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Exact Algorithms and Complexity

All NP-complete problems are equivalent as far as polynomial
time solvability is concerned.

However, some NP-complete problems have better exact
algorithms than others

Exact algorithms — deterministic or randomized algorithms
that produce exact solutions

Exact complexity — worst-case complexity of exact algorithms

What improvements can we expect over exhaustive search or
standard algorithms?

What are the obstructions that limit the improvements?

What principles explain the exact complexities of
NP-complete problems?
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Exact Complexity — Parametrization of NP Problems

Two (or more) parameters with each instance: m, the size of
the input and n, a complexity parameter

Natural and robust complexity parameters
1 k-sat: formula F −→ (formula size m, number of variables n)
2 Also, k-sat: formula F −→ (formula size m, number of

clauses)
3 Hamiltonian Path: graph G = (V ,E ) −→ (size of the

graph m, number of vertices n)
4 Also, Hamiltonian Path: graph G = (V ,E ) −→ (size of

the graph m, log n!)
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NP Parametrization

Circuit Sat: circuit F −→ (circuit size m, number of
variables n)

NP : Existentially quantified circuit ∃yC (x , y) → (circuit size
m, number of existentially quantified Boolean variables |y |)
Circuit Sat is the “mother” of all NP-complete problems
under this natural parametrization.

Any NP-complete problem can be reduced to Circuit Sat
preserving the complexity parameter exactly.
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Improved Exact Algorithms

Given an NP problem instance with size parameter m and
complexity parameter n,

Standard (deterministic or random) algorithms are those
achieve worst-case time complexity poly(m)2n

Improved exact algorithms are those that achieve worst-case
time complexity poly(m)2µn for µ < 1.

Also known as moderately exponential-time or nontrivial
exponential-time algorithms
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Improved Exponential Time Algorithms for k-sat and
k-Colorability

k-sat, number of variables as the complexity parameter —
backtracking and local search
Hertli (2012), PPSZ, Schöning, PPZ, Rolf, Iwama, · · · ,
Monien and Speckenmeyer (1985)

3-sat — 20.386n

4-sat — 20.554n

k-sat — 2(1−µk/(k−1))n where µk ≈ 1.6 for large k.

k-Colorability, number of vertices as the complexity
parameter — backtracking
Beigel and Eppstein (2005), Byskov (2004), · · ·

3-Colorability — 20.41n

4-Colorability — 20.807n
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Improved Algorithms for Hamiltonian Path

Hamiltonian Path, number of vertices as the complexity
parameter — dynamic programming, inclusion-exclusion,
determinant summation formulas, algebraic sieving
Björklund (2010), Bax (1993), Karp (1982), Kohn, Gottlieb,
and Kohn (1977), Held and Karp (1962), Bellman (1962)

Hamiltonian Path — 2n

undirected Hamiltonian Path — 20.67n
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Improved Algorithms for Colorability

Colorability, number of vertices as the complexity
parameter — dynamic programming, Möbius inversion
Björklund, Husfeldt, Kaski, Koivisto (2006-2008), · · · , Byskov
(2004), Eppstein (2003), Lawler (1976)

Colorability — 2n in exponential space
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Improved Algorithms for Max Independent Set

Max Independent Set, number of vertices as the
complexity parameter — backtracking, measure and conquer
Fomin, Grandoni, and Kratsch (2005), Robson (1986), Jian
(1986), Tarjan and Trojanowski (1977)

20.287n in polynomial space
20.276n in exponential space

Circuit Sat — split and list, random restrictions, dynamic
programming, algebraization, matrix multiplication
Impagliazzo, P, William (2012), Williams (2011), Santhanam
(2011), Tamaki and Seto (2012), Impagliazzo, P, and
Schneider (2013)

AC0 Satisfiability for circuits of size cn and depth d —

2n(1−1/Θ(cd ))

ACC Satisfiability — 2n−nε

Formula Satisfiability for formulas of size cn — 2n(1−1/c2)

Formula Satisfiability for formulas of size cn over the full

binary basis — 2n(1−1/2−c2
)

Depth-2 Threshold Circuit Satisfiability for circuits with cn

wires — 2n(1−1/cc
2

)
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Exact Complexity — Motivating Questions

Which problems have improved algorithms?
Is there a 2µn algorithm for Colorability or cnfsat or
Circuit Sat for µ < 1?

Can the improvements extend to arbitrarily small exponents?
Is 3-sat solvable in subexponential-time? How about
3-Colorability?

Can we prove improvements beyond a certain point are not
possible (at least under some complexity assumption)?
Lower bounding the exponent for 3-sat under suitable
complexity assumptions?

