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@ Circuit Lower Bounds
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Lower Bounds for Depth-3 Circuits

@ Problem: Prove stronger exponential lower bounds for depth-3
OR-AND-OR (XMX) circuits. Also for depth-3 XX circuits
with bottom fan-in bounded by k
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@ Problem: Prove stronger exponential lower bounds for depth-3
OR-AND-OR (XMX) circuits. Also for depth-3 XX circuits
with bottom fan-in bounded by k

@ What was known?

@ 2°V" (for ¢ < 1/8) for computing parity (Switching Lemma)
@ 20687V for computing parity (Top-down method)

@ Parity can be computed by O(n%2\/5) size depth-3 circuits of

bottom fan-in O(/n).
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Introduction

Lower Bounds for Depth-3 Circuits

Problem: Prove stronger exponential lower bounds for depth-3
OR-AND-OR (XMX) circuits. Also for depth-3 XX circuits
with bottom fan-in bounded by k
What was known?
@ 2V (for ¢ < 1/8) for computing parity (Switching Lemma)
@ 20687V for computing parity (Top-down method)

Parity can be computed by O(n%2\/5) size depth-3 circuits of
bottom fan-in O(/n).

Better lower bounds?
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Connections to Other Circuit Models

@ Linear-size log-depth Boolean circuits of fan-in 2 — depth-3
circuits of size 20(7/10glogn) and bottom fan-in n°(1)
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o Linear-size log-depth series-parallel circuits —
/501054y linear size 29-CNF
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Introduction
Connections to Other Circuit Models

@ Linear-size log-depth Boolean circuits of fan-in 2 — depth-3
circuits of size 20(7/10glogn) and bottom fan-in n°(1)

o Linear-size log-depth series-parallel circuits —
/501054y linear size 29-CNF

e NC! circuits of depth klog n —> depth d + 1 unbounded
fan-in Boolean circuits of size 2"¢ and bottom fan-in nk/d
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Introduction
A Lower Bound Problem

@ Prove that for a function in NP that it cannot be computed
by bottom fan-in k depth-3 circuits of size 2"/2 for any k
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Introduction
A Lower Bound Problem

@ Prove that for a function in NP that it cannot be computed
by bottom fan-in k depth-3 circuits of size 2"/2 for any k

@ An even weaker open problem: proving a size lower bound of
221/k on depth-3 circuits with bottom fan-in at most k. Or
proving a size lower bound of 22V™ for depth-3 circuits
without any bottom fan-in restriction.

Paturi Properties of k-CNF



Introduction
A Lower Bound Problem

@ Prove that for a function in NP that it cannot be computed
by bottom fan-in k depth-3 circuits of size 2"/2 for any k

@ An even weaker open problem: proving a size lower bound of
221/k on depth-3 circuits with bottom fan-in at most k. Or
proving a size lower bound of 22V™ for depth-3 circuits
without any bottom fan-in restriction.

@ A more immediate challenge: prove a 2"/ size lower bound
for computing parity with depth-3 circuits of bottom fan-in k
and a 2V size lower bound for circuits without any restriction
on bottom fan-in
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Satisfiability

@ Input: a formula or circuit F on n variables.
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Satisfiability

Input: a formula or circuit F on n variables.
Check if F is satisfiable

Examples for F : k-CNF, CNF, formula, ACP circuit, NC!
circuit, polynomial size circuit

Decidable in |F|2" time.
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Satisfiability

Input: a formula or circuit F on n variables.

Check if F is satisfiable

Examples for F : k-CNF, CNF, formula, ACP circuit, NC!
circuit, polynomial size circuit

Decidable in |F|2" time.

Can we improve upon the exhaustive search? Can we obtain a
|F|2"(*=#) bound for y > 07
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Satisfiability

@ Input: a formula or circuit F on n variables.

@ Check if F is satisfiable

@ Examples for F : k-CNF, CNF, formula, ACP circuit, NC!
circuit, polynomial size circuit

e Decidable in |F|2" time.

@ Can we improve upon the exhaustive search? Can we obtain a
|F|2"(*=#) bound for y > 07

@ 1 is a called the satisfiability savings. u can be a function of
the parameters of the class of formulas/circuits and n, the
number of variables.
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the parameters of the class of formulas/circuits and n, the
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Introduction
Satisfiability

@ Input: a formula or circuit F on n variables.

@ Check if F is satisfiable

@ Examples for F : k-CNF, CNF, formula, ACP circuit, NC!
circuit, polynomial size circuit

e Decidable in |F|2" time.
@ Can we improve upon the exhaustive search? Can we obtain a
|F|2"(*=#) bound for y > 07

@ 1 is a called the satisfiability savings. u can be a function of
the parameters of the class of formulas/circuits and n, the
number of variables.

@ What is the savings for the class of k-CNF formulas?
o Earlier (to 1997) results showed that y is Q(1/2%)
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A Top-Down Approach for XI1%, Lower Bounds

o Let Cis a XX circuit with top fan-in s
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Introduction

A Top-Down Approach for XI1%, Lower Bounds

o Let Cis a XX circuit with top fan-in s

@ Let C compute the parity function — one of the s k-CNFs
must accept at least (2"/s) many inputs of odd parity and
accept no input of even parity.
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Introduction

A Top-Down Approach for XI1%, Lower Bounds

o Let Cis a XX circuit with top fan-in s

@ Let C compute the parity function — one of the s k-CNFs
must accept at least (2"/s) many inputs of odd parity and
accept no input of even parity.

@ Argue that a k-CNF cannot accept too many such inputs
while avoiding all inputs of even parity.
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Satisfiability Coding Lemma
Isolated Solutions

@ A satisfying solution for F is isolated if all its distance 1
neighbors are not solutions.
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@ A satisfying solution for F is isolated if all its distance 1
neighbors are not solutions.

@ What is the maximum number of isolated solutions for a
k-CNF?
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Satisfiability Coding Lemma
Isolated Solutions

@ A satisfying solution for F is isolated if all its distance 1
neighbors are not solutions.

@ What is the maximum number of isolated solutions for a
k-CNF?

