A compression algorithm for $AC^0[p]$ circuits using Certifying Polynomials

> Srikanth Srinivasan Department of Mathematics, IIT Bombay.

> > September 30, 2015

• Meta-algorithmic problems: Problems that take as input or output the description of a computational model.

- Meta-algorithmic problems: Problems that take as input or output the description of a computational model.
- Example 1: Circuit SAT. Input: Boolean Circuit C, Qn: Is $f_C \equiv 0$?

- Meta-algorithmic problems: Problems that take as input or output the description of a computational model.
- Example 1: Circuit SAT. Input: Boolean Circuit C, Qn: Is $f_C \equiv 0$?
- Example 2: PIT. Input: Algebraic circuit C, Qn: Is $P_C \equiv 0$?

- Meta-algorithmic problems: Problems that take as input or output the description of a computational model.
- Example 1: Circuit SAT. Input: Boolean Circuit C, Qn: Is $f_C \equiv 0$?
- Example 2: PIT. Input: Algebraic circuit C, Qn: Is $P_C \equiv 0$?
- Example 3: Minimum Circuit Size problem (MCSP).

- Meta-algorithmic problems: Problems that take as input or output the description of a computational model.
- Example 1: Circuit SAT. Input: Boolean Circuit C, Qn: Is $f_C \equiv 0$?
- Example 2: PIT. Input: Algebraic circuit C, Qn: Is $P_C \equiv 0$?
- Example 3: Minimum Circuit Size problem (MCSP).
 - Input: $f: \{0,1\}^n \to \{0,1\}, k$.
 - Qn: Does f have a circuit of size at most k?

E + 4 E +

Compression Algorithm for a circuit class $\mathcal C$

• C: a class of circuits (AC⁰, AC⁰[p], etc.).

< 4 ► >

3

- C: a class of circuits (AC⁰, AC⁰[p], etc.).
- Compression problem for \mathcal{C} (Chen, Kabanets, Kolokolova, Shaltiel, Zuckerman (2014))

- C: a class of circuits (AC⁰, AC⁰[p], etc.).
- Compression problem for \mathcal{C} (Chen, Kabanets, Kolokolova, Shaltiel, Zuckerman (2014))
 - Input: $f: \{0,1\}^n \to \{0,1\}$ with small Boolean circuits from \mathcal{C} .

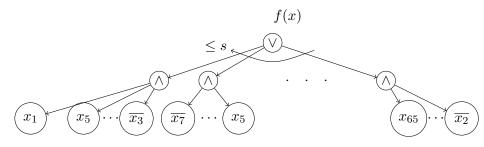
- C: a class of circuits (AC⁰, AC⁰[p], etc.).
- Compression problem for \mathcal{C} (Chen, Kabanets, Kolokolova, Shaltiel, Zuckerman (2014))
 - Input: $f : \{0,1\}^n \to \{0,1\}$ with small Boolean circuits from \mathcal{C} .
 - Qn: Construct a non-trivially small *general* circuit for *f*.

3 / 27

- C: a class of circuits (AC⁰, AC⁰[p], etc.).
- Compression problem for \mathcal{C} (Chen, Kabanets, Kolokolova, Shaltiel, Zuckerman (2014))
 - Input: $f: \{0,1\}^n \to \{0,1\}$ with small Boolean circuits from \mathcal{C} .
 - Qn: Construct a non-trivially small *general* circuit for *f*.
- Non-trivially small: size $\ll 2^n/n$.

- C: a class of circuits (AC⁰, AC⁰[p], etc.).
- Compression problem for \mathcal{C} (Chen, Kabanets, Kolokolova, Shaltiel, Zuckerman (2014))
 - Input: $f: \{0,1\}^n \to \{0,1\}$ with small Boolean circuits from \mathcal{C} .
 - ▶ Qn: Construct a non-trivially small *general* circuit for *f*.
- Non-trivially small: size $\ll 2^n/n$.
- (Chen et al.) Compression algorithms imply circuit lower bounds.

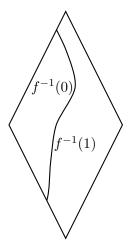
- Input: $f : \{0,1\}^n \to \{0,1\}$ with DNFs of size s.
- Qn: Construct a non-trivially small DNF for f.



