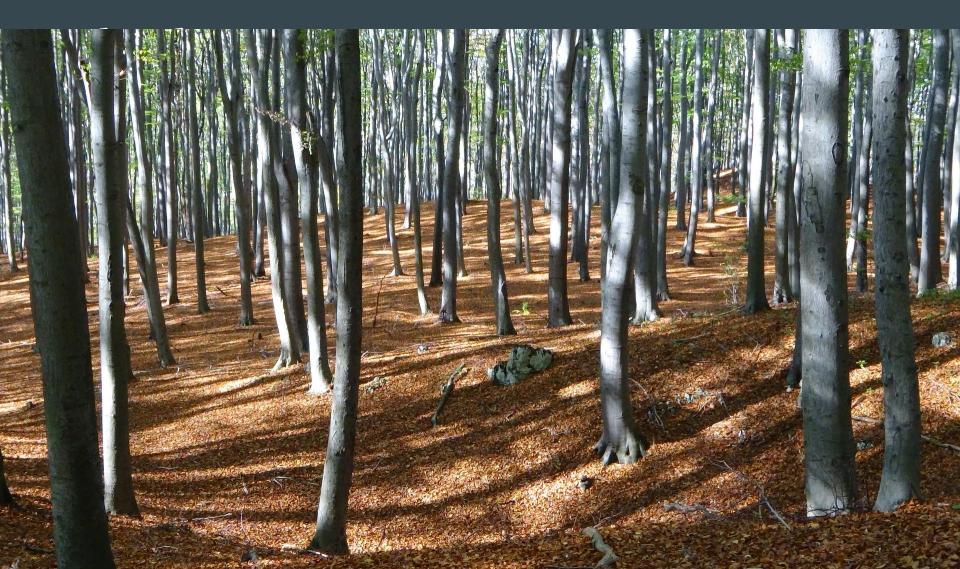
C(x) accepts iff x is a length-n cycle

Parsimonious reductions and the counting version of NP

R is a parsimonious reduction from f to g if f(x) = g(R(x)) for all x.

#P = problems f that parsimoniously
poly-time reduce to #SAT

Counting solutions is harder than finding one



Some examples of counting problems

"Combinatorial" counting problems

f(G) = # Hamiltonian Cycles

"Optimization" problems f(G) = size of the largest clique **#P-complete** using existing hardness reduction

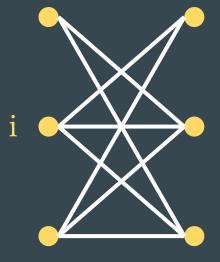
In **P**^{NP} and probably not **#P**-hard

"Algebraic" problems

f(matrix A) = value of the determinant

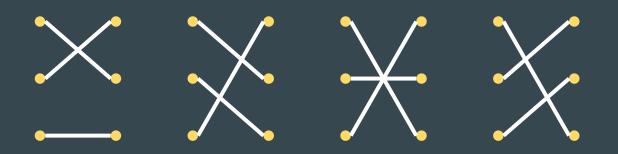
in poly-time

Count Perfect Matchings in Bipartite Graphs



d + d vertices

d×d matrix A A_{ij}=1 iff {i,j} is an edge



Perfect Matchings = per(A) = $\sum_{\text{permutation } \pi} \prod_{i \in \{1...d\}} A_{i \pi(i)}$

Computing the permanent

Evaluation time $\sim d! \sim 2^{d \log d}$

per($d \times d$ matrix A) = $\sum_{\text{permutation } \pi} A_{1 \pi(1)} \dots A_{d \pi(d)}$

$$= \sum_{all \text{ functions } f: \{1..d\} \rightarrow \{1..d\}} A_{1 f(1)} \dots A_{d f(d)}$$

$$- \sum_{j} \sum_{f: \{1..d\} \rightarrow \{1..d\} \setminus \{j\}} A_{1 f(1)} \dots A_{d f(d)}$$

$$+ \sum_{j,k} \sum_{f: \{1..d\} \rightarrow \{1..d\} \setminus \{j,k\}} A_{1 f(1)} \dots A_{d f(d)}$$

$$\prod_{i\in\{1..d\}}\sum_{j\in\{1..d\}}A_{ij}$$

Evaluation time O(d2^d)