@ We show that this number is at most 27(1=1/k)
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Satisfiability Coding Lemma

Critical Clauses

@ Let F be a k-CNF and x be an isolated satisfying solution of x.
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Critical Clauses

@ Let F be a k-CNF and x be an isolated satisfying solution of x.

@ For each variable i and isolated solution x, F must have a
clause with exactly one true literal corresponding to the
variable / at solution x.

Paturi Properties of k-CNF



Satisfiability Coding Lemma

Critical Clauses

@ Let F be a k-CNF and x be an isolated satisfying solution of x.

@ For each variable i and isolated solution x, F must have a
clause with exactly one true literal corresponding to the
variable / at solution x.

@ Such clause is called a critical clause for the variable i at the
solution x.
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Satisfiability Coding Lemma

Compressing Isolated Satisfying Solutions

@ Let F be a k-CNF and ¢ a permutation of {1,--- , n}.
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@ Let x € {0,1}" be an isolated satisfying solution of F
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Compressing Isolated Satisfying Solutions

@ Let F be a k-CNF and ¢ a permutation of {1,--- , n}.

@ Let x € {0,1}" be an isolated satisfying solution of F
@ Compression Function F,:
@ Permute the bits of x according to o
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Satisfiability Coding Lemma

Compressing Isolated Satisfying Solutions

@ Let F be a k-CNF and ¢ a permutation of {1,---, n}.
@ Let x € {0,1}" be an isolated satisfying solution of F

@ Compression Function F,:

@ Permute the bits of x according to o

@ For each i/, delete the i'th bit of x if all other variables in a
critical clause C, oy (for the variable o (i) at x ) occur before
the variable o (/) in the order o.
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Satisfiability Coding Lemma

Compressing Isolated Satisfying Solutions

@ Let F be a k-CNF and ¢ a permutation of {1,--- , n}.

@ Let x € {0,1}" be an isolated satisfying solution of F
@ Compression Function F,:
@ Permute the bits of x according to o
@ For each i/, delete the i'th bit of x if all other variables in a
critical clause C, oy (for the variable o (i) at x ) occur before
the variable o (/) in the order o.
© F,(x) is the resulting compressed string.
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Satisfiability Coding Lemma

F. is Lossless

e We can recover x from y = F,(x), F, and o.
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Satisfiability Coding Lemma

F. is Lossless

e We can recover x from y = F,(x), F, and o.

@ Decompression Algorithm:

Fi=F
for i=1,---,n
if F; has a clause of length one with the variable o(/),
then set the variable o(/) so that the clause is true
else set the variable o (i) to the next unused bit of y.
Fi+1 = substitute for o(i) in F and simplify

SOl W N
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Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all
permutations o ) compressed length |F,(x)| is at most n(1 — 1/k).

Proof Sketch: For each variable i with a critical clause at x, the
probability (under a random permutation) i appears last among all
the variables in its critical clause is at least 1/k.
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Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all
permutations o ) compressed length |F,(x)| is at most n(1 — 1/k).

Proof Sketch: For each variable i with a critical clause at x, the
probability (under a random permutation) i appears last among all
the variables in its critical clause is at least 1/k.

The compression algorithm deletes n/k bits on average.
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Satisfiability Coding Lemma

Maximum Number of Isolated Solutions

A k-CNF can have at most 2"(1=1/k) isolated solutions.

Proof Sketch:

@ For every isolated solution, the average (over permutations)
compressed length is at most n — n/k
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Satisfiability Coding Lemma

Maximum Number of Isolated Solutions

A k-CNF can have at most 2"(1=1/k) isolated solutions.

Proof Sketch:

@ For every isolated solution, the average (over permutations)
compressed length is at most n — n/k

@ There exists a permutation such that the average (over all
isolated solutions) compressed length is at most n — n/k.
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Satisfiability Coding Lemma

Maximum Number of Isolated Solutions

A k-CNF can have at most 2"(1=1/k) isolated solutions.

Proof Sketch:

@ For every isolated solution, the average (over permutations)
compressed length is at most n — n/k

@ There exists a permutation such that the average (over all
isolated solutions) compressed length is at most n — n/k.

@ Hence, the number of isolated solutions is at most on(1-1/k)
using a convexity argument.
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Satisfiability Coding Lemma

Maximum Number of Isolated Solutions

A k-CNF can have at most 2"(1=1/k) isolated solutions.

Proof Sketch:

@ For every isolated solution, the average (over permutations)
compressed length is at most n — n/k

@ There exists a permutation such that the average (over all
isolated solutions) compressed length is at most n — n/k.

@ Hence, the number of isolated solutions is at most on(1-1/k)
using a convexity argument.

If®:S — {0,1}* is a prefix-free encoding (one-to-one function)
with average code length I, the |S| < 2'.
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Satisfiability Coding Lemma

Lower Bounds for Parity

Computing the parity function requires 2"/ size Y1Y circuits.
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Satisfiability Coding Lemma

Lower Bounds for Parity

Computing the parity function requires 2"/ size Y1Y circuits. \

Computing the parity function requires Q(n*/*2V™) size depth-3
circuits.
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Satisfiability Coding Lemma

Parity Lower Bound for General Depth-3 Circuits

@ Problem: clause lengths are not uniform.
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@ Let Nj(x) be the number of critical clauses of length / at the
solution x.
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Parity Lower Bound for General Depth-3 Circuits

@ Problem: clause lengths are not uniform.

@ Let Nj(x) be the number of critical clauses of length / at the
solution x.

@ >, Ni(x) = n for an isolated solution x.
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Satisfiability Coding Lemma

Parity Lower Bound for General Depth-3 Circuits

@ Problem: clause lengths are not uniform.

@ Let Nj(x) be the number of critical clauses of length / at the
solution x.

@ >, Ni(x) = n for an isolated solution x.
o Define weight of x, w(x) = Y771 1/|Cxpl = 22, Ni(x) /1.
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Satisfiability Coding Lemma

Parity Lower Bound for General Depth-3 Circuits

Problem: clause lengths are not uniform.

Let N;(x) be the number of critical clauses of length / at the
solution x.

>~ Ni(x) = n for an isolated solution x.