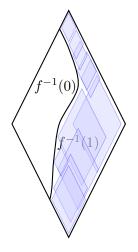
4 E b

< 67 ▶

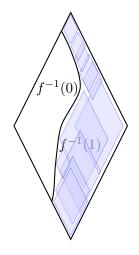
• DNF of size s: a union of s subcubes.



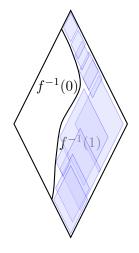
• DNF of size s: a union of s subcubes.



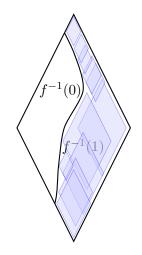
- DNF of size s: a union of s subcubes.
- Finding optimal sized DNF for *f*: Covering *f* with subcubes in *f*⁻¹(1).



- DNF of size s: a union of s subcubes.
- Finding optimal sized DNF for *f*: Covering *f* with subcubes in *f*⁻¹(1).
- Number of subcubes: 3^n .



- DNF of size s: a union of s subcubes.
- Finding optimal sized DNF for *f*: Covering *f* with subcubes in *f*⁻¹(1).
- Number of subcubes: 3^n .
- (Lovász 1975) O(n)-approximation in time $2^{O(n)}$.



- Input: $f : \{0,1\}^n \to \{0,1\}$ with DNFs of size s.
- Qn: Construct a non-trivially small DNF for f.

• Say
$$s = 2^{n-t} = 2^n / \text{superpoly}(n)$$
.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Input: $f: \{0,1\}^n \to \{0,1\}$ with DNFs of size s.
- Qn: Construct a non-trivially small DNF for f.
- Say $s = 2^{n-t} = 2^n / \text{superpoly}(n)$.
- Can obtain a DNF of size $2^{n-\Theta(t)}$.

- 31

- 4 同 6 4 日 6 4 日 6

- Input: $f: \{0,1\}^n \to \{0,1\}$ with C-circuits of size s.
- Qn: Construct a non-trivially small circuit for f.
- Say C-circuits of size $s \Rightarrow \text{DNFs}$ of size 2^{n-t} .

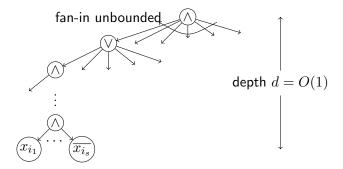
- Input: $f: \{0,1\}^n \to \{0,1\}$ with C-circuits of size s.
- Qn: Construct a non-trivially small circuit for f.
- Say C-circuits of size $s \Rightarrow \text{DNFs}$ of size 2^{n-t} .
- Can obtain a DNF of size $2^{n-\Theta(t)}$.

Gives non-trivial compression algorithms for:

• AC^0 circuits of size $2^{n^{o(1)}}$ (Impagliazzo-Matthews-Paturi, Håstad).

Gives non-trivial compression algorithms for:

• AC^0 circuits of size $2^{n^{o(1)}}$ (Impagliazzo-Matthews-Paturi, Håstad).



Gives non-trivial compression algorithms for:

• AC^0 circuits of size $2^{n^{o(1)}}$ (Impagliazzo-Matthews-Paturi, Håstad).

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then the algorithm outputs a circuit of size $2^n/M$, where $M = \exp(n/(C \log(s/n))^{d-1})$.

Gives non-trivial compression algorithms for:

• AC^0 circuits of size $2^{n^{o(1)}}$ (Impagliazzo-Matthews-Paturi, Håstad).

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then the algorithm outputs a circuit of size $2^n/M$, where $M = \exp(n/(C \log(s/n))^{d-1})$.

• DeMorgan formulas of size $\ll n^{1.5}$. (Subbotovskaya, Santhanam)

Gives non-trivial compression algorithms for:

• AC^0 circuits of size $2^{n^{o(1)}}$ (Impagliazzo-Matthews-Paturi, Håstad).

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then the algorithm outputs a circuit of size $2^n/M$, where $M = \exp(n/(C \log(s/n))^{d-1})$.

