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Lower Bounds for Depth-3 Circuits

Problem: Prove stronger exponential lower bounds for depth-3
OR-AND-OR (ΣΠΣ) circuits. Also for depth-3 ΣΠΣk circuits
with bottom fan-in bounded by k

What was known?
1 2c

√
n (for c < 1/8) for computing parity (Switching Lemma)

2 20.687
√
n for computing parity (Top-down method)

Parity can be computed by O(n
1
4 2
√
n) size depth-3 circuits of

bottom fan-in O(
√
n).

Better lower bounds?
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Connections to Other Circuit Models

Linear-size log-depth Boolean circuits of fan-in 2 −→ depth-3
circuits of size 2O(n/ log log n) and bottom fan-in no(1)

Linear-size log-depth series-parallel circuits −→∨
2O(n/ log d) linear size 2d -cnf

NC1 circuits of depth k log n −→ depth d + 1 unbounded
fan-in Boolean circuits of size 2n

k/d
and bottom fan-in nk/d
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A Lower Bound Problem

Prove that for a function in NP that it cannot be computed
by bottom fan-in k depth-3 circuits of size 2n/2 for any k

An even weaker open problem: proving a size lower bound of
22n/k on depth-3 circuits with bottom fan-in at most k . Or
proving a size lower bound of 22

√
n for depth-3 circuits

without any bottom fan-in restriction.

A more immediate challenge: prove a 2n/k size lower bound
for computing parity with depth-3 circuits of bottom fan-in k
and a 2

√
n size lower bound for circuits without any restriction

on bottom fan-in
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Satisfiability

Input: a formula or circuit F on n variables.

Check if F is satisfiable

Examples for F : k-cnf, cnf, formula, AC0 circuit, NC1

circuit, polynomial size circuit

Decidable in |F |2n time.

Can we improve upon the exhaustive search? Can we obtain a
|F |2n(1−µ) bound for µ > 0?

µ is a called the satisfiability savings. µ can be a function of
the parameters of the class of formulas/circuits and n, the
number of variables.

What is the savings for the class of k-cnf formulas?

Earlier (to 1997) results showed that µ is Ω(1/2k)
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A Top-Down Approach for ΣΠΣk Lower Bounds

Let C is a ΣΠΣk circuit with top fan-in s

Let C compute the parity function −→ one of the s k-cnfs
must accept at least Ω(2n/s) many inputs of odd parity and
accept no input of even parity.

Argue that a k-cnf cannot accept too many such inputs
while avoiding all inputs of even parity.
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Isolated Solutions

A satisfying solution for F is isolated if all its distance 1
neighbors are not solutions.

What is the maximum number of isolated solutions for a
k-cnf?

We show that this number is at most 2n(1−1/k)
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Critical Clauses

Let F be a k-cnf and x be an isolated satisfying solution of x .

For each variable i and isolated solution x , F must have a
clause with exactly one true literal corresponding to the
variable i at solution x .

Such clause is called a critical clause for the variable i at the
solution x .
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Compressing Isolated Satisfying Solutions

Let F be a k-cnf and σ a permutation of {1, · · · , n}.

Let x ∈ {0, 1}n be an isolated satisfying solution of F

Compression Function Fσ:
1 Permute the bits of x according to σ
2 For each i , delete the i ’th bit of x if all other variables in a

critical clause Cx,σ(i) (for the variable σ(i) at x ) occur before
the variable σ(i) in the order σ.

3 Fσ(x) is the resulting compressed string.
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Fσ is Lossless

We can recover x from y = Fσ(x), F , and σ.

Decompression Algorithm:

1 F1 = F
2 for i = 1, · · · , n
3 if Fi has a clause of length one with the variable σ(i),
4 then set the variable σ(i) so that the clause is true
5 else set the variable σ(i) to the next unused bit of y .
6 Fi+1 = substitute for σ(i) in F and simplify
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Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-cnf F , then its average (over all
permutations σ) compressed length |Fσ(x)| is at most n(1− 1/k).

Proof Sketch: For each variable i with a critical clause at x , the
probability (under a random permutation) i appears last among all
the variables in its critical clause is at least 1/k.