Define weight of x, w(x) = >77_; 1/|Cupl = 22, Ni(x) /1.
Argue that for a k-CNF F, the number of isolated solutions
with weight greater or equal to u is at most 2"+,
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Satisfiability Coding Lemma

Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,
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of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.
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Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.

@ Define the weight of x with respect to F.
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Satisfiability Coding Lemma
Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.

@ Define the weight of x with respect to F.
o Let u=+/n+ IOE”
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Satisfiability Coding Lemma
Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.

@ Define the weight of x with respect to F.

o Llet u=+/n+ IOE”

@ 51 C S be the set of x with w(x) > pu. Sp =S — 51 be the
set of x with w(x) < p,
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Satisfiability Coding Lemma
Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.

@ Define the weight of x with respect to F.

o Llet u=+/n+ IOE”

@ 51 C S be the set of x with w(x) > pu. Sp =S — 51 be the
set of x with w(x) < p,

@ Number of CNFs (level-2 AND gates) is at least |S1[2#7".

Paturi Properties of k-CNF



Satisfiability Coding Lemma
Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.

@ Define the weight of x with respect to F.

o Let pu=+/n+ IOE”

@ 51 C S be the set of x with w(x) > pu. Sp =S — 51 be the
set of x with w(x) < p,

@ Number of CNFs (level-2 AND gates) is at least |S1[2#7".

@ Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.
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Satisfiability Coding Lemma
Lower Bound Proof

@ Consider a depth-3 circuit computing parity. Let S be the set
of odd inputs accepted by the circuit. |S| =21,

@ For each x € S, there exists a CNF F, accepting x and x is an
isolated solution of F,.

@ Define the weight of x with respect to F.

o Let pu=+/n+ IOE”

@ 51 C S be the set of x with w(x) > pu. Sp =S — 51 be the
set of x with w(x) < p,

@ Number of CNFs (level-2 AND gates) is at least |S1[2#7".

@ Many clauses (level-1 OR gates) are needed to accept
low-weighted isolated solutions.

@ A clause of length / can only be critical for at most /2"~
solution-variable pairs (x, /).
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Satisfiability Coding Lemma

Lower Bound Proof

@ Hence, the number of clauses in all CNFs together must be at
least
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Satisfiability Coding Lemma

Lower Bound Proof

@ Hence, the number of clauses in all CNFs together must be at

least
En: 3 N/ =3 n2 Z Ni(x) 2
I=1 x€S5; / XESy i=1 l
> Z Iul2fn+n/,u _ |52|M27n+n/,u
X€ESy
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Satisfiability Coding Lemma

Lower Bound Proof

@ Hence, the number of clauses in all CNFs together must be at

least
En: 3 N/ =3 n2 Z Ni(x) 2
I=1 x€S5; / XESy i=1 l
> Z Iul2fn+n/,u _ |52|M27n+n/,u
X€ESy

o Total number of gates is at least |S;[24~" 4 |Sy| 2~ "+7/1.
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Satisfiability Coding Lemma
Lower Bound Proof

@ Hence, the number of clauses in all CNFs together must be at

least
En: 3 N/ =3 n2 Z Ni(x) 2
I=1 x€S5; / XESy i=1 l
> Z Iul2fn+n/,u _ |52|M27n+n/,u
X€ESy

o Total number of gates is at least |S;[24~" 4 |Sy| 2~ "+7/1.

@ Minimizing the count subject to the condition
|S1] + |S2| = 2771 will yield the desired bound.
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Satisfiability Coding Lemma

k-SAT Algorithm

Algorithm PPZ:

Let F be a k-CNF and o a random permutation on variables
fori=1,---,n
if there is a unit clause for the variable o (/)
then set the variable (/) so that the clause true
else set the variable o (i) randomly
Simplify F
if F is satisfied, output the assignment

~No ok N -
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Satisfiability Coding Lemma
Analysis

Algorithm PPZ outputs x with probability at least 2="+10)/k for
any satisfying solution x with I(x) many neighbors which are not
solutions.
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any satisfying solution x with I(x) many neighbors which are not
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Proof Sketch:

e E; — for at least /(x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause
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any satisfying solution x with I(x) many neighbors which are not
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e E; — for at least /(x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

@ £, — values assigned to the variables in the for loop agree
with x
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Satisfiability Coding Lemma
Analysis

Algorithm PPZ outputs x with probability at least 2="+10)/k for
any satisfying solution x with I(x) many neighbors which are not
solutions.

Proof Sketch:

e E; — for at least /(x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

@ £, — values assigned to the variables in the for loop agree
with x

o P(E)>1/n
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Satisfiability Coding Lemma
Analysis

Algorithm PPZ outputs x with probability at least 2="+10)/k for
any satisfying solution x with I(x) many neighbors which are not
solutions.

Proof Sketch:

e E; — for at least /(x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

@ £, — values assigned to the variables in the for loop agree
with x

o P(E1) > 1/n
° P(E2|E1) > 2—n+/(x)/k
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Satisfiability Coding Lemma
Analysis

Algorithm PPZ outputs x with probability at least 2="+10)/k for
any satisfying solution x with I(x) many neighbors which are not
solutions.

Proof Sketch:

e E; — for at least /(x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

@ £, — values assigned to the variables in the for loop agree
with x

e P(E;)>1/n
° P(E2|E1) > 2—n+/(x)/k
e P(x is output by PPZ) > %2—”+/(X)/k
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Satisfiability Coding Lemma

PPZ Analysis

@ Let S be the set of satisfying solutions of F.
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Satisfiability Coding Lemma

PPZ Analysis

@ Let S be the set of satisfying solutions of F.
e For x € S, define value(x) = o—n+(x)

Paturi Properties of k-CNF



Satisfiability Coding Lemma

PPZ Analysis

@ Let S be the set of satisfying solutions of F.
e For x € S, define value(x) = o—n+(x)
o Fact: ¥, value(x) > 1
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Satisfiability Coding Lemma

PPZ Analysis

Let S be the set of satisfying solutions of F.
For x € S, define value(x) = o—n+l(x)
Fact: > g value(x) > 1

1
P(x is output by PPZ) > Z —o—rmHl(x)/k
n
x€S
1
— Zp—ntn/k (=n+1(x))/k
. 2.2
xe€S
> E2fn+n/k
n
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Satisfiability Coding Lemma
Dense Case