Ryser's Inclusion-Exclusion Formula (1963)

...

$$= \sum_{S \subseteq \{1..d\}} (-1)^{|S|} \prod_{i \in \{1..d\}} \sum_{j \in \{1..d\} \setminus S} A_{ij}$$

Permanent and Determinant

$per(A) = \sum_{\pi} \prod_{i = \pi(i)} A_{i\pi(i)}$

$det(\mathbf{A}) = \sum_{\pi} (-1)^{sgn(\pi)} \prod_{i} \overline{\mathbf{A}}_{i\pi(i)}$

 $det(\mathbf{A}) \equiv per(\mathbf{A}) \pmod{2}$

Permanent: Probably not parsimoniously hard

If there was a **parsimonious** reduction **R** from **#SAT** to **per**:

- #SAT(F) \equiv per(R(F)) \equiv det(R(F)) (mod 2)
- Distinguish #SAT(F) = 1 from = 0
- **RP** = **NP** [Valiant-Vazirani isolation lemma]

Polynomial-time oracle reductions from f to g

R is a Turing machine with oracle access to **g**

such that $f(x) = R^g(x)$ holds for all x

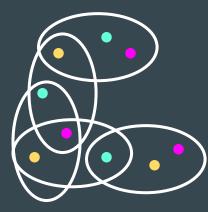
Theorem [Valiant 79].

Poly-time oracle reduction from **#SAT** to Permanent.

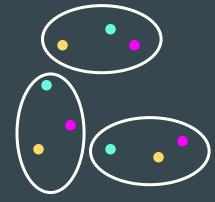
 \rightarrow If **Permanent** is poly-time, then PH=P

Proof that the Permanent is Hard I

[D and Marx 15+] Reduction from # 3-Dimensional Matching



- Sets of size 3
- 3 colors
- Every set is multicolored

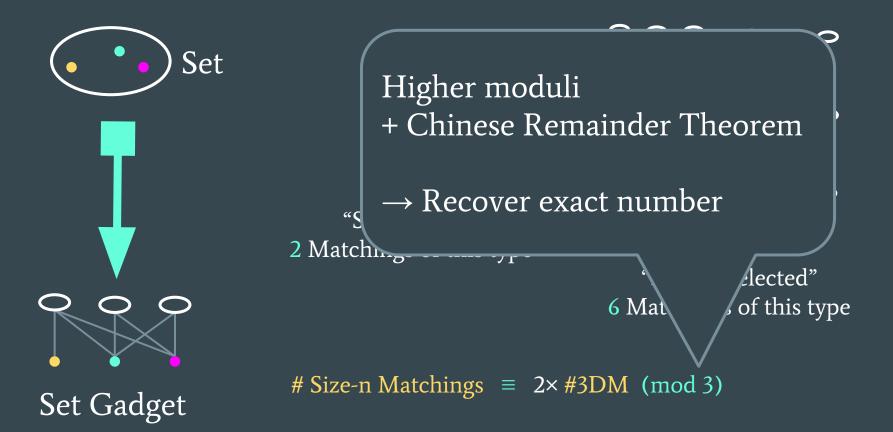


3D-matching = n/3 disjoint sets

Fact: The known reduction from 3-Sat to 3-Dimensional Matching is parsimonious.

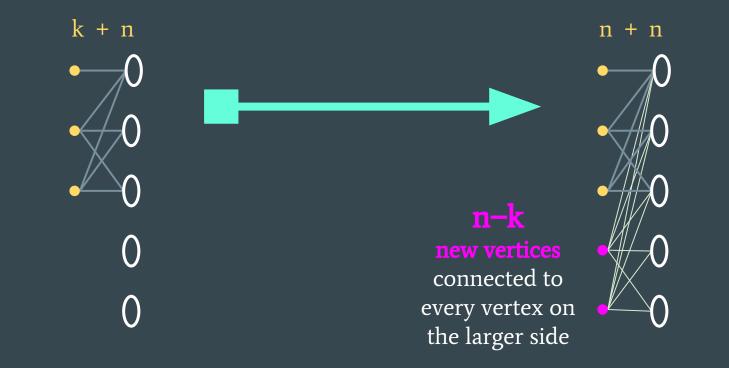
Proof that the Permanent is Hard II

Compute: # 3-Dimensional Matching (n elements, m sets) Oracle: # Size-n Matchings in n + 3m bipartite graphs.