The compression algorithm deletes n/k bits on average.
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Maximum Number of Isolated Solutions

Lemma

A k-cnf can have at most 2n(1−1/k) isolated solutions.

Proof Sketch:

For every isolated solution, the average (over permutations)
compressed length is at most n − n/k

There exists a permutation such that the average (over all
isolated solutions) compressed length is at most n − n/k .

Hence, the number of isolated solutions is at most 2n(1−1/k)

using a convexity argument.

Fact

If Φ : S → {0, 1}∗ is a prefix-free encoding (one-to-one function)
with average code length l , the |S | ≤ 2l .
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Lower Bounds for Parity

Theorem

Computing the parity function requires 2n/k size ΣΠΣk circuits.

Theorem

Computing the parity function requires Ω(n1/42
√
n) size depth-3

circuits.
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Parity Lower Bound for General Depth-3 Circuits

Problem: clause lengths are not uniform.

Let Nl(x) be the number of critical clauses of length l at the
solution x .∑

l Nl(x) = n for an isolated solution x .

Define weight of x , w(x) =
∑n

i=1 1/|C(x ,i)| =
∑

l Nl(x)/l .

Argue that for a k-cnf F , the number of isolated solutions
with weight greater or equal to µ is at most 2n−µ.
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Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S | = 2n−1.

For each x ∈ S , there exists a cnf Fx accepting x and x is an
isolated solution of Fx .

Define the weight of x with respect to Fx .

Let µ =
√
n + log n

4

S1 ⊆ S be the set of x with w(x) ≥ µ. S2 = S − S1 be the
set of x with w(x) < µ,

Number of cnfs (level-2 AND gates) is at least |S1|2µ−n.

Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

A clause of length l can only be critical for at most l2n−l

solution-variable pairs (x , i).

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Lower Bound Proof

Hence, the number of clauses in all cnfs together must be at
least

n∑
l=1

∑
x∈S2

Nl(x)/(l2n−l) =
∑
x∈S2

n2−n
n∑

i=1

Nl(x)

n

2l

l

≥
∑
x∈S2

µ2−n+n/µ = |S2|µ2−n+n/µ

Total number of gates is at least |S1|2µ−n + |S2|µ2−n+n/µ.

Minimizing the count subject to the condition
|S1|+ |S2| = 2n−1 will yield the desired bound.
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k-sat Algorithm

Algorithm PPZ:

1 Let F be a k-cnf and σ a random permutation on variables
2 for i = 1, · · · , n
3 if there is a unit clause for the variable σ(i)
4 then set the variable σ(i) so that the clause true
5 else set the variable σ(i) randomly
6 Simplify F
7 if F is satisfied, output the assignment
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Analysis

Lemma

Algorithm PPZ outputs x with probability at least 1
n2−n+I (x)/k for

any satisfying solution x with I (x) many neighbors which are not
solutions.

Proof Sketch:

E1 — for at least I (x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

E2 — values assigned to the variables in the for loop agree
with x

P(E1) ≥ 1/n

P(E2|E1) ≥ 2−n+I (x)/k

P(x is output by PPZ) ≥ 1
n2−n+I (x)/k
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PPZ Analysis

Let S be the set of satisfying solutions of F .

For x ∈ S , define value(x) = 2−n+I (x)

Fact:
∑

x∈S value(x) ≥ 1

P(x is output by PPZ) ≥
∑
x∈S

1

n
2−n+I (x)/k

=
1

n
2−n+n/k

∑
x∈S

2(−n+I (x))/k

≥ 1

n
2−n+n/k
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Dense Case

Theorem

If S 6= ∅ is the set of satisfying solutions of a k-cnf F , then PPZ
finds a satisfying assignment with probability at least 1

n ( 2n

|S |)
(1−1/k)

Proof Sketch: Use the edge isoperimetric inequality for the
hypercube to conclude that among all sets S ⊆ {0, 1}n of a given
size, the subcube of dimension log |S | minimizes the number of
edges between S and S̄ .
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Further Improvements

PPZ analysis shows that on average we can expect to find
n/k unit clauses for an isolated solution z . Can we improve
the expected number of unit clauses?

PPZ argument only uses the fact that there is at least one
critical clause for each variable at z .