If S # 0 is the set of satisfying solutions of a k-CNF F, then PPZ
finds a satisfying assignment with probability at least %(%)(1*1/ )
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Satisfiability Coding Lemma
Dense Case

If S # 0 is the set of satisfying solutions of a k-CNF F, then PPZ
finds a satisfying assignment with probability at least %(%)(1*1/ )

Proof Sketch: Use the edge isoperimetric inequality for the
hypercube to conclude that among all sets S C {0,1}" of a given
size, the subcube of dimension log|S| minimizes the number of
edges between S and S.
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Satisfiability Coding Lemma

Further Improvements

@ PPZ analysis shows that on average we can expect to find
n/k unit clauses for an isolated solution z. Can we improve
the expected number of unit clauses?
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Further Improvements

@ PPZ analysis shows that on average we can expect to find
n/k unit clauses for an isolated solution z. Can we improve
the expected number of unit clauses?

@ PPZ argument only uses the fact that there is at least one
critical clause for each variable at z.
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Satisfiability Coding Lemma

Further Improvements

@ PPZ analysis shows that on average we can expect to find
n/k unit clauses for an isolated solution z. Can we improve
the expected number of unit clauses?

@ PPZ argument only uses the fact that there is at least one
critical clause for each variable at z.

@ If there is more than one critical clause per variable we could
get a better bound. Let (x3 VX2 V x3) and (x1 V X3 V X35) be
critical clauses for x; at z = 1".
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Satisfiability Coding Lemma

Further Improvements

@ PPZ analysis shows that on average we can expect to find
n/k unit clauses for an isolated solution z. Can we improve
the expected number of unit clauses?

@ PPZ argument only uses the fact that there is at least one
critical clause for each variable at z.

@ If there is more than one critical clause per variable we could
get a better bound. Let (x3 VX2 V x3) and (x1 V X3 V X35) be
critical clauses for x; at z = 1".

@ The probability that x; is the last variable among the variables
in one of its critical clauses is now at least 7/15 rather than
1/3.
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Satisfiability Coding Lemma

Further Improvements

@ PPZ analysis shows that on average we can expect to find
n/k unit clauses for an isolated solution z. Can we improve
the expected number of unit clauses?

@ PPZ argument only uses the fact that there is at least one
critical clause for each variable at z.

@ If there is more than one critical clause per variable we could
get a better bound. Let (x3 VX2 V x3) and (x1 V X3 V X35) be
critical clauses for x; at z = 1".

@ The probability that x; is the last variable among the variables
in one of its critical clauses is now at least 7/15 rather than
1/3.

@ In general, even if z is the only solution, there need not be
more than one critical clause per variable.
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Satisfiability Coding Lemma

Further Improvements — Resolution

@ Let F contain the clauses C; = (x1 V X2 V X3), critical for x,
and & = (x2 V X3 V X3), critical for xa.
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Satisfiability Coding Lemma

Further Improvements — Resolution

@ Let F contain the clauses C; = (x1 V X2 V X3), critical for x,
and & = (x2 V X3 V X3), critical for xa.

@ By resolution, we can derive another critical clause
(x1 VX3V XV Xs) for x;. With two critical clauses for xq, we
can improve the probability of the occurrence of a unit clause
for xq.
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Satisfiability Coding Lemma

Further Improvements — Resolution

@ Let F contain the clauses C; = (x1 V X2 V X3), critical for x,
and & = (x2 V X3 V X3), critical for xa.

@ By resolution, we can derive another critical clause
(x1 VX3V XV Xs) for x;. With two critical clauses for xq, we
can improve the probability of the occurrence of a unit clause
for xq.

@ Critical clauses alone will not suffice: instead of (,, if we have
C3 = (x2 VX1V xa) as a critical clause for xz, resolution will
not help.

Paturi Properties of k-CNF



Satisfiability Coding Lemma

Further Improvements — Resolution

@ Let F contain the clauses C; = (x1 V X2 V X3), critical for x,
and & = (x2 V X3 V X3), critical for xa.

@ By resolution, we can derive another critical clause
(x1 VX3V XV Xs) for x;. With two critical clauses for xq, we
can improve the probability of the occurrence of a unit clause
for xq.

@ Critical clauses alone will not suffice: instead of (,, if we have
C3 = (x2 VX1V xa) as a critical clause for xz, resolution will
not help.

@ In fact, we cannot have any critical clause for x; at z without
X in it if 00172 is also a satisfying solution.
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Satisfiability Coding Lemma

Further Improvements — d-isolation

@ We assume that z is d-isolated: no other satisfying solution
within Hamming distance d. We take d = wp(1).
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Satisfiability Coding Lemma

Further Improvements — d-isolation

@ We assume that z is d-isolated: no other satisfying solution
within Hamming distance d. We take d = wp(1).

@ If 00172 is not a satisfying solution, there must be another
critical clause for x; at z.
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Satisfiability Coding Lemma

Further Improvements — d-isolation

@ We assume that z is d-isolated: no other satisfying solution
within Hamming distance d. We take d = wp(1).

@ If 00172 is not a satisfying solution, there must be another
critical clause for x; at z.

@ There must be an unsatisfied clause at 001"~2 involving the
literals x1 or xa. Let C4 = (x1 V x2 V X3) be such a clause.

Resolving C; and G4, we get the critical clause (x1 V X3 V Xa)
for x; at z.
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Satisfiability Coding Lemma

Further Improvements — d-isolation

@ We assume that z is d-isolated: no other satisfying solution
within Hamming distance d. We take d = wp(1).

@ If 00172 is not a satisfying solution, there must be another
critical clause for x; at z.

@ There must be an unsatisfied clause at 001"~2 involving the
literals x1 or xa. Let C4 = (x1 V x2 V X3) be such a clause.
Resolving C; and G4, we get the critical clause (x1 V X3 V Xa)
for x; at z.