- DeMorgan formulas of size $\ll n^{1.5}$. (Subbotovskaya, Santhanam)
- Further algorithms using memoization.

Gives non-trivial compression algorithms for:

• AC^0 circuits of size $2^{n^{o(1)}}$ (Impagliazzo-Matthews-Paturi, Håstad).

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then the algorithm outputs a circuit of size $2^n/M$, where $M = \exp(n/(C \log(s/n))^{d-1})$.

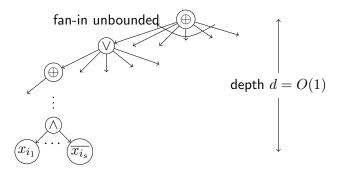
- DeMorgan formulas of size $\ll n^{1.5}$. (Subbotovskaya, Santhanam)
- Further algorithms using memoization.
- General formulas, branching programs.

More general classes of circuits

• Compression algorithms for more powerful classes of circuits?

More general classes of circuits

- Compression algorithms for more powerful classes of circuits?
- Natural next question: $AC^0[2]$: AC^0 augmented with \oplus gates.



Compression algorithms for $AC^{0}[p]$ circuits

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then we can find in $poly(2^n)$ time a circuit of size $2^n/M$, where $M = \exp(n/(C\log(s/n))^{d-1})$.

(本語) (本語) (本語) (語)

Compression algorithms for $AC^{0}[p]$ circuits

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then we can find in $poly(2^n)$ time a circuit of size $2^n/M$, where $M = \exp(n/(C \log(s/n))^{d-1})$.

Theorem (This work)

Say f has an $AC^{0}[2]$ circuit of size s. Then we can find in $poly(2^{n})$ time a circuit of size $2^{n}/M$, where $M = \exp(n/(C \log s)^{2(d-1)})$.

イロト イポト イヨト イヨト 二日

Compression algorithms for $AC^{0}[p]$ circuits

Theorem (Chen et al. (2014))

Say f has an AC⁰ circuit of size s. Then we can find in $poly(2^n)$ time a circuit of size $2^n/M$, where $M = \exp(n/(C\log(s/n))^{d-1})$.

Theorem (This work)

Say f has an $AC^{0}[2]$ circuit of size s. Then we can find in $poly(2^{n})$ time a circuit of size $2^{n}/M$, where $M = \exp(n/(C \log s)^{2(d-1)})$.

Also works for $AC^0[p]$ (p prime).

Polynomials and polynomial approximations

• $P(x_1,\ldots,x_n) \in \mathbb{F}_2[x_1,\ldots,x_n]$. Multilinear.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

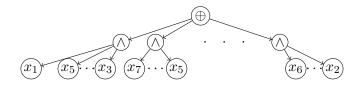
Polynomials and polynomial approximations

- $P(x_1, \ldots, x_n) \in \mathbb{F}_2[x_1, \ldots, x_n]$. Multilinear.
- E.g.: $x_1x_2 + x_3 + x_1x_5$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

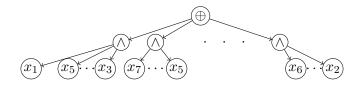
Polynomials and polynomial approximations

- $P(x_1,\ldots,x_n) \in \mathbb{F}_2[x_1,\ldots,x_n]$. Multilinear.
- E.g.: $x_1x_2 + x_3 + x_1x_5$.
- Special kind of depth-2 $AC^0[2]$ circuit.



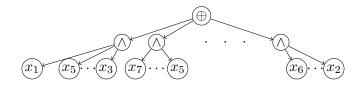
Polynomials and polynomial approximations

- $P(x_1, \ldots, x_n) \in \mathbb{F}_2[x_1, \ldots, x_n]$. Multilinear.
- E.g.: $x_1x_2 + x_3 + x_1x_5$.
- Special kind of depth-2 $AC^0[2]$ circuit.
- Degree $D \Rightarrow$ size $\sum_{i \le D} \binom{n}{i} = \binom{n}{\le D}$.