If there is more than one critical clause per variable we could
get a better bound. Let (x1 ∨ x̄2 ∨ x̄3) and (x1 ∨ x̄4 ∨ x̄5) be
critical clauses for x1 at z = 1n.

The probability that x1 is the last variable among the variables
in one of its critical clauses is now at least 7/15 rather than
1/3.

In general, even if z is the only solution, there need not be
more than one critical clause per variable.
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Further Improvements — Resolution

Let F contain the clauses C1 = (x1 ∨ x̄2 ∨ x̄3), critical for x1,
and C2 = (x2 ∨ x̄4 ∨ x̄5), critical for x2.

By resolution, we can derive another critical clause
(x1 ∨ x̄3 ∨ x̄4 ∨ x̄5) for x1. With two critical clauses for x1, we
can improve the probability of the occurrence of a unit clause
for x1.

Critical clauses alone will not suffice: instead of C2, if we have
C3 = (x2 ∨ x̄1 ∨ x̄4) as a critical clause for x2, resolution will
not help.

In fact, we cannot have any critical clause for x1 at z without
x̄2 in it if 001n−2 is also a satisfying solution.
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Further Improvements — d-isolation

We assume that z is d-isolated: no other satisfying solution
within Hamming distance d . We take d = ωn(1).

If 001n−2 is not a satisfying solution, there must be another
critical clause for x1 at z .

There must be an unsatisfied clause at 001n−2 involving the
literals x1 or x2. Let C4 = (x1 ∨ x2 ∨ x̄4) be such a clause.
Resolving C1 and C4, we get the critical clause (x1 ∨ x̄3 ∨ x̄4)
for x1 at z .

We also get another critical clause for x1 by considering the
nonsatisfying assignment 010nn−3.
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PPSZ Algorithm

A resolvable pair of clauses C1 and C2 is s-bounded, if |C1|,
|C2| ≤ s and |resolvent(C1,C2)| ≤ s.

Fs denote the closure of the k-cnf under s-bounded
resolution.

Improved k-sat algorithm: Apply PPZ algorithm to Fs .
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PPSZ Analysis

For a d-isolated solution, we need to estimate the expected
number of variables that appear last among the variables in
one of its critical clauses according to a random permutation.

Construct a critical clause tree for this calculation.

Cuts of the critical clause tree correspond to critical clauses

Calculate the probability that a variable occurs after a cut in
its critical clause tree using a recurrence relation.
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PPSZ Results

Lemma

Let z be a d-isolated solution of a k-cnf and s ≥ kd .

P( PPSZ outputs z) ≥ 2−(1− µk
k−1

+ε(d ,k))n.

Notes:

1 ε goes to 0 as d goes to infinity.

2

µk =
∞∑
j=1

1

j(j + 1/k)

3 µk increases with k and µ∞ = π2

6 = 1.644 · · ·
4 The number of d-isolated solutions of a k-cnf is at most

2(1− µk
k−1

+ε(d ,k))n.
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Improved Lower Bounds for Depth-3 Circuits

Theorem

Let E be an error-correcting code of minimum distance d > log n
and at least 2n−n/ log n code words. If C is a ΣΠΣk circuit
computing the characteristic function of E , then C has at least

2(
µk
k−1
−o(1))n gates.

Theorem

Let E be an error-correcting code of minimum distance d > log n
and at least 2n−

√
n/ log n code words. If C is a ΣΠΣ circuit

computing the characteristic function of E , then C has at least
21.282

√
n gates.
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PPSZ Algorithms for general k-cnf

If the k-cnf F has a d-isolated solution for d = ωn(1), then

it can be found in time 2n(1− µk
k−1
−o(1)) with constant success

probability.

For the general case, PPSZ obtains the same bound for k ≥ 5
and slightly weaker bounds for k = 3 and k = 4. The proof is
involved.

Recently, T. Hertli presented a simpler and nicer proof to
extend the PPSZ bound from the d-isolated case to the
general case for all k.
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How to Prove Stronger Lower Bounds for Depth-3 Circuits

Let C be a ΣΠΣk circuit of size s computing a balanced
function f . Think of as s = 2n−o(n).

Goal: to show that a ‘low complexity’ function f requires large
s.

Let F be a depth-2 subcircuit (k-cnf) such that
|F−1(1)| = Ω(2n/s) = Ω(2o(n)).