@ We also get another critical clause for x; by considering the
nonsatisfying assignment 010n" 3.
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Satisfiability Coding Lemma

PPSZ Algorithm

@ A resolvable pair of clauses C; and G, is s-bounded, if |G|,
|G| < s and |resolvent(Cy, )| < 's.
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Satisfiability Coding Lemma

PPSZ Algorithm

@ A resolvable pair of clauses C; and G, is s-bounded, if |G|,
|G| < s and |resolvent(Cy, )| < 's.

@ F5 denote the closure of the k-CNF under s-bounded
resolution.
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Satisfiability Coding Lemma

PPSZ Algorithm

@ A resolvable pair of clauses C; and G, is s-bounded, if |G|,
|G| < s and |resolvent(Cy, )| < 's.

@ F5 denote the closure of the k-CNF under s-bounded
resolution.

@ Improved k-SAT algorithm: Apply PPZ algorithm to Fs.
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Satisfiability Coding Lemma

PPSZ Analysis

@ For a d-isolated solution, we need to estimate the expected
number of variables that appear last among the variables in
one of its critical clauses according to a random permutation.

Paturi Properties of k-CNF



Satisfiability Coding Lemma

PPSZ Analysis

@ For a d-isolated solution, we need to estimate the expected
number of variables that appear last among the variables in
one of its critical clauses according to a random permutation.

@ Construct a critical clause tree for this calculation.
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Satisfiability Coding Lemma

PPSZ Analysis

@ For a d-isolated solution, we need to estimate the expected
number of variables that appear last among the variables in
one of its critical clauses according to a random permutation.

@ Construct a critical clause tree for this calculation.

@ Cuts of the critical clause tree correspond to critical clauses
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Satisfiability Coding Lemma

PPSZ Analysis

@ For a d-isolated solution, we need to estimate the expected
number of variables that appear last among the variables in
one of its critical clauses according to a random permutation.

@ Construct a critical clause tree for this calculation.
@ Cuts of the critical clause tree correspond to critical clauses

@ Calculate the probability that a variable occurs after a cut in
its critical clause tree using a recurrence relation.
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Satisfiability Coding Lemma

PPSZ Results

Let z be a d-isolated solution Efa k-CNF and s > k9.
P( PPSZ outputs z) > P G
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Satisfiability Coding Lemma

PPSZ Results

Let z be a d-isolated solution Efa k-CNF and s > k9.
k
P( PPSZ outputs z) > 2~ (1= +e(d)n,

Notes:
Q ¢ goes to 0 as d goes to infinity.
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Satisfiability Coding Lemma

PPSZ Results

Let z be a d-isolated solution Efa k-CNF and s > k9.
k
P( PPSZ outputs z) > 2~ (1= +e(d)n,

Notes:
Q ¢ goes to 0 as d goes to infinity.

[e.9]

1
e = Zj(j +1/k)

j=1
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Satisfiability Coding Lemma

PPSZ Results

Let z be a d-isolated solution Efa k-CNF and s > k9.
k
P( PPSZ outputs z) > 2~ (1= +e(d)n,

Notes:
Q ¢ goes to 0 as d goes to infinity.

> 1
e = Zj(j +1/k)

Jj=1

. . 2
© Lk increases with k and 1o = 5 = 1.644 - -
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Satisfiability Coding Lemma

PPSZ Results

Let z be a d-isolated solution Efa k-CNF and s > k9.
k
P( PPSZ outputs z) > 2~ (1= +e(d)n,

Notes:
Q ¢ goes to 0 as d goes to infinity.
(2]

[e.9]

1
= L S IR

Jj=1

. . 2
© Lk increases with k and 1o = 5 = 1.644 - -

@ The number of d-isolated solutions of a k-CNF is at most
2(1—%+e(d,k))n
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Satisfiability Coding Lemma

Improved Lower Bounds for Depth-3 Circuits

Let E be an error-correcting code of minimum distance d > log n
and at least 2"~"/1°81 code words. If C is a YMY circuit
computing the characteristic function of E, then C has at least

2 —e()n gates.
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Satisfiability Coding Lemma

Improved Lower Bounds for Depth-3 Circuits

Theorem

Let E be an error-correcting code of minimum distance d > log n
and at least 2"~"/1°81 code words. If C is a YMY circuit
computing the characteristic function of E, then C has at least

ol —e()n gates.

Theorem

| \

Let E be an error-correcting code of minimum distance d > log n
and at least 2"~V1/1°g" code words. If C is a LMY circuit

computing the characteristic function of E, then C has at least
21282V gates,
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Satisfiability Coding Lemma

PPSZ Algorithms for general k-CNF

o If the k-CNF F has a d-isolated solution for d = w,(1), then

1—

) o e .
it can be found in time 2"~ %17°M) with constant success

probability.
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Satisfiability Coding Lemma

PPSZ Algorithms for general k-CNF

o If the k-CNF F has a d-isolated solution for d = w,(1), then

o .
1=:=17°(M) with constant success

it can be found in time 2"
probability.

@ For the general case, PPSZ obtains the same bound for kK > 5
and slightly weaker bounds for k = 3 and k = 4. The proof is

involved.
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Satisfiability Coding Lemma

PPSZ Algorithms for general k-CNF

o If the k-CNF F has a d-isolated solution for d = w,(1), then

o .
(1=2=17°(1) \ith constant success

it can be found in time 2"
probability.

@ For the general case, PPSZ obtains the same bound for kK > 5
and slightly weaker bounds for k = 3 and k = 4. The proof is
involved.

@ Recently, T. Hertli presented a simpler and nicer proof to
extend the PPSZ bound from the d-isolated case to the

general case for all k.
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

o Let C be a XX circuit of size s computing a balanced
function f. Think of as s = 2n—°(n),
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

o Let C be a XX circuit of size s computing a balanced
function f. Think of as s = 2n—°(n),

@ Goal: to show that a ‘low complexity' function f requires large
s.
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

o Let C be a XX circuit of size s computing a balanced
function f. Think of as s = 2n—°(n),

@ Goal: to show that a ‘low complexity' function f requires large
s.

@ Let F be a depth-2 subcircuit (k-CNF) such that
[FH1)] = Q(2"/s) = Q(2°).
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

o Let C be a XX circuit of size s computing a balanced
function f. Think of as s = 2n—°(n),

@ Goal: to show that a ‘low complexity' function f requires large
s.