Polynomials and polynomial approximations

- $P(x_1,\ldots,x_n) \in \mathbb{F}_2[x_1,\ldots,x_n]$. Multilinear.
- E.g.: $x_1x_2 + x_3 + x_1x_5$.
- Special kind of depth-2 $AC^0[2]$ circuit.
- Degree $D \Rightarrow$ size $\sum_{i \le D} {n \choose i} = {n \choose \le D}$.
- Say that $P \in \text{-approximates } f$ if $\Pr_{x \in \{0,1\}^n}[P(x) \neq f(x)] \leq \varepsilon$.



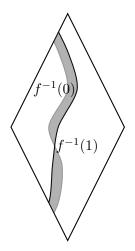
Razborov approximations to $AC^{0}[2]$ circuits

 (Razborov 1987): Can ε-approximate small AC⁰[2] circuits by low-degree polynomials.

- 4 ⊒ →

Razborov approximations to $AC^{0}[2]$ circuits

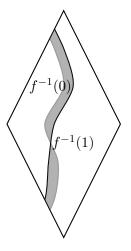
- (Razborov 1987): Can ε-approximate small AC⁰[2] circuits by low-degree polynomials.
- Circuit has size $n^{O(1)} \Rightarrow$ degree of polynomial is $O(\log n)^{d-1} \log(1/\varepsilon)$.



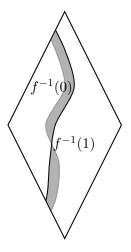
• Given $f: \{0,1\}^n \to \{0,1\}$ with $AC^0[2]$ circuits of size $s = n^{O(1)}$.

- ∢ ⊢⊒ →

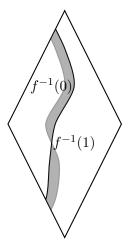
- Given $f: \{0,1\}^n \to \{0,1\}$ with $AC^0[2]$ circuits of size $s = n^{O(1)}$.
- Find low-degree ε -approximation P.



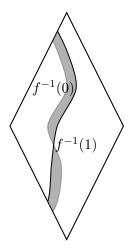
- Given $f: \{0,1\}^n \to \{0,1\}$ with $AC^0[2]$ circuits of size $s = n^{O(1)}$.
- Find low-degree ε -approximation P.
- Size(P) = exp((log n)^{O(1)} log(1/ ε)).



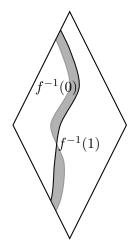
- Given $f: \{0,1\}^n \to \{0,1\}$ with $AC^0[2]$ circuits of size $s = n^{O(1)}$.
- Find low-degree ε -approximation P.
- Size(P) = exp((log n)^{O(1)} log(1/ ε)).
- "Fix" P at all the error points with a circuit of size ε2ⁿ.



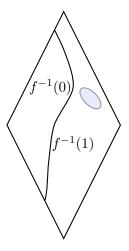
- Given $f: \{0,1\}^n \to \{0,1\}$ with $AC^0[2]$ circuits of size $s = n^{O(1)}$.
- Find low-degree ε -approximation P.
- Size(P) = exp((log n)^{O(1)} log(1/ ε)).
- "Fix" P at all the error points with a circuit of size ε2ⁿ.
- Overall size: Size $(P) + \varepsilon 2^n$.



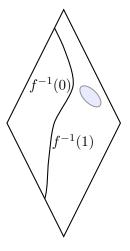
- Given $f: \{0,1\}^n \to \{0,1\}$ with $AC^0[2]$ circuits of size $s = n^{O(1)}$.
- Find low-degree ε -approximation P.
- Size(P) = exp((log n)^{O(1)} log(1/ ε)).
- "Fix" P at all the error points with a circuit of size ε2ⁿ.
- Overall size: Size $(P) + \varepsilon 2^n$.
- Bottleneck: How to find P?



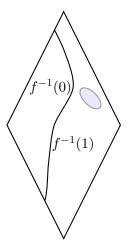
• $R \in \mathbb{F}_2[x_1, \dots, x_n]$ is a Certifying polynomial for f if $R(x) = 1 \Rightarrow f(x) = 1$.



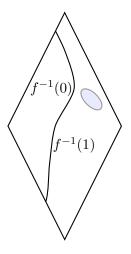
- $R \in \mathbb{F}_2[x_1, \dots, x_n]$ is a Certifying polynomial for f if $R(x) = 1 \Rightarrow f(x) = 1$.
- $R \neq 0$.