Is progress on different problems connected?
Do improved algorithms for 3-sat imply improved algorithms
for 3-Colorability or vice versa?
If Colorability has a 2cn algorithm, can we prove cnfsat
has a 2dn algorithm for some c, d < 1?
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A Zoo of Algorithms, Techniques, and Analyses

A lot of effort has gone into improving the exponents.

A disparate variety of algorithmic techniques and analyses
have been used.
backtracking, local search, split and list, random restrictions,
dynamic programming, algebraization, matrix multiplication,
Möbius inversion, measure and conquer, inclusion-exclusion,
determinant summation formulas, algebraic sieving

A priori, it is not clear that we can expect a common principle
to govern the exact complexities.
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Connections between Problems

Is there a connection between the exponential complexities of
problems?

If 3-Colorability has a subexponential time (2εn for
arbitrarily small ε) algorithm, does it imply a subexponential
time algorithms for 3-sat?

Problem: In the standard reduction from 3-sat of n variables
and m clauses to 3-Colorability, we get a graph on
O(n + m) vertices and O(n + m) edges.

Complexity parameter increases polynomially, thus preventing
any useful conclusion about 3-sat.
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Sparsification Lemma

Lemma (Sparsification Lemma, IPZ 1997)

∃ algorithm A ∀k ≥ 2, ε ∈ (0, 1], φ ∈ k-CNF with n variables,
Ak,ε(φ) outputs φ1, . . . , φs ∈ k-CNF in 2εn time such that

1 s ≤ 2εn; Sol(φ) =
⋃

i Sol(φi ), where Sol(φ) is the set of
satisfying assignments of φ

2 ∀i ∈ [s] each literal occurs ≤ O(kε )3k times in φi .

To complete the reduction from 3-sat to 3-Colorability
and preserve linearity in the parameter value,
Apply Sparsification Lemma to the given 3-cnf φ.
Consider each 3-cnf φi with linearly many clauses and reduce
it to a graph with linearly many vertices.
Now, a subexponential time algorithm for 3-Colorability
implies a subexponential time algorithm for 3-sat.
Key ideas: subexponential time reductions, sparsification
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SNP

SNP — class of properties expressible by a series of second
order existential quantifiers, followed by a series of first order
universal quantifiers, followed by a basic formula
—Papadimitriou and Yannakakis 1991

SNP includes k-sat and k-Colorability for k ≥ 3.
∃S∀(y1, . . . , yk)∀(s1, . . . , sk)[R(s1,...,sk )(y1, . . . , yk) =⇒
∧1≤i≤kSsi (yi ), where si ∈ {+,−} and S is a subset of [n].

Vertex Cover,Clique, Independent Set and
k-Set Cover are in size-constrained SNP.

Hamiltonian Path is SNP-hard.
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Completeness of 3-sat in SNP

Theorem (Impagliazzo, P, and Zane (1977))

3-sat admits a subexponential-time algorithm if and only if every
problem in (size-constrained) SNP admits one.

Proof Sketch: Show that every problem in SNP is strongly
many-one reducible to k-sat for some k . Complexity
parameter is the number of existential quantifiers.

Reduce k-sat to the union of subexponentially many
linear-size k-sat using Sparsification Lemma.

Reduce each linear-size k-sat to 3-sat with linearly many
variables.
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Exponential-time Hypothesis (ETH)

The previous theorem gives evidence that 3-sat does not
have a subexponential-time algorithm as it is unlikely that the
whole class SNP has such algorithms.

While it seems beyond our scope to prove this, our plan is to
explore the state of affairs given the likelihood.

Let sk = inf{δ|∃ 2δn algorithm for k-sat};
ETH — Exponential Time Hypothesis: s3 > 0

Assuming ETH, we conclude none of the problems in
(size-constrained) SNP have a subexponential time algorithms

Furthermore, SNP-hard problems such as
Hamiltonian Path cannot have a subexponential time
algorithm.
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Let sk = inf{δ|∃ 2δn algorithm for k-sat};
ETH — Exponential Time Hypothesis: s3 > 0

Assuming ETH, we conclude none of the problems in
(size-constrained) SNP have a subexponential time algorithms

Furthermore, SNP-hard problems such as
Hamiltonian Path cannot have a subexponential time
algorithm.
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Explanatory Value of ETH

We have a very little understanding of exponential time
algorithms.

For ETH to be useful,

it must be able to provide an explanation for the exact
complexities of various other problems,
ideally, by providing lower bounds that match the upper
bounds from the best known algorithms.

ETH will be useful if it helps factor out the essential difficulty
of dealing with exponential time algorithms for NP-complete
problems.
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Lower Bounds based on ETH — I

We follow the nice summary provided by Lokshtanov, Marx
and Saurabh (2011).