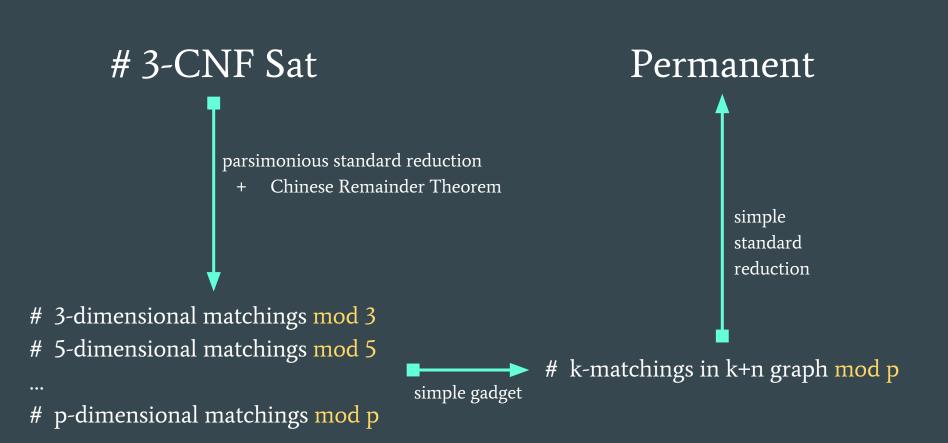
Proof that the Permanent is Hard III

Compute: # k-Matchings in a k+n bipartite graph Oracle: Permanent = # Perfect Matchings in n+n bipartite graph



(n-k)! × # k-Matchings(G) = # Perfect Matchings(G')

Proof that the Permanent is Hard, Summary



Fine-Grained Counting Complexity

Counting Satisfying Assignments of CNFs

Theorem [Chan and Williams 15]

Deterministically compute #SAT for a CNF formula F in time $2^{n(1-savings)}$

- **F** is a k-CNF \rightarrow savings ~ 1 / k
- **F** has cn clauses \rightarrow savings ~ 1 / log c

Counting Exponential Time Hypotheses

<u>#ETH</u>

#SAT for k-CNFs does not have exp(o(n)) time algorithm

 $\frac{Sparsification \ Lemma}{\ [Impagliazzo \ Paturi \ Zane \ 01; \ Calabro \ Impagliazzo \ Paturi \ 06]}{\ Can \ assume \ m \ \sim \ k^k \ n}$

<u>#SETH</u>

#SAT for CNFs does not have 1.999ⁿ time algorithm

Fine-Grained Complexity of the Permanent

Theorem [Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10]

If per(d×d matrix A) can be computed in exp(o(d)), then #ETH is false

Theorem [Servedio and Wan 05]

If A has cn nonzero entries, per(A) can be computed in time $(2-\epsilon)^d$ where $\epsilon(c) < 1$

PETH (Permanent Exponential Time Hypothesis) per(A) cannot be computed in time 1.999^d

Counting Solutions to 2-CNF formulas

Ζ

#SAT for 3-CNFs

Sparsification Lemma

#SAT for 3-CNFs each variable appears O(1) times

Theorem #SAT for 2-CNFs is #ETH-hard

> **#SAT for 2-CNFs** each variable appears O(1) times

> > $(\neg x \lor \neg y)$

(¬x ∨ ¬z)

(¬y ∨ ¬z)

via Permanent [Curticapean 15]

All Matchings
in constant degree graph

Results for Various Counting Problems

Count Perfect Matchings in General Graphs

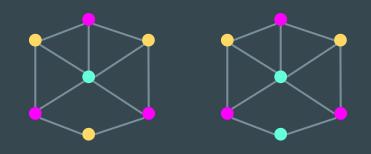
per((n/2)×(n/2) matrix)

= # Perfect Matchings of bipartite graph with n/2+n/2 vertices $\rightarrow 2^{n/2}$ algorithm

Theorem [Björklund 11].