Let d be the VC-dimension of F−1(1).
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How to Prove Stronger Lower Bounds for Depth-3 Circuits

d ≥ log(2n/s)/ log n. Without loss of generality, assume that
the set {1, 2, · · · , d} is shattered when you view the elements
of F−1(1) as subsets of {1, 2, · · · , n}.

Select 2d inputs from F−1(1) of the form
yp1(y)p2(y) · · · p(n−d)(y) for each y ∈ {0, 1}d for some degree
d GF (2) polynomials pi in d variables. Call this set DF .

F is constant on DF . We argue that a random degree-2 GF(2)
polynomial is constant on D with probability at most 2−Ω(d2).
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How to Prove Stronger Lower Bounds for Depth-3 Circuits

We then want to argue that there is at least one degree 2
polynomial that is not constant on every DF .

The problem is that there are too many such sets DF (about

2O(nk )).
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Sparsification Lemma

Lemma (Sparsification Lemma, IPZ 1997)

∃ algorithm A ∀k ≥ 2, ε ∈ (0, 1], φ ∈ k-CNF with n variables,
Ak,ε(φ) outputs φ1, . . . , φs ∈ k-CNF in 2εn time such that

1 s ≤ 2εn; Sol(φ) =
⋃

i Sol(φi ), where Sol(φ) is the set of
satisfying assignments of φ

2 ∀i ∈ [s] each literal occurs ≤ O(kε )3k times in φi .
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Stronger Lower Bounds for Depth-3 Circuits

Theorem

Almost all degree 2 GF(2) polynomials require Ω(2n−o(n)) size
ΣΠΣk circuits for k = o(log n).

Proof Sketch:

1 Sparsify each of level-2 subcircuits to get an equivalent circuit
which is an OR of linear size k-cnf’s. The size only goes up
by a factor 2o(n).

2 There are only
(O(nk )
O(n)

)
≤ nO(n) many linear size k-cnfs.

3 We can now complete the previous counting argument.
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Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-cnf and ρ be a random restriction with pn unset
variables. Then

P( Decision tree height of F � ρ > t) ≤ (5pk)t

Notes:

1 A restriction ρ is a mapping from {1, 2, . . . , n} → {0, 1, ∗}. If
ρ(i) = ∗, then we say that variable i is unset.

2 F � ρ is the k-cnf obtained by restricting F to ρ.

3 Switching Lemma −→ strong correlation bounds for
approximating parity function by small depth circuits.

4 Switching Lemma −→ a satisfiability algorithm for small
depth circuits.

5 Requires a nontrivial extension of the Switching Lemma

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Switching Lemma
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Lemma (Håstad’s Switching Lemma)

Let F be a k-cnf and ρ be a random restriction with pn unset
variables. Then

P( Decision tree height of F � ρ > t) ≤ (5pk)t

Notes:

1 A restriction ρ is a mapping from {1, 2, . . . , n} → {0, 1, ∗}. If
ρ(i) = ∗, then we say that variable i is unset.

2 F � ρ is the k-cnf obtained by restricting F to ρ.

3 Switching Lemma −→ strong correlation bounds for
approximating parity function by small depth circuits.

4 Switching Lemma −→ a satisfiability algorithm for small
depth circuits.

5 Requires a nontrivial extension of the Switching Lemma

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Switching Lemma
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Small Depth Circuits and Satisfiability Algorithm

An (n,m, d)-circuit is a Boolean circuit on n variables with d
alternating layers of AND/OR gates where each layer has at
most m = cn gates.

An (n,m, d , k)-circuit is an (n,m, d)-circuit where each gate
at level d (bottom level) has fan-in bounded by k (instead of
limiting the number of gates at level d).

Theorem (Satisfiability Algorithm for Small Depth Circuits)

There is a Las Vegas algorithm for deciding the satisfiability of an
(n, cn, d)-circuit C with expected time at most
poly(n)|C |2n(1−µc,d ), where the savings

µc,d ≥
1

(O(log c + d log d))d−1
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Correlation

Let f and g be two Boolean functions on n variables. Let
q = Px∈{0,1}n(f (x) = g(x))

The correlation between f and g is defined as
Cor(f , g) = 2q − 1.

