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Boolean Circuits

Inputs:
x1, . . . , xn, 0, 1
Gates:
binary
functions
Fan-out:
unbounded
Depth:
unbounded

g1 = x1 ⊕ x2
g2 = x2 ∧ x3
g3 = g1 ∨ g2
g4 = g2 ∨ 1

g5 = g3 ≡ g4

x1 x2 x3 1

⊕g1 ∧ g2

∨g3 ∨ g4

≡g5
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Known Lower Bounds

2n f (x) =
∑

i<j xixj [Kloss, Malyshev 1965]
2n f (x) = [

∑
xi ≡3 0] [Schnorr 1974]

2.5n f (x , a, b) = xa ⊕ xb [Paul 1977]
2.5n symmetric [Stockmeyer, 1977]
3n f (x , a, b, c) = xaxb ⊕ xc [Blum 1984]
3n affine dispersers [Demenkov, K 2011]
3.011n affine dispersers [this talk]
3.11n quadratic dispersers [this talk]

(non-explicit)
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Method: Gate Elimination

To prove, say, a 3n lower bound for all functions f from
a certain class F :

show that for any circuit computing f one can find
a substitution eliminating at least 3 gates

show that the resulting subfunction belongs to F
proceed by induction
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Outline

1 3n − o(n) Lower Bound for Affine Dispersers

2 3.01n Lower Bound for Affine Dispersers

3 (Conditional) 3.1n Lower Bound for “Quadratic”
Dispersers
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Function: Affine Dispersers

A function f ∈ {0, 1}n → {0, 1} is called an affine
disperser for dimension d if it is non-constant on
any affine subspace of dimension at least d .

An affine dispereser for dimension d cannot become
constant after any n − d linear substitutions (i.e.,
substitutions of the form x2 ⊕ x3 ⊕ x9 = 0).

There exist explicit constructions of affine dispersers
for sublinear dimension d = o(n) (e.g., [Ben-Sasson,
Kopparty 2010]).
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3n − o(n) Lower Bound

Theorem 1 [DK11]
For a circuit C computing an A.D. for dimension d :

s(C ) + i(C ) ≥ 4(n − d) ,

where i(C ) = #inputs and s(C ) = #gates.

Corollary
C (f ) ≥ 3n − o(n) for an A.D. for d = o(n).

Observation
The bound is tight: C (IP) = n − 1 and IP is an A.D. for
d = n/2 + 1.
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XOR-layered Circuits

t x y z

∨ ⊕ ∧

⊕ ⊕

∨

≡

n = 4 inputs
s = 7 gates

t x

x ⊕ y

x ⊕ y ⊕ z

y z

∨ ∧

⊕

∨

≡

n = 6 inputs
s = 5 gates
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Proof

Need to show that s(C ) + i(C ) ≥ 4(n − d).

For this, make n − d affine restrictions each time
reducing s + i by at least 4.

Convert C to XOR-layered and take a top-gate A:

Case 1

L1 L2

∧ A
L1 ← 0:
∆s = 2
∆i = 2

Case 2

L1 L2

∧ A
L1 ← 0:
∆s = 3
∆i = 1
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3.01n Lower Bound

Theorem 2 [FGHK15]
The circuit complexity of an affine disperser for sublinear
dimension is at least(

3 +
1

86

)
n − o(n) .
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Main Ingredients of the Proof

Delayed linear substitutions: we make substitutions like
x3 ← 0, x5 ← x7 ⊕ x10 ⊕ 1, and x3 ← x4x7.
For each quadratic substitution of the form
x3 ← x4x7 we will later assign either x4 or x7 a
constant making this quadratic substitution
linear.

Cyclic circuits: for the induction to go through, we
consider a more general model — circuits
with cycles.

Circuit complexity measure: we use a carefully chosen
circuit complexity measure to estimate the
progress of gate elimination.
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Cyclic Circuits

⊕G5 ⊕G4

⊕
G1

⊕G2

⊕ G3

x1

x2

x3

x4

G1 = x1 ⊕ G5

G2 = x2 ⊕ G1

G3 = G2 ⊕ G4

G4 = x3 ⊕ G1

G5 = x4 ⊕ G3


1 0 0 0 1
1 1 0 0 0
0 1 1 1 0
1 0 0 1 0
0 0 1 0 1

×

G1

G2

G3

G4

G5

 =


x1
x2
0
x3
x4


G1 = x1 ⊕ x2 ⊕ x3 ⊕ x4
G2 = x1 ⊕ x3 ⊕ x4
G3 = x2 ⊕ x3
G4 = x1 ⊕ x2 ⊕ x4
G5 = x2 ⊕ x3 ⊕ x4
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Circuit Complexity Measure

µ = s +
65

43
· q +

1

43
· b +

260

43
· i

where

s is the number of gates

q is the number of quadratic substitutions

b is the number of “bottleneck” gates in the circuit

i is the number of inputs
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From Affine to Quadratic Dispersers

Theorem 3 [GK15]
Let f : {0, 1}n → {0, 1} be a function that is not
constant on any set S ⊆ {0, 1}n of size at least 2n/100

that can be defined as

S = {x : p1(x) = · · · = p2n(x) = 0}, deg(pi) ≤ 2.

Then
C (f ) ≥ 3.1n .

Open problem
Explicit construction of such f (even in NP, even with
o(n) outputs).
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