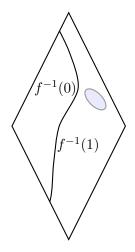
- $R \in \mathbb{F}_2[x_1, \dots, x_n]$ is a Certifying polynomial for f if $R(x) = 1 \Rightarrow f(x) = 1$.
- $R \neq 0$.
- Also studied as Algebraic Immunity, Weak degree.



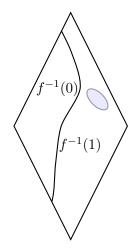
- $R \in \mathbb{F}_2[x_1, \dots, x_n]$ is a Certifying polynomial for f if $R(x) = 1 \Rightarrow f(x) = 1$.
- $R \neq 0$.
- Also studied as Algebraic Immunity, Weak degree.
- Notion of one-sided approximation.



- $R \in \mathbb{F}_2[x_1, \dots, x_n]$ is a Certifying polynomial for f if $R(x) = 1 \Rightarrow f(x) = 1$.
- $R \neq 0$.
- Also studied as Algebraic Immunity, Weak degree.
- Notion of one-sided approximation.
- Any (*) function f has a certifying polynomial of degree at most n/2.



- $R \in \mathbb{F}_2[x_1, \dots, x_n]$ is a Certifying polynomial for f if $R(x) = 1 \Rightarrow f(x) = 1$.
- $R \neq 0$.
- Also studied as Algebraic Immunity, Weak degree.
- Notion of one-sided approximation.
- Any (*) function f has a certifying polynomial of degree at most n/2.
- Gives a "local" circuit for f of size $\binom{n}{\leq n/2} = 2^{n-1}.$



Certifying polynomials

- Any function f has a certifying polynomial of degree at most n/2.
- Gives a "local" circuit for f of size $\binom{n}{\langle n/2 \rangle} = 2^{n-1}$.

イロト イポト イヨト イヨト 二日

Certifying polynomials

- Any function f has a certifying polynomial of degree at most n/2.
- Gives a "local" circuit for f of size $\binom{n}{\langle n/2 \rangle} = 2^{n-1}$.
- Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly $(n) \Rightarrow$ certifying polynomials of degree $D = \frac{n}{2} \frac{n}{(\log n)^{O(1)}}$.

글 > - - 글 >

Certifying polynomials

- Any function f has a certifying polynomial of degree at most n/2.
- Gives a "local" circuit for f of size $\binom{n}{\langle n/2 \rangle} = 2^{n-1}$.
- Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly $(n) \Rightarrow$ certifying polynomials of degree $D = \frac{n}{2} \frac{n}{(\log n)^{O(1)}}$.
- Gives a circuit of size $2^n / \exp(n / (\log n)^{O(1)})$.

▶ Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly(n) ⇒ certifying polynomials of degree $D = \frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$.

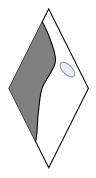
• Gives a circuit of size $2^n / \exp(n / (\log n)^{O(1)})$.

() → 10

▶ Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly(n) ⇒ certifying polynomials of degree $D = \frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$.

• Gives a circuit of size $2^n / \exp(n / (\log n)^{O(1)})$.

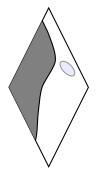
• Finding $R = \sum_{|S| \le D} \alpha_S \prod_{i \in S} x_i$.



▶ Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly(n) ⇒ certifying polynomials of degree $D = \frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$.

• Gives a circuit of size $2^n / \exp(n / (\log n)^{O(1)})$.

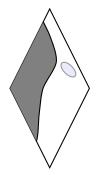
- Finding $R = \sum_{|S| \le D} \alpha_S \prod_{i \in S} x_i$.
- Need R(x) = 0 for all $x \in f^{-1}(0)$.



▶ Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly(n) ⇒ certifying polynomials of degree $D = \frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$.

• Gives a circuit of size $2^n / \exp(n / (\log n)^{O(1)})$.

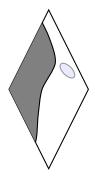
- Finding $R = \sum_{|S| \le D} \alpha_S \prod_{i \in S} x_i$.
- Need R(x) = 0 for all $x \in f^{-1}(0)$.
- Has solution set V_D.