@ Let F be a depth-2 subcircuit (k-CNF) such that
[FH1)] = Q(2"/s) = Q(2°).
o Let d be the VC-dimension of F~1(1).
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

e d > log(2"/s)/log n. Without loss of generality, assume that
the set {1,2,---,d} is shattered when you view the elements
of F~1(1) as subsets of {1,2,---, n}.
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

e d > log(2"/s)/log n. Without loss of generality, assume that
the set {1,2,---,d} is shattered when you view the elements
of F~1(1) as subsets of {1,2,---, n}.

o Select 2¢ inputs from F~1(1) of the form

yp1(y)p2(y) - - P(n—a)(y) for each y € {0,1}¢ for some degree
d GF(2) polynomials p; in d variables. Call this set Df.
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

e d > log(2"/s)/log n. Without loss of generality, assume that
the set {1,2,---,d} is shattered when you view the elements
of F~1(1) as subsets of {1,2,---, n}.

o Select 2¢ inputs from F~1(1) of the form

yp1(y)p2(y) - - P(n—a)(y) for each y € {0,1}¢ for some degree
d GF(2) polynomials p; in d variables. Call this set Df.

@ F is constant on Dg. We argue that a random degree-2 GF(2)
polynomial is constant on D with probability at most 2—d),
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

@ We then want to argue that there is at least one degree 2
polynomial that is not constant on every Df.
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Sparsification Lemma

How to Prove Stronger Lower Bounds for Depth-3 Circuits

@ We then want to argue that there is at least one degree 2
polynomial that is not constant on every Df.

@ The problem is that there are too many such sets Dg (about
20(n")).
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Sparsification Lemma
Sparsification Lemma

Lemma (Sparsification Lemma, IPZ 1997)

3 algorithm AVk > 2 e € (0,1], » € k-CNF with n variables,
Ak o(¢) outputs ¢1,. .., ¢s € k-CNF in 2°" time such that

Q s <2 Sol(¢) = |J; Sol(¢;), where Sol(¢) is the set of
satisfying assignments of ¢

@ Vi € [s] each literal occurs < O(%)3 times in ¢;.
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Sparsification Lemma

Stronger Lower Bounds for Depth-3 Circuits

Almost all degree 2 GF(2) polynomials require Q(2"°(") size
YNX, circuits for k = o(log n).

Proof Sketch:

@ Sparsify each of level-2 subcircuits to get an equivalent circuit
which is an OR of linear size k-CNF's. The size only goes up
by a factor 2°(").
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Sparsification Lemma

Stronger Lower Bounds for Depth-3 Circuits

Almost all degree 2 GF(2) polynomials require Q(2"°(") size
YNX, circuits for k = o(log n).

Proof Sketch:

@ Sparsify each of level-2 subcircuits to get an equivalent circuit
which is an OR of linear size k-CNF's. The size only goes up
by a factor 2°(").

@ There are only (%((":))) < n9M many linear size k-CNFs.
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Sparsification Lemma

Stronger Lower Bounds for Depth-3 Circuits

Almost all degree 2 GF(2) polynomials require Q(2"°(") size
YNX, circuits for k = o(log n).

Proof Sketch:

@ Sparsify each of level-2 subcircuits to get an equivalent circuit
which is an OR of linear size k-CNF's. The size only goes up
by a factor 2°(").

@ There are only (%((":))) < n9M many linear size k-CNFs.

© We can now complete the previous counting argument.
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Switching Lemma

Lemma (Hastad's Switching Lemma)

Let F be a k-CNF and p be a random restriction with pn unset
variables. Then

P( Decision tree height of F | p > t) < (5pk)*
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Switching Lemma

Lemma (Hastad's Switching Lemma)

Let F be a k-CNF and p be a random restriction with pn unset
variables. Then

P( Decision tree height of F | p > t) < (5pk)*

Notes:
© A restriction p is a mapping from {1,2,...,n} — {0,1,x}. If
p(i) = %, then we say that variable 7 is unset.
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Switching Lemma

Lemma (Hastad's Switching Lemma)

Let F be a k-CNF and p be a random restriction with pn unset
variables. Then

P( Decision tree height of F | p > t) < (5pk)*

Notes:
© A restriction p is a mapping from {1,2,...,n} — {0,1,x}. If
p(i) = %, then we say that variable 7 is unset.
@ F | pis the k-CNF obtained by restricting F to p.
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Switching Lemma

Lemma (Hastad's Switching Lemma)

Let F be a k-CNF and p be a random restriction with pn unset
variables. Then

P( Decision tree height of F | p > t) < (5pk)*

Notes:
© A restriction p is a mapping from {1,2,...,n} — {0,1,x}. If
p(i) = %, then we say that variable 7 is unset.
@ F | pis the k-CNF obtained by restricting F to p.

© Switching Lemma — strong correlation bounds for
approximating parity function by small depth circuits.
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Switching Lemma

Lemma (Hastad's Switching Lemma)

Let F be a k-CNF and p be a random restriction with pn unset
variables. Then

P( Decision tree height of F | p > t) < (5pk)*

Notes:
© A restriction p is a mapping from {1,2,...,n} — {0,1,x}. If
p(i) = %, then we say that variable 7 is unset.
@ F | pis the k-CNF obtained by restricting F to p.

© Switching Lemma — strong correlation bounds for
approximating parity function by small depth circuits.

@ Switching Lemma — a satisfiability algorithm for small
depth circuits.
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Switching Lemma

Lemma (Hastad's Switching Lemma)

Let F be a k-CNF and p be a random restriction with pn unset
variables. Then

P( Decision tree height of F | p > t) < (5pk)*

Notes:
© A restriction p is a mapping from {1,2,...,n} — {0,1,x}. If
p(i) = %, then we say that variable 7 is unset.
@ F | pis the k-CNF obtained by restricting F to p.

© Switching Lemma — strong correlation bounds for
approximating parity function by small depth circuits.

@ Switching Lemma — a satisfiability algorithm for small
depth circuits.