All the following results assume ETH.
Subexponential time lower bounds: There is no 2o(

√
n)

algorithm for Vertex Cover, 3-Colorability, and
Hamiltonian Path for planar graphs.
Lower bounds for FPT problems: There is no 2o(k)nO(1)

algorithm to decide whether the graph has a vertex cover of
size at most k .
Similar results hold for the problems
Feedback Vertex Set and Longest Path. Cai and
Juedes (2003)
Lower bounds for W [1]-complete problems: There is no
f (k)no(k) algorithm for Clique or Independent Set.
Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005,
2006)
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Lower Bounds based on ETH — II

Lower bounds for W [2]-complete problems: There is no
f (k)no(k) algorithm for Dominating Set. Fellows (2011),
Lokshtanov (2009)

Lower bounds for problems parameterized by treewidth
Chromatic Number parameterized by treewidth t does not
admit an algorithm that runs in time 2o(t lg t)nO(1).
Lokshtanov, Marx, and Saurabh (2011), Cygan, Nederlof,
Pilipczuk, van Rooij, Wojtaszczyk (2011)

List Coloring parameterized by treewidth does not admit
algorithms that run in f (t)no(t). Fellows, Fomin, Lokshtanov,
Rosamond, Saurabh, Szeider, and Thomassen (2011)

Workflow Satisfiability Problem parameterized by the number
of steps k cannot have a 2o(k lg k)nO(1) algorithm. Crampton,
Cohen, Gutin, and Jones (2013)

Many others · · ·
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Complexity of k-sat with Increasing k

Theorem (Impagliazzo and P, 1999)

If ETH is true, sk increases infinitely often

Let s∞ = limk→∞ sk .

More specifically, we prove s∞ − sk ≥ d/k for some absolute
constant d > 0.

Provides evidence to the observation that heuristics for k-sat
perform worse as k increases.

Proof Sketch: Trade clause width up to reduce the number of
variables: reduce k-sat to k ′-CNF for k ′ � k such that the
resultant formula has fewer variables.
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Complexity of CSP Problems

ETH implies that (d , 2)-CSP requires dcn time where c is an
absolute constant. The constant c depends on s3. Traxler
2008

(d , 2)-CSP is the class of constraint satisfaction problems
where variables take d values and each clause has two
variables.

Proof involves reducing a (d , 2)-CSP instance to a
(d ′, 2)-CSP instance for d ′ � d , but with fewer variables.

A special case of (k , 2)-CSP, k-Colorability, has a 2n

algorithm (exponent is independent of k).

Greater expressiveness of k ′-CNF and (d ′, 2)-CSP has been
exploited.
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SETH — Strong Exponential Time Hypothesis

Earlier result regarding the increasing complexity of k-sat
tempts one to hypothesize
SETH — Strong Exponential Time Hypothesis: s∞ = 1
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SETH and Its Equivalent Statements

Theorem

The following statements are equivalent:

∀ε < 1, ∃k, k-sat, the satisfiability problems for n-variable
k-cnf formuals, cannot be computed in time O(2εn) time.

∀ε < 1, ∃k, k-Hitting Set, the Hitting Set problem for
set systems over [n] with sets of size at most k , cannot be
computed in time O(2εn) time.

∀ε < 1, ∃k, k-Set Splitting, the Set Splitting problem
for set systems over [n] with sets of size at most k, cannot be
computed in time O(2εn) time.

— Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, P,
Saurabh, Wahlstrom, 2012
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Lower Bounds based on SETH - I

If SETH holds, k-dominating set does not have a
f (k)nk−ε time algorithm. — Patrascu and Williams, 2009

SETH implies that Independent Set parameterized by
treewidth cannot be solved faster than 2twnO(1) —
Lokshtanov, Marx, and Saurabh 2010

SETH implies that Dominating Set parameterized by
treewidth cannot be solved faster than 3twnO(1) —
Lokshtanov, Marx, and Saurabh 2010

Many others · · ·
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Lower Bounds based on SETH - II

Theorem

SETH determines the exact complexities of the following problems
in P.

∀ε > o, the Orthogonal Vectors problem for n binary
vectors of dimension ω(log n) cannot be solved in time
O(n2−ε). — Williams - 2004

∀ε > o, the Vector Domination problem for n vectors of
dimension ωlog n cannot be solved in time O(n2−ε). —
Williams - 2004, Impagliazzo, Paturi, Schneider - 2013

∀ε > o, the Fréchet Distance problem for two piece-wise
linear curves with n pieces n cannot be solved in time
O(n2−ε). — Bringmann - 2014

Many others · · · — Borassi, Crescenzi, Habib - 2014,
Abboud, Vassilevska Williams, 2014
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Probabilistic Polynomial Time Algorithms

Consider natural, though restricted, models of computation
for exponential time algorithms.