If F is a class of Boolean functions, we define the correlation
between f and F as Cor(f ,F) =
maximum correlation between f and some function g ∈ F .

If F is closed under complementation, then
0 ≤ Cor(f ,F) ≤ 1.
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Correlation Bounds for Small Depth Circuits

Theorem

The correlation of parity with any (n,m, d)-circuit is at most

2−µc,dn = 2−n/(O(log c+d log d))d−1

1 For linear size circuits where c and d are constants, the
savings µ is constant and the correlation bound 2−Θ(n) is
strongly exponential.

2 Nontrivial savings and correlation bounds for circuit of size up
to 2O(n1/(d−1)).
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Further Improvements could be Hard

If the satisfiability of an (n,m, d)-circuit can be decided in

time 2
n(1− 1

O(log m)o(d)
)
, then NEXP ( NC1.
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Partitions

A set of functions g1, . . . , gl : {0, 1}n → {0, 1} partitions
{0, 1}n if (g−1

i (1))1≤i≤l is a partition of {0, 1}n.

The i ’th region of the partition is g−1
i (1). We identify the

region with the function gi .

gi are of the form G ∧ ρ, where G is k-cnf and ρ a
restriction. We denote the region R by (G , ρ).

Two circuits are equivalent in a region R if R =⇒ (C ≡ D).

A set P = {(Ri = (Gi , ρi ),Ci )} is a partitioning for a circuit
C if Ri partition {0, 1}n and Ci is equivalent to C in region
Ri for all i .
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Canonical Decision Tree

height(T ) of a decision tree T is the length of the longest
path.

Canonical decision tree tree(F ) for a cnf F is as follows:
1 Fix an ordering of clauses in F
2 If a clause is empty, return 0
3 If there are no clauses, return 1
4 Let C be the first clause. Query the variables in C in order
5 Restrict F based on the query results and recurse.
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Canonical Decision Tree for a Sequence of Formulas

Canonical decision tree tree(Φ) for a sequence of (F1, . . . ,Fl)
of cnf’s is as follows:

1 First construct the canonical decision tree for F1.
2 Along each path, restrict F2, . . . ,Fl by the results of queries

and recurse.
3 Label the leaves with the tuples of the leaves from each of the

trees.

We say that a clause contributes variables to a path if any
variable in the clause are queried when the clause gets its turn.
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Extended Switching Lemma

Lemma (Extended Switching Lemma)

Let Φ = (F1, . . . ,Fm) be a sequence of k-cnf’s (or k-dnf’s) on n
variables. For p ≤ 1/13, let ρ be a random restriction that leaves
pn variables unset. The probability that the decision tree for Φ has
a path of length > t where each Fi contributes at least one node
to the path is at most (13pk)t .

Paturi Properties of k-cnf



Introduction Satisfiability Coding Lemma Sparsification Lemma Switching Lemma

Switching Algorithm

Lemma (Switching Algorithm)

Let Φ = (F1, . . . ,Fm) be a sequence of k-dnf’s on n variables.
There exits a randomized algorithm which takes Φ as input and
outputs a partitioning P = {(Ri ,Ci )}1≤i≤s for Φ such that Ci are
k-cnf’s in at most n/100k variables, and with high probability

1 s ≤ 2n
100k 2n−

n
100k

+3−km

2 the algorithm runs in time at most poly(n)size(Φ)s.
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Algorithm for Depth-3 Circuits

Satisfiability Algorithm for (n,m = cn, 3)-circuits

(AND-OR-AND) running in time 2
n(1− 1

O(log c)2 )
.

Reduce the (n,m, 3)-circuit to a small family of
(n,m, 3, k)-circuits C where k = O(log c). Overhead is
minimal.

Apply the Switching Algorithm to the family of
Φ = (F1, . . . ,Fm) k-dnf’s to obtain a partitioning into about

2n(1− 1
100k

) regions where Φ is equivalent to a sequence of
k-cnf’s in at most n/100k variables and each region is
defined by a k-cnf in the same set of variables.

For each region, collapse the levels to obtain a single k-cnf
and take the conjunction with the defining k-cnf of the
region.

Apply a k-sat algorithm to each k-cnf.
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