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Meta-algorithmic problems

Meta-algorithmic problems: Problems that take as input or output
the description of a computational model.

Example 1: Circuit SAT. Input: Boolean Circuit C, Qn: Is fC ≡ 0?

Example 2: PIT. Input: Algebraic circuit C, Qn: Is PC ≡ 0?

Example 3: Minimum Circuit Size problem (MCSP).
I Input: f : {0, 1}n → {0, 1}, k.
I Qn: Does f have a circuit of size at most k?
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Compression Algorithm for a circuit class C

C: a class of circuits (AC0, AC0[p], etc.).

Compression problem for C (Chen, Kabanets, Kolokolova, Shaltiel,
Zuckerman (2014))

I Input: f : {0, 1}n → {0, 1} with small Boolean circuits from C.
I Qn: Construct a non-trivially small general circuit for f .

Non-trivially small: size � 2n/n.

(Chen et al.) Compression algorithms imply circuit lower bounds.
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Compression problem for DNFs

Input: f : {0, 1}n → {0, 1} with DNFs of size s.

Qn: Construct a non-trivially small DNF for f .

∨

∧ ∧ ∧

x1 x5 x3 x7 x5 x65 x2

· · ·

≤ s

· · · · · · · · ·

f(x)

S. Compression for AC0(p) September 30, 2015 4 / 27



Compression problem for DNFs

DNF of size s: a union of s subcubes.

Finding optimal sized DNF for f :
Covering f with subcubes in f−1(1).

Number of subcubes: 3n.

(Lovász 1975) O(n)-approximation in
time 2O(n).

f−1(1)

f−1(0)
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Compression problem for DNFs

Input: f : {0, 1}n → {0, 1} with DNFs of size s.

Qn: Construct a non-trivially small DNF for f .

Say s = 2n−t = 2n/superpoly(n).

Can obtain a DNF of size 2n−Θ(t).
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Compression algorithms for other classes of circuits (Chen
et al. (2014))

Input: f : {0, 1}n → {0, 1} with C-circuits of size s.

Qn: Construct a non-trivially small circuit for f .

Say C-circuits of size s ⇒ DNFs of size 2n−t.

Can obtain a DNF of size 2n−Θ(t).
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Compression algorithms for other classes of circuits (Chen
et al. (2014))

Gives non-trivial compression algorithms for:

AC0 circuits of size 2n
o(1)

(Impagliazzo-Matthews-Paturi, Håstad).

depth d = O(1)

∧

∨

∧

∧
xi1 xis

fan-in unbounded

...

· · ·
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Compression algorithms for other classes of circuits (Chen
et al. (2014))

Gives non-trivial compression algorithms for:

AC0 circuits of size 2n
o(1)

(Impagliazzo-Matthews-Paturi, Håstad).

Theorem (Chen et al. (2014))

Say f has an AC0 circuit of size s. Then the algorithm outputs a circuit of
size 2n/M , where M = exp(n/(C log(s/n))d−1).

DeMorgan formulas of size � n1.5. (Subbotovskaya, Santhanam)

Further algorithms using memoization.

General formulas, branching programs.
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More general classes of circuits

Compression algorithms for more powerful classes of circuits?

Natural next question: AC0[2]: AC0 augmented with ⊕ gates.

depth d = O(1)

⊕

∨

⊕

∧
xi1 xis

fan-in unbounded

...

· · ·
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Compression algorithms for AC0[p] circuits

Theorem (Chen et al. (2014))

Say f has an AC0 circuit of size s. Then we can find in poly(2n) time a
circuit of size 2n/M , where M = exp(n/(C log(s/n))d−1).

Theorem (This work)

Say f has an AC0[2] circuit of size s. Then we can find in poly(2n) time a
circuit of size 2n/M , where M = exp(n/(C log s)2(d−1)).

Also works for AC0[p] (p prime).
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Polynomials and polynomial approximations

P (x1, . . . , xn) ∈ F2[x1, . . . , xn]. Multilinear.

E.g.: x1x2 + x3 + x1x5.

Special kind of depth-2 AC0[2] circuit.

Degree D ⇒ size
∑

i≤D
(
n
i

)
=
(

n
≤D
)
.

Say that P ε-approximates f if Prx∈{0,1}n [P (x) 6= f(x)] ≤ ε.

⊕

∧ ∧ ∧
x1 x5 x3 x7 x5 x6 x2

· · ·

· · · · · · · · ·
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Razborov approximations to AC0[2] circuits

(Razborov 1987): Can ε-approximate
small AC0[2] circuits by low-degree
polynomials.