▶ Thm (Kopparty-S. '12): f has AC⁰[2] circuit of size poly(n) ⇒ certifying polynomials of degree $D = \frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$.

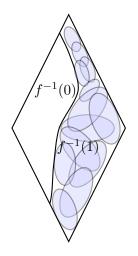
• Gives a circuit of size $2^n / \exp(n / (\log n)^{O(1)})$.

- Finding $R = \sum_{|S| \le D} \alpha_S \prod_{i \in S} x_i$.
- Need R(x) = 0 for all $x \in f^{-1}(0)$.
- Has solution set V_D.
- Need non-zero element of V_D .



Using V_D to compress

- Each $R \in V_D$ covers a subset of $f^{-1}(1)$.
- Select a few $R_1, \ldots, R_m \in V_D$ such that $\bigvee_i R_i = f$.



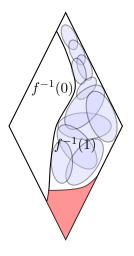
- < ∃ →

< 市利

Problems with the approach

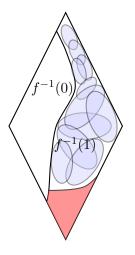
• There are points in $f^{-1}(1)$ that are never covered by $R \in V_D$.

$$F = \{ x \in f^{-1}(1) \mid R \in V_D \Rightarrow R(x) = 0 \}.$$



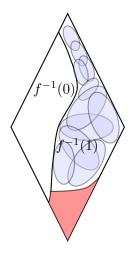
Problems with the approach

- There are points in f⁻¹(1) that are never covered by R ∈ V_D.
 - $F = \{ x \in f^{-1}(1) \mid R \in V_D \Rightarrow R(x) = 0 \}.$
 - Need to say that F is small.

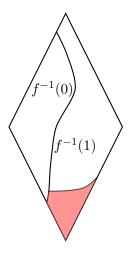


Problems with the approach

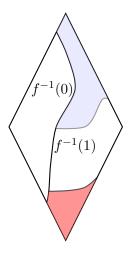
- There are points in f⁻¹(1) that are never covered by R ∈ V_D.
 - $F = \{ x \in f^{-1}(1) \mid R \in V_D \Rightarrow R(x) = 0 \}.$
 - Need to say that F is small.
- Each R ∈ V_D might cover only small subset of f⁻¹(1) \ F.



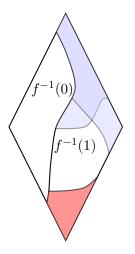
• A random $R \in V_D$ covers each $x \notin F$ with probability $\frac{1}{2}$.



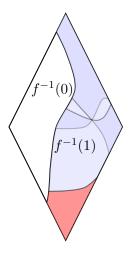
• A random $R \in V_D$ covers each $x \notin F$ with probability $\frac{1}{2}$.



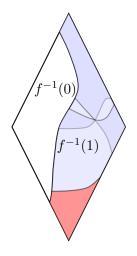
• A random $R \in V_D$ covers each $x \notin F$ with probability $\frac{1}{2}$.



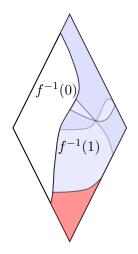
• A random $R \in V_D$ covers each $x \notin F$ with probability $\frac{1}{2}$.



- A random R ∈ V_D covers each x ∉ F with probability ¹/₂.
- Picking $R_1, \ldots, R_{O(n)} \in_u V_D$ covers $f^{-1}(1)$ with high probability.



- A random R ∈ V_D covers each x ∉ F with probability ¹/₂.
- Picking $R_1, \ldots, R_{O(n)} \in_u V_D$ covers $f^{-1}(1)$ with high probability.
- Can be easily derandomized using Error-Correcting codes.



Overall approach summary

• Argue that for $D = \frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$, F is small.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Overall approach summary

- Argue that for $D = \frac{n}{2} \frac{n}{(\log n)^{O(1)}}$, F is small.
- Obtain m = O(n) polynomials $R_1, \ldots, R_m \in V_D$ covering $f^{-1}(1) \setminus F$.