OP(T (n,m)): one-sided error probabilistic algorithms that
run in time T (n,m)

OPP: OP(T (n,m)) where T (n,m) is polynomially bounded.

Includes several Davis-Putnam style backtracking algorithms,
local search algorithms

OPP: space efficiency, parallelization, speed-up by quantum
computation

What is the best success probability achievable in OPP or
OP(T (n,m))?
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Probabilistic Polynomial Time Algorithms

Circuit Sat problem can be solved with probability
2−n+O(lg T (n,m)) using OP(T (n,m)) algorithms.

Best-known deterministic algorithm takes time 2npoly(m).

Hamiltonian path problem can be solved with probability 1/n!
in OPP.

The best known deterministic exponential time algorithm
takes time 2O(n)poly(m).
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Time and Success Probability Trade-off

Let X (n) = (lg t + lg 1/p)/n where p is the best success
probability for time t.

Let X = limn→∞ X (n).

How does X behave as a function of t?

For the Circuit Sat problem, based on the best known
algorithms, X = 1 whether t is polynomial in n or exponential
in n.

On the other hand, for Hamiltonian Path, based on the
best known algorithms, X =∞ when t is polynomial in n and
X ≤ 1 when t is exponential is n.

For what problems, does this quantity decrease/stay the same
over a certain range of time?

We present (weak) evidence that for Circuit Sat,
(log t + log 1/p)/n may not significantly decrease with
increasing time.
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Circuit Family for deciding Circuit Sat

Fn,m

Fn,m(y, z)

6 6 6 66 6

y = desc(D), m = |y|

66666666666

random bits (z)

D

6666666

Circuit D with n variables

Probabilistic Circuit for CircuitSat
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Success Probability for Circuit Sat with OPP
algorithms

Theorem (P, Pudlák 2010)

If Circuit Sat can be decided with probabilistic circuits of size
mk for some k with success probability 2−δn for δ < 1, then there
exists a µ < 1 depending on k and δ such that Circuit Sat(n,m)

can be decided by deterministic circuits of size 2O(nµ lg1−µ m).

Paturi (S)ETH and A Survey of Consequences
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Results: Quasilinear Size Circuits

Theorem

If Circuit Sat can be decided with probabilistic circuits of size
Õ(m) with success probability 2−δn for δ < 1, then
Circuit Sat(n,m) can be decided by deterministic circuits of
size O(poly(m)nO(lg lg m)).

The consequence is very close to the statement
NP ⊆ P/poly.

Paturi (S)ETH and A Survey of Consequences



Exact Algorithms and Complexity Exponential Time Hypothesis Explanatory Value of ETH and SETH Probabilistic Polynomial Time Algorithms Open Problems

Results: Quasilinear Size Circuits

Theorem

If Circuit Sat can be decided with probabilistic circuits of size
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Success Probability for Circuit Sat with Subexponential
Size Circuits

Theorem (P, Pudlák 2010)

If Circuit Sat can be decided with probabilistic circuits of size
2o(n)Õ(m) with success probability 2−δn for δ < 1, then
Circuit Sat(n,m) can be decided by deterministic circuits of
size 2o(n)poly(m).
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Exponential Amplification Lemma

Lemma (P and Pudlák 2010)

Exponential Amplification Lemma: Let F be an f -bounded
family for some f : N× N→ R that decides Circuit Sat with
success probability 2−δn for 0 < δ < 1. Then there exists a
g -bounded circuit family G that decides Circuit Sat with
success probability at least 2−δ

2n where
g(n,m) = O(f (dδne+ 5, Õ(f (n,m)))).

F : (f (n,m), δn)→ G : (g(n,m), δ2n)
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Drucker’s Recent Result

Theorem (Drucker, 2013)

For any µ < 1, if there is an OPP algorithm which takes the
description of a 3-sat formula of length m as input and decides its
satisfiability with success probability at least 2−m

µ
, then

NP ⊆ coNP/poly

Paturi (S)ETH and A Survey of Consequences
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Other Connections

Hardest instances

Satisfiability and circuit lower bounds

· · ·

Paturi (S)ETH and A Survey of Consequences
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Open Problems

Assuming ETH or other suitable assumption, prove

a specific lower bound on s3

s∞ = 1 (SETH)

Assuming SETH, can we prove a 2n lower bound on
Colorability?

Are there better non-OPP algorithms for k-sat or
Circuit Sat?

Does there exist a c−n success probability OPP algorithm for
Hamiltonian Path?
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Thank You
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