Circuit has size nO(1) ⇒ degree of
polynomial is O(log n)d−1 log(1/ε).

f−1(1)

f−1(0)
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Natural approach to compression problem

Given f : {0, 1}n → {0, 1} with AC0[2]
circuits of size s = nO(1).

Find low-degree ε-approximation P .

Size(P ) = exp((log n)O(1) log(1/ε)).

“Fix” P at all the error points with a
circuit of size ε2n.

Overall size: Size(P ) + ε2n.

Bottleneck: How to find P?

f−1(1)

f−1(0)
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Certifying polynomials (ABFR ’94, Green ’95)

R ∈ F2[x1, . . . , xn] is a Certifying
polynomial for f if R(x) = 1⇒ f(x) = 1.

R 6= 0.

Also studied as Algebraic Immunity, Weak
degree.

Notion of one-sided approximation.

Any (*) function f has a certifying
polynomial of degree at most n/2.

Gives a “local” circuit for f of size(
n
≤n/2

)
= 2n−1.

f−1(1)

f−1(0)
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Certifying polynomials

I Any function f has a certifying polynomial of degree at most n/2.
I Gives a “local” circuit for f of size

(
n

≤n/2

)
= 2n−1.

Thm (Kopparty-S. ’12): f has AC0[2] circuit of size poly(n) ⇒
certifying polynomials of degree D = n

2 −
n

(logn)O(1) .

Gives a circuit of size 2n/ exp(n/(log n)O(1)).
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Finding Certifying polynomials

I Thm (Kopparty-S. ’12): f has AC0[2] circuit of size poly(n) ⇒
certifying polynomials of degree D = n

2 −
n

(logn)O(1) .

I Gives a circuit of size 2n/ exp(n/(log n)O(1)).

Finding R =
∑
|S|≤D αS

∏
i∈S xi.

Need R(x) = 0 for all x ∈ f−1(0).

Has solution set VD.

Need non-zero element of VD.
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Using VD to compress

Each R ∈ VD covers a subset of f−1(1).

Select a few R1, . . . , Rm ∈ VD such that∨
iRi = f . f−1(1)

f−1(0)
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Problems with the approach

There are points in f−1(1) that are never
covered by R ∈ VD.

I F = {x ∈ f−1(1) | R ∈ VD ⇒ R(x) =
0}.

I Need to say that F is small.

Each R ∈ VD might cover only small
subset of f−1(1) \ F .

f−1(1)

f−1(0)
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Handling second issue

A random R ∈ VD covers each x 6∈ F
with probability 1

2 .

Picking R1, . . . , RO(n) ∈u VD covers
f−1(1) with high probability.

Can be easily derandomized using
Error-Correcting codes.

f−1(1)

f−1(0)
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Overall approach summary

Argue that for D = n
2 −

n
(logn)O(1) , F is small.

Obtain m = O(n) polynomials R1, . . . , Rm ∈ VD covering f−1(1) \F .

Output C =
∨

iRi ∨ ϕ, where ϕ is a brute-force DNF accepting F .

Size(C) = 2n/ exp(n/(log n)O(1)) + |F |.
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Constructing certifying polynomials

f has an AC0[2] circuit of size poly(n).
I f has ε-approximating polynomial P of degree
D1 = (log n)O(1) log(1/ε).

I E = error set of P . |E| < ε2n.

Find non-zero Q of degree D2 s.t. Q|E = 0.

Need
(

n
≤D2

)
≥ ε2n.

D2 = n
2 −Θ(

√
n log(1/ε)).

f−1(1)

f−1(0)
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Bounding |F |

Need non-zero Q of degree D2 s.t.
Q|E = 0. R = Q · P .

Forces Q to be zero on F ′.

x 6∈ F ′ ⇒ Q(x) = 1 for some Q s.t.
Q|E = 0.

F ⊆ F ′.

f−1(1)

f−1(0)
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The problem and its solution

E ⊆ Fn
2 . |E| ≤ ε2n.

F ′ = {x | ∀Q of deg D2, Q|E = 0⇒ Q(x) = 0}.
How large can |F ′| be?

Theorem (Nie-Wang 2014)

|F ′|
2n ≤

|E|
( n
≤D2

)
.

Choose D2 so that
(

n
≤D2

)
=
√
ε2n.
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Open questions

Compression algorithms for other/stronger circuit classes?

For Maj ◦ AC0?

Other applications of the Nie-Wang result?

Thank you
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