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 Extensive-Form Games 

 

• Used to model games with sequential and/or multiple moves. 

   

• Here strategies are  “complete contingent plans" that specify 

 the action to be taken in every situation (at every 

“information set”) that could arise in the course of play.  

 

• The actions  that a player uses can depend on the actions of 

others, but we can think of players simultaneously  choosing 

strategies before the game is played. 

 

• Associate a unique strategic form with given extensive form. 

 

  



• The definition  of Nash equilibrium applies without change: 

 A strategy profile such that no player can increase their payoff 

by changing their strategy, holding fixed the strategies  of the 

other players. 

 

• But Nash equilibrium is less satisfactory here:  

 

o NE doesn’t incorporate predictions based on knowledge of 

opponents’ payoff functions.   This led to subgame-perfect 

equilibrium and other “equilibrium refinements.” I will 

suppress this issue  for most of this talk. 

 

• NE  and its refinements describe situations where players 

know more than in guaranteed by learning. In some cases 

play can converge to  a self-confirming equilibrium (SCE) 

that is not a Nash equilibrium.  



• The effect of learning depends on what the players observe 

when the game is played. 

 

• Assume they observe (at most)  the terminal nodes  that are 

reached in their own plays of the game. 

 

• Don’t observe how the opponents would have played at “off 

path”  information sets- those that were not reached in that 

play of the game. 

 

• Exploration/exploitation trade-off: people may choose to 

engage in “active learning” or “experimentation.” 

 

• W/o experimentation, incorrect beliefs about off-path play 

could persist.    

 



Aside: other possible observation structures: 

 

1) Players might not observe the realized terminal node, but 

instead a partition of them. For example, in a first-price sealed-

bid auction players might observe the winning bid but not the 

losing ones.  See  Dekel, Fudenberg, Levine   GEB [2004],  

Lehrer-Solan  JET [2007], Esponda  AER [2008],  Fudenberg-

Kamada  TE [2015]. 

 

2) Agents might observe outcomes in other matches, or get 

signals about them (as in models of social learning). 



Questions: 

 

1) what sorts of outcomes can be steady states of learning 

processes? (various answers: SCE, rationalizable SCE, NE, and  

subgame-perfect equilibria.) 

 

2) Some “experimentation” seems to be needed to rule out 

convergence to a non-Nash outcome.  “How  much”  of this off-

path play is needed  for various equilibrium concepts? That is, 

how  much information about off-path play is needed to imply 

that all steady states satisfy the equilibrium conditions, and 

how much experimentation with off-path actions does this 

require? 

 

3) How much off-path play will occur under various models of 

learning? 



Overview of the literature: 

 

Fudenberg and Kreps [1988, JET 1995],  Jehiel and Samet JET 

[2004],  Laslier and Walliser JET [2004]  look at  “boundedly 

rational” learning: assumptions directly on the frequency of 

experimentation. 

 

FK 88: “belief-based learning” in the spirit of fictitious play, 

with the extra assumption that agents experiment at rate 1/t ; 

i.e. there is a lower bound on the probability of each action, and 

the bound goes to 0 over time at rate 1/t . 

 

This experimentation condition rules out convergence to non-

Nash outcomes when beliefs are  asymptotically empirical. 



Reason: To rule out convergence to non-Nash outcomes, it is 

enough that players have correct beliefs about play at any 

“relevant” information set- information sets that can be 

reached if any one player deviates from the equilibrium path.  

 

• With “1/ t  experimentation” these relevant information sets 

are reached infinitely often, because 
1
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• So from LOLN and asymptotic empiricism, beliefs at 

relevant information sets become correct. 

 

• But 1/t  experimentation needn’t lead to correct beliefs at 

nodes that take 2 or more deviations  to reach, because 
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• Raises, but doesn’t answer, the question of how much 

experimentation players will actually do. 

 

• Remember that rational decision makers typically won’t 

randomize. 

 

• If players don’t experiment at all , can converge to SCE that 

are not Nash.   (Fudenberg  Levine Ema [1993], Fudenberg 

Kreps GEB [1995]). 

 

 

Now define and analyze SCE..  



Self-Confirming Equilibrium 

 

• 1I +  players in the game, player 1i I= +  is nature. 

 

• Finite  game tree with nodes x X∈ , information sets h. 

 

• Terminal nodes z Z∈ ;   player 'i s  payoff function iu  is a 

function of z. 

 

• iS  is the set of pure strategies for player i,   s S∈  denotes a 

strategy profile for all players including nature. 

 

• Each strategy profile s determines a probability 

distribution ( | )p si  over terminal nodes. 



• Players know the extensive form of the game, except that 

they may not know the distribution of Nature’s move. (If 

Nature’s move is unknown, players’  beliefs about it are 

treated in the same way as their beliefs about the strategies 

of other players- need to be learned from observations.) 

 

• A probability measure iµ  over i−Π , the set of other players’ 

behavior strategies, describes player i’s beliefs about his 

opponents’ play. 

 

• For a fixed mixed strategy profile σ , let π  be the unique 

equivalent behavior strategy.    Player i’s beliefs are correct 

at information set  h  if they assign probability 1 to 

strategies that match the objective distribution at h. 

  



Definition: σ  is a  self-confirming equilibrium (SCE) if  for each 

player i  and each is  with   ( ) 0i is >σ  there are beliefs ( )i isµ  

such that 

 

(a) is  is a best response to ( )i isµ , and 

 

(b) ( )i isµ  is correct at every  h   that has positive probability 

under ( , )σi is − . 