© Requires a nontrivial extension of the Switching Lemma
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Small Depth Circuits and Satisfiability Algorithm

@ An (n,m, d)-circuit is a Boolean circuit on n variables with d
alternating layers of AND/OR gates where each layer has at
most m = cn gates.
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Small Depth Circuits and Satisfiability Algorithm

@ An (n,m, d)-circuit is a Boolean circuit on n variables with d
alternating layers of AND/OR gates where each layer has at
most m = cn gates.

@ An (n, m,d, k)-circuit is an (n, m, d)-circuit where each gate
at level d (bottom level) has fan-in bounded by k (instead of
limiting the number of gates at level d).
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Small Depth Circuits and Satisfiability Algorithm

@ An (n,m, d)-circuit is a Boolean circuit on n variables with d
alternating layers of AND/OR gates where each layer has at
most m = cn gates.

@ An (n, m,d, k)-circuit is an (n, m, d)-circuit where each gate
at level d (bottom level) has fan-in bounded by k (instead of
limiting the number of gates at level d).

Theorem (Satisfiability Algorithm for Small Depth Circuits)

There is a Las Vegas algorithm for deciding the satisfiability of an
(n, cn, d)-circuit C with expected time at most
poly(n)|C|2"(1=red) where the savings

1
>
Hed = (O(log c + dlog d))d-1

v
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Correlation

@ Let f and g be two Boolean functions on n variables. Let
g = Pxego,pn(f(x) = g(x))
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Correlation

@ Let f and g be two Boolean functions on n variables. Let
g = Pxego,pn(f(x) = g(x))

@ The correlation between f and g is defined as
Cor(f,g) =2q— 1.
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Correlation

@ Let f and g be two Boolean functions on n variables. Let
g = Pxego,pn(f(x) = g(x))
@ The correlation between f and g is defined as
Cor(f,g) =2q— 1.
o If F is a class of Boolean functions, we define the correlation
between f and F as Cor(f,F) =
maximum correlation between f and some function g € F.

Paturi Properties of k-CNF



Correlation

@ Let f and g be two Boolean functions on n variables. Let
g = Pxego,pn(f(x) = g(x))
@ The correlation between f and g is defined as
Cor(f,g) =2q— 1.
o If F is a class of Boolean functions, we define the correlation
between f and F as Cor(f,F) =
maximum correlation between f and some function g € F.

o If F is closed under complementation, then
0 < Cor(f,F) <1
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Correlation Bounds for Small Depth Circuits

The correlation of parity with any (n, m, d)-circuit is at most

D —He,dn _ 2—n/(O(|og c+dlogd))?—1
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Correlation Bounds for Small Depth Circuits

The correlation of parity with any (n, m, d)-circuit is at most

D —He,dn _ 2—n/(O(|og c+dlogd))?—1

@ For linear size circuits where ¢ and d are constants, the
savings 1 is constant and the correlation bound 27©(" s
strongly exponential.
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Correlation Bounds for Small Depth Circuits

The correlation of parity with any (n, m, d)-circuit is at most

D —He,dn _ 2—n/(O(|og c+dlogd))?—1

@ For linear size circuits where ¢ and d are constants, the
savings 1 is constant and the correlation bound 27©(" s

strongly exponential.

@ Nontrivial savings and correlation bounds for circuit of size up
to 2O(nl/(d 1)
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Further Improvements could be Hard

o If the satisfiability of an (n, m, d)-circuit can be decided in
« ) then NEXP C NC',

a1 1
time 2 Ollogm°(?)
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Further Improvements could be Hard

o If the satisfiability of an (n, m, d)-circuit can be decided in
« ) then NEXP C NC',

a1 1
time 2 Ollogm°(?)
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@ A set of functions g1,...,g1: {0,1}" — {0, 1} partitions
{0,1}" if (g7 *(1))1<i</ is a partition of {0,1}".
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@ A set of functions g1,...,g1: {0,1}" — {0, 1} partitions
{0,1}"if (g,-_l(l))lg,-gl is a partition of {0,1}".

@ The i'th region of the partition is gfl(l). We identify the
region with the function g;j.
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@ A set of functions g1,...,g1: {0,1}" — {0, 1} partitions
{0,1}"if (g,-_l(l))lg,-gl is a partition of {0,1}".

@ The i'th region of the partition is gfl(l). We identify the
region with the function g;j.

@ gj are of the form G A p, where G is k-CNF and p a
restriction. We denote the region R by (G, p).
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@ A set of functions g1,...,g1: {0,1}" — {0, 1} partitions
{0,1}"if (g,-_l(l))lg,-gl is a partition of {0,1}".

@ The i'th region of the partition is gfl(l). We identify the
region with the function g;j.

@ gj are of the form G A p, where G is k-CNF and p a
restriction. We denote the region R by (G, p).

e Two circuits are equivalent in a region R if R = (C = D).
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@ A set of functions g1,...,g1: {0,1}" — {0, 1} partitions
{0,1}"if (g,-_l(l))lg,-gl is a partition of {0,1}".

@ The i'th region of the partition is gfl(l). We identify the
region with the function g;j.

@ gj are of the form G A p, where G is k-CNF and p a
restriction. We denote the region R by (G, p).

e Two circuits are equivalent in a region R if R = (C = D).

o Aset P ={(Ri=(Gi,pi),C)} is a partitioning for a circuit
C if R; partition {0,1}" and C; is equivalent to C in region
R; for all i.
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.
e Canonical decision tree tree(F) for a CNF F is as follows:
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.
e Canonical decision tree tree(F) for a CNF F is as follows:
@ Fix an ordering of clauses in F
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.
e Canonical decision tree tree(F) for a CNF F is as follows:

@ Fix an ordering of clauses in F
@ If a clause is empty, return 0
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.
e Canonical decision tree tree(F) for a CNF F is as follows:

@ Fix an ordering of clauses in F
@ If a clause is empty, return 0
© If there are no clauses, return 1
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.
e Canonical decision tree tree(F) for a CNF F is as follows:

@ Fix an ordering of clauses in F

@ If a clause is empty, return 0

© If there are no clauses, return 1

@ Let C be the first clause. Query the variables in C in order
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.