Overall approach summary

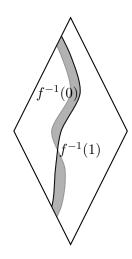
- Argue that for $D = \frac{n}{2} \frac{n}{(\log n)^{O(1)}}$, F is small.
- Obtain m = O(n) polynomials $R_1, \ldots, R_m \in V_D$ covering $f^{-1}(1) \setminus F$.
- Output $C = \bigvee_i R_i \lor \varphi$, where φ is a brute-force DNF accepting F.

Overall approach summary

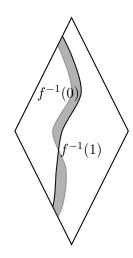
- Argue that for $D = \frac{n}{2} \frac{n}{(\log n)^{O(1)}}$, F is small.
- Obtain m = O(n) polynomials $R_1, \ldots, R_m \in V_D$ covering $f^{-1}(1) \setminus F$.
- Output $C = \bigvee_i R_i \lor \varphi$, where φ is a brute-force DNF accepting F.
- Size(C) = $2^n / \exp(n / (\log n)^{O(1)}) + |F|$.

- f has an AC⁰[2] circuit of size poly(n).
 - ► f has ε -approximating polynomial P of degree $D_1 = (\log n)^{O(1)} \log(1/\varepsilon).$

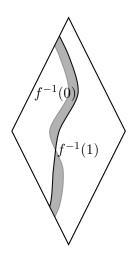
•
$$E = \text{error set of } P. |E| < \varepsilon 2^n.$$



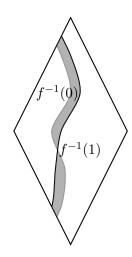
- f has an AC⁰[2] circuit of size poly(n).
 - ► f has ε -approximating polynomial P of degree $D_1 = (\log n)^{O(1)} \log(1/\varepsilon).$
 - $E = \text{error set of } P. |E| < \varepsilon 2^n.$
- Find non-zero Q of degree D_2 s.t. $Q|_E = 0$.



- f has an AC⁰[2] circuit of size poly(n).
 - f has ε -approximating polynomial P of degree $D_1 = (\log n)^{O(1)} \log(1/\varepsilon).$
 - $E = \text{error set of } P. |E| < \varepsilon 2^n.$
- Find non-zero Q of degree D_2 s.t. $Q|_E = 0$.
- Need $\binom{n}{\leq D_2} \geq \varepsilon 2^n$. • $D_2 = \frac{n}{2} - \Theta(\sqrt{n \log(1/\varepsilon)})$.



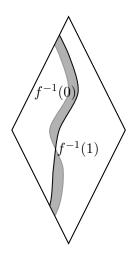
- f has an AC⁰[2] circuit of size poly(n).
 - f has ε-approximating polynomial P of degree
 D₁ = (log n)^{O(1)} log(1/ε).
 - $E = \text{error set of } P. |E| < \varepsilon 2^n.$
- Find non-zero Q of degree D_2 s.t. $Q|_E = 0$.
- $D_2 = \frac{n}{2} \Theta(\sqrt{n \log(1/\varepsilon)}).$



- f has an AC⁰[2] circuit of size poly(n).
 - f has ε-approximating polynomial P of degree
 D₁ = (log n)^{O(1)} log(1/ε).
 - $E = \text{error set of } P. |E| < \varepsilon 2^n.$
- Find non-zero Q of degree D_2 s.t. $Q|_E = 0$.

•
$$D_2 = \frac{n}{2} - \Theta(\sqrt{n \log(1/\varepsilon)}).$$

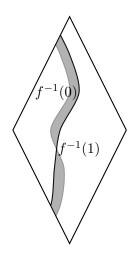
•
$$R = Q \cdot P$$
. $R = 1 \Rightarrow f = 1$.



- f has an AC⁰[2] circuit of size poly(n).
 - f has ε-approximating polynomial P of degree
 D₁ = (log n)^{O(1)} log(1/ε).
 - $E = \text{error set of } P. |E| < \varepsilon 2^n.$
- Find non-zero Q of degree D_2 s.t. $Q|_E = 0$.