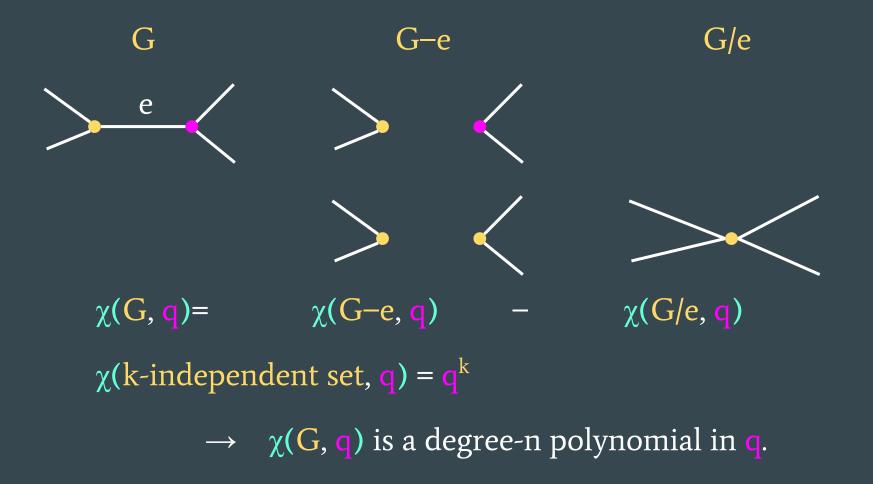
Count perfect matchings in general graphs in time $2^{n/2}$.

Proper q-colorings



Chromatic polynomial & Deletion-Contraction

 $\chi(G, q) = #$ proper q-colorings of G



Compute # q-Colorings

The deletion-contraction algorithm takes time 2^m.

Theorem [Björklund Husfeldt Koivisto 09] Compute the number of q-colorings in time 2ⁿ.

Theorem [Impagliazzo Paturi Zane 01] ETH \rightarrow no 2^{o(n)} algorithm for q-coloring.

The Tutte Polynomial

 $T(G, x, y) = \sum_{A \subseteq E} (x-1)^{k(A)-k(G)} (y-1)^{k(A)+|A|-|V|}$

Generalizes

- chromatic polynomial $\chi(G, q) = (-1)^{n-k(G)} q^{k(G)} T(G, 1-q, 0)$
- Ising model, **q**-state Potts model
- many combinatorial problems

Computing the Tutte polynomial

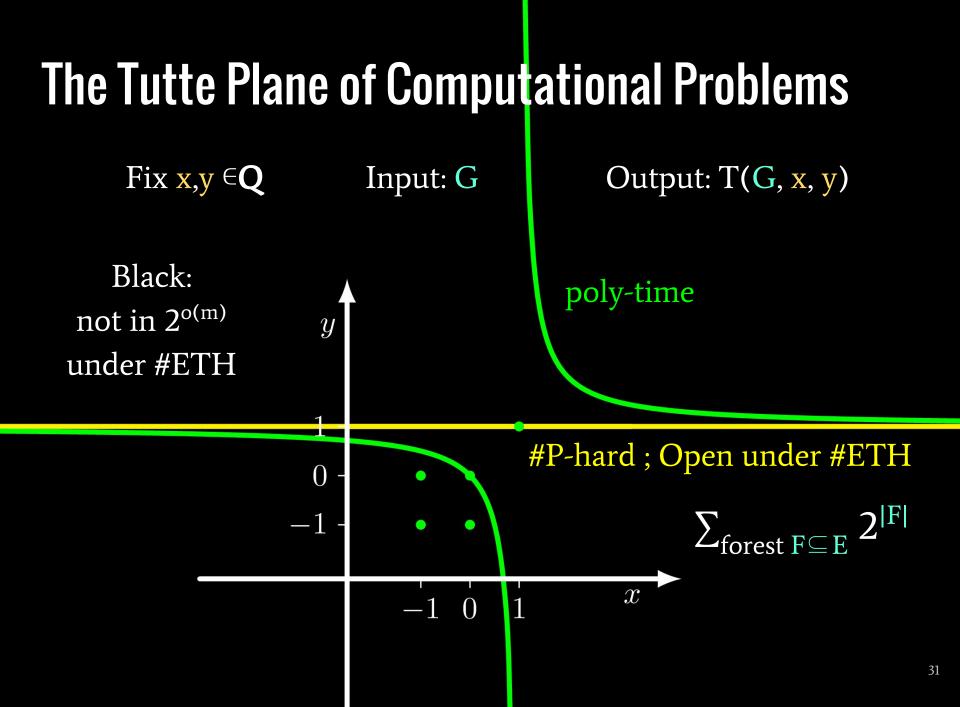
The trivial algorithm runs in time 2^m

Theorem [Björklund Husfeldt Kaski Koivisto 08] It can be computed in time 2ⁿ

Theorem [Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10;