e Canonical decision tree tree(F) for a CNF F is as follows:
@ Fix an ordering of clauses in F
@ If a clause is empty, return 0
© If there are no clauses, return 1
@ Let C be the first clause. Query the variables in C in order
@ Restrict F based on the query results and recurse.
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Canonical Decision Tree

@ height(T) of a decision tree T is the length of the longest
path.

e Canonical decision tree tree(F) for a CNF F is as follows:
@ Fix an ordering of clauses in F
@ If a clause is empty, return 0
© If there are no clauses, return 1
@ Let C be the first clause. Query the variables in C in order
@ Restrict F based on the query results and recurse.
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Canonical Decision Tree for a Sequence of Formulas

@ Canonical decision tree tree(®) for a sequence of (F1,..., F)
of CNF's is as follows:
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Canonical Decision Tree for a Sequence of Formulas

@ Canonical decision tree tree(®) for a sequence of (F1,..., F)
of CNF's is as follows:

@ First construct the canonical decision tree for F;.
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Canonical Decision Tree for a Sequence of Formulas

@ Canonical decision tree tree(®) for a sequence of (F1,..., F)
of CNF's is as follows:
@ First construct the canonical decision tree for F;.
@ Along each path, restrict F;, ..., F; by the results of queries
and recurse.
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Canonical Decision Tree for a Sequence of Formulas

@ Canonical decision tree tree(®) for a sequence of (F1,..., F)
of CNF's is as follows:
@ First construct the canonical decision tree for F;.
@ Along each path, restrict F;, ..., F; by the results of queries
and recurse.
© Label the leaves with the tuples of the leaves from each of the
trees.
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Canonical Decision Tree for a Sequence of Formulas

@ Canonical decision tree tree(®) for a sequence of (F1,..., F)
of CNF's is as follows:
@ First construct the canonical decision tree for F;.
@ Along each path, restrict F;, ..., F; by the results of queries
and recurse.
© Label the leaves with the tuples of the leaves from each of the
trees.

@ We say that a clause contributes variables to a path if any
variable in the clause are queried when the clause gets its turn.

Paturi Properties of k-CNF



Extended Switching Lemma

Lemma (Extended Switching Lemma)

Let & = (Fy,...,Fn) be a sequence of k-CNF's (or k-DNF’s) on n
variables. For p < 1/13, let p be a random restriction that leaves
pn variables unset. The probability that the decision tree for  has
a path of length > t where each F; contributes at least one node
to the path is at most (13pk)*.
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Switching Algorithm

Lemma (Switching Algorithm)

Let ® = (Fy,...,Fn) be a sequence of k-DNF's on n variables.
There exits a randomized algorithm which takes ® as input and
outputs a partitioning P = {(R;, Gi) }1<i<s for ® such that C; are
k-CNF's in at most n/100k variables, and with high probability
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Switching Algorithm

Lemma (Switching Algorithm)

Let ® = (Fy,...,Fn) be a sequence of k-DNF's on n variables.
There exits a randomized algorithm which takes ® as input and
outputs a partitioning P = {(R;, Gi) }1<i<s for ® such that C; are
k-CNF's in at most n/100k variables, and with high probability

—k
® s < o
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Switching Algorithm

Lemma (Switching Algorithm)

Let ® = (Fy,...,Fn) be a sequence of k-DNF's on n variables.
There exits a randomized algorithm which takes ® as input and
outputs a partitioning P = {(R;, Gi) }1<i<s for ® such that C; are
k-CNF's in at most n/100k variables, and with high probability

—k
© s < o

@ the algorithm runs in time at most poly(n)size(®)s.
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Algorithm for Depth-3 Circuits

e Satisfiability Algorithm for (n, m = cn, 3)-circuits
n(l1— 1
(AND-OR-AND) running in time 2 (= Sger).
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Algorithm for Depth-3 Circuits

e Satisfiability Algorithm for (n, m = cn, 3)-circuits
n(l1— 1
(AND-OR-AND) running in time 2 (= Sger).

@ Reduce the (n, m, 3)-circuit to a small family of
(n, m, 3, k)-circuits C where k = O(log c¢). Overhead is
minimal.
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Algorithm for Depth-3 Circuits

e Satisfiability Algorithm for (n, m = cn, 3)-circuits
(1o —1
(AND-OR-AND) running in time 2 (1~ Goger),
@ Reduce the (n, m, 3)-circuit to a small family of
(n, m, 3, k)-circuits C where k = O(log c¢). Overhead is
minimal.

@ Apply the Switching Algorithm to the family of
® = (Fi,...,Fm) k-DNF's to obtain a partitioning into about
2n(1=1507) regions where @ is equivalent to a sequence of
k-CNF's in at most n/100k variables and each region is
defined by a k-CNF in the same set of variables.
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Algorithm for Depth-3 Circuits

e Satisfiability Algorithm for (n, m = cn, 3)-circuits
N

(AND-OR-AND) running in time 2"~ og )

@ Reduce the (n, m, 3)-circuit to a small family of
(n, m, 3, k)-circuits C where k = O(log c¢). Overhead is
minimal.

@ Apply the Switching Algorithm to the family of
® = (Fi,...,Fm) k-DNF's to obtain a partitioning into about
2n(1=1507) regions where @ is equivalent to a sequence of
k-CNF's in at most n/100k variables and each region is
defined by a k-CNF in the same set of variables.

@ For each region, collapse the levels to obtain a single k-CNF
and take the conjunction with the defining k-CNF of the
region.
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Algorithm for Depth-3 Circuits

e Satisfiability Algorithm for (n, m = cn, 3)-circuits
(AND-OR-AND) running in time 2n(l_m).

@ Reduce the (n, m, 3)-circuit to a small family of
(n, m, 3, k)-circuits C where k = O(log c¢). Overhead is
minimal.

@ Apply the Switching Algorithm to the family of
® = (Fi,...,Fm) k-DNF's to obtain a partitioning into about
2n(1=1507) regions where @ is equivalent to a sequence of

k-CNF's in at most n/100k variables and each region is
defined by a k-CNF in the same set of variables.

@ For each region, collapse the levels to obtain a single k-CNF
and take the conjunction with the defining k-CNF of the
region.

@ Apply a k-SAT algorithm to each k-CNF.
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Thank You
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