•
$$D_2 = \frac{n}{2} - \Theta(\sqrt{n \log(1/\varepsilon)}).$$

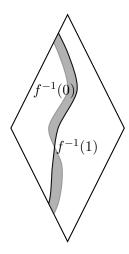
• $R = Q \cdot P. \ R = 1 \Rightarrow f = 1.$
• $\deg = \frac{n}{2} - \sqrt{n \log(1/\varepsilon)} + (\log n)^{O(1)} \log(1/\varepsilon).$



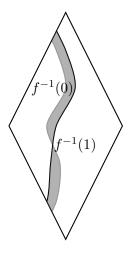
- f has an AC⁰[2] circuit of size poly(n).
 - f has ε-approximating polynomial P of degree
 D₁ = (log n)^{O(1)} log(1/ε).
 - $E = \text{error set of } P. |E| < \varepsilon 2^n.$
- Find non-zero Q of degree D_2 s.t. $Q|_E = 0$.

•
$$D_2 = \frac{n}{2} - \Theta(\sqrt{n\log(1/\varepsilon)}).$$

• $R = Q \cdot P.$ $R = 1 \Rightarrow f = 1.$
• $\deg = \frac{n}{2} - \sqrt{n\log(1/\varepsilon)} + (\log n)^{O(1)}\log(1/\varepsilon).$
• $\frac{n}{2} - \frac{n}{(\log n)^{O(1)}}$ if $\varepsilon = \exp(-n/(\log n)^{O(1)}).$



• Need non-zero Q of degree D_2 s.t. $Q|_E = 0. R = Q \cdot P.$



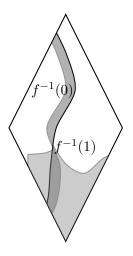
3

E + 4 E +

- (A 🖓

S.

- Need non-zero Q of degree D_2 s.t. $Q|_E = 0$. $R = Q \cdot P$.
- Forces Q to be zero on F'.



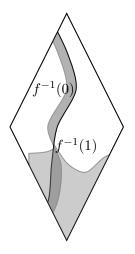
3

→ Ξ →

- 一司

S.

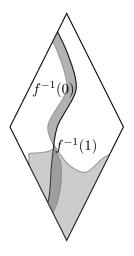
- Need non-zero Q of degree D_2 s.t. $Q|_E = 0$. $R = Q \cdot P$.
- Forces Q to be zero on F'.
- $x \notin F' \Rightarrow Q(x) = 1$ for some Q s.t. $Q|_E = 0$.



3

E + 4 E +

- Need non-zero Q of degree D_2 s.t. $Q|_E = 0$. $R = Q \cdot P$.
- Forces Q to be zero on F'.
- $x \notin F' \Rightarrow Q(x) = 1$ for some Q s.t. $Q|_E = 0$.
- $F \subseteq F'$.



3

E + 4 E +

The problem and its solution

• $E \subseteq \mathbb{F}_2^n$. $|E| \le \varepsilon 2^n$.

< 🗇 🕨

The problem and its solution

- $E \subseteq \mathbb{F}_2^n$. $|E| \le \varepsilon 2^n$.
- $F' = \{x \mid \forall Q \text{ of deg } D_2, Q|_E = 0 \Rightarrow Q(x) = 0\}.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The problem and its solution

•
$$E \subseteq \mathbb{F}_2^n$$
. $|E| \le \varepsilon 2^n$.

- $F' = \{x \mid \forall Q \text{ of deg } D_2, Q|_E = 0 \Rightarrow Q(x) = 0\}.$
- How large can |F'| be?

Theorem (Nie-Wang 2014)

$$\frac{|F'|}{2^n} \le \frac{|E|}{\binom{n}{\le D_2}}.$$

Choose D_2 so that $\binom{n}{\leq D_2} = \sqrt{\varepsilon} 2^n$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

• Compression algorithms for other/stronger circuit classes?

Open questions

- Compression algorithms for other/stronger circuit classes?
- For $Maj \circ AC^0$?

Open questions

- Compression algorithms for other/stronger circuit classes?
- For $Maj \circ AC^0$?
- Other applications of the Nie-Wang result?

Open questions

- Compression algorithms for other/stronger circuit classes?
- For $Maj \circ AC^0$?
- Other applications of the Nie-Wang result?

Thank you