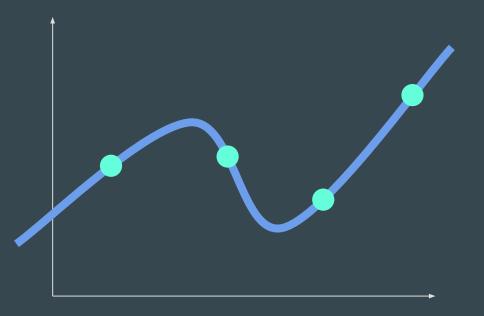
Jaeger Vertigan Welsh 1990]

 $#ETH \rightarrow no 2^{o(m)}$ algorithm



Polynomial Interpolation

\rightarrow compute **p** in poly-time from samples



polynomial p degree d

d + 1 samples (a, **p**(a))

Interpolation in Counting Complexity

 $T(G,Z_4)$

 $T(G,Z_3)$

[seriously, like, every paper in the area] $T(G, z_i) = T(G_i, z)$

Only rules out **2^{o(m/log m)}** time algorithms under #ETH

16,72

Need **m+1 samples** \rightarrow m+1 different gadgets \rightarrow m(G_i) ~ m log m

Tutte polynomial T(G, z) degree m

Block interpolation [Curticapean 15] $T(G, z) = \sum_{A \subseteq E} q^{k(A)} z^{|A|}$ Can rule out **2^{o(m)}** time algorithms under #ETH

Partition edges E into n/r blocks of size r

 $T(G, z_1, ..., z_{n/r}) = \sum_{A \subseteq E} q^{k(A)} z_1^{|A(1)|} ... z_{n/r}^{|A(n/r)|}$

→ Multivariate interpolation
 ~ r^{n/r} = exp(ε n) samples
 r+1 distinct gadgets per variable

Approximate Counting

German idiom)

Approximate Counting

[Jerrum Sinclair Vigoda 04] poly(n/ε)-time (1+ε)-approximation (FPRAS) for Permanent

[Stockmeyer 1985] FPRAS for # Sat when given access to an NP-oracle

[Traxler 14] If CNF-Sat is in 1.99ⁿ time, we can (1+1.1⁻ⁿ)-approximate # CNF-Sat in time 1.99001ⁿ

Open Problems

Dichotomy theorems

Constraint Satisfaction Problems (CSPs) $R_1(x_1,y_1,z_1) \land R_1(x_2,y_1,z_3) \land R_2(x_2,y_2,z_1) \land ...$ **Theorem [Bulatov 08, Dyer Richerby 10]** Dichotomy for #CSP depending on { $R_1, R_2, ...$ }: It's either in P or #P-complete

Is there a Dichotomy under #ETH ?

- Weighted #CSP [Cai, Chen, Lu 11]
- Planar Holant problems [Cai, Fu, Guo, Williams 15]

Is Counting really harder than Decision?

If SETH is true,

- CNF-SAT takes time 2ⁿ
- # CNF-SAT takes time 2ⁿ
- QBF-SAT takes time 2ⁿ

In applications: CNF-SAT **much** easier than QBF-SAT.

Is there a tight reduction from QBF-SAT to # CNF-SAT ?

Summary

- counting is hard: $PH \subseteq P^{\#P}$
- is computing $\sum_{\text{forest } F \subseteq E} 2^{|F|}$ hard under ETH or #ETH?
- is the permanent hard under SETH ?
- which problems are hard under PETH ?
- fine-grained inapproximability ?
- is fine-grained counting really harder than decision?
 can we tightly reduce QBF-SAT to # CNF-SAT ?