 

 

• Reduces to Nash in one-shot simultaneous-move games. 

 

• Each is  in the support of  iσ   may be justified by a different 

belief.    

  



• Interpretation: multiple  agents in the role of each player, 

and different agents in the role of player  i  may have 

observed play at different nodes. (heterogeneity is a non-

issue for NE- only one way for beliefs to be correct.) 

 

• Unitary SCE: one belief per player. 

 

• Related concepts: subjective equilibrium (Kalai-Lehrer Ema  

[1993], conjectural equilibrium (Battigalli [1998], partially 

specified equilibrium (Lehrer-Solan JET [2007]). 

 

• All of these are unitary. 

 

• There can be unitary SCE that differ from Nash because 2 

players disagree about the play of a 3rd (Fudenberg Kreps 

[1988]): 
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• (A,a,L) is a SCE with outcome (A,a). 



• (A,a,L) can also arise from a Bayesian learning process:  As 

long as both play A, they get no data on 3’s play, and if 

beliefs are a product measure,  they  don’t update- seeing 

player 2’s action doesn’t change 1’s beliefs about 3’s play.  

 

• But (A,a) is not a Nash equilibrium outcome:  Nash 

equilibrium requires players 1 and 2 to make the same 

(correct) forecast of player 3’s play, and if both make the 

same forecast, at least one of the players must choose  D. 

 

------ 

Now allow heterogeneous beliefs. 

In the following game, there is no unitary SCE (and hence no 

NE) with outcome distribution  ( ½  Out, ½ (In, A)). 

 

 



 
  



• Heterogeneous beliefs about off-path play are important in 

explaining data from game theory experiments. 

 

• Set of Nash equilibrium outcomes is not convex, so 

observing a convex combination of NE typically rejects NE. 
 

• In more complicated games, heterogeneous beliefs  can 

generate outcomes outside co(NE).   
 

• Heterogeneous beliefs especially important when subjects 

have doubts about each other’s preferences. 

 

• In lab settings where “social” or non-monetary preferences 

important, it is hard to see how the subjects could know the 

distribution of opponents’ preferences, since even the 

experimenters don’t. 



What factors lead SCE to differ from Nash equilibrium?  

 

• Heterogeneous Beliefs 

 

• Correlated Beliefs: not a product measure. This can deter 

some actions that are best responses to any product 

measure. (Note: in this model players believe opponents 

randomize independently- there are no correlating devices. 

The correlation here is subjective)  

  

• “Inconsistent” beliefs: 1 and 2 disagree about the play of 3 

at some info set h. This only matters if both 1 and 2 can 

unilaterally cause h  to be reached. 

 

FL show that this list is exhaustive.   

I’ll state a related theorem simpler theorem instead. 



 

Let ( )H s  be the information sets reached with positive 

probability when s  is played. 

 

Defn: A game has observed deviators if for all players i, all 

strategy profiles s, and all ˆi is s≠ , ˆ( , ) \ ( )i ih H s s H s−∈  implies 

that there is no ˆ is−  with ˆ( , )i ih H s s−∈ . 

 

• Implies that if a deviation by player i leads to an information 

set off the equilibrium path, there is no deviation by i’s 

opponents that leads to the same information set. 

 

• Games of perfect information have observed deviators, as do 

all multistage games with observed actions.  

 



• Includes all two-player   games of perfect recall: With two 

players, both players must know who deviated.  

 

• Holds in many economic examples but not the “horse” game. 

 

• Defn: Independent beliefs:  each player’s beliefs about the 

others is a product measure.  (even off of the path). 

 

Theorem (FL Ema 93a, Kamada Ema [2009]) In games with 

observed deviators, the outcome of any independent unitary 

self-confirming equilibria is the outcome of a Nash equilibrium. 

  



Ideas:  

 

• Unitary beliefs: a single set of beliefs for each player i.   

 

• Independent beliefs: these beliefs correspond to a mixed 

strategy profile.  (not true with correlation) 

 

• Observed deviators: only one player’s beliefs about play at 

an off path information set  are relevant- namely the beliefs 

of the player  who could cause that information set to be 

reached.  

 

• So construct profile where actual play at the info set  

corresponds to the beliefs of the relevant player. 

 

Back to Learning Dynamics 



 

Various learning models have SCE as long run outcome. 

FK GEB [1995], [1996 unpublished] look at boundedly rational 

learning rules with exogenous experimentation rules (at least 

at the time this was frowned on by economists…) 

 

FL Ema [1993] analyze rational learning and experimentation 

by Bayesians who maximize expected discounted utility.  

  



FL 93 

 

The Agent’s Decision Problem 

 

• Each  “agent” in the role of player i expects to play T  times  

• Tries to maximize   1

1

1

1

T
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t
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δ

δ
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• Each time the game is played, the agent observes only the 

terminal node. 

 

• Agent believes that they face a fixed time- invariant 

probability distribution of opponents’ strategies.  

 



• Unsure what the true distribution is. Assume that prior 

beliefs are non-doctrinaire: given by a continuous density 

function that is  strictly positive at interior points.   
 

• Updates beliefs about strategies using Bayes rule. 

 

• Non-doctrinaire prior implies non-doctrinaire posterior. 

 

• Each agent faces a dynamic programming problem. 

 

• Pick an optimal policy for each agent- a map from 

sequences of terminal nodes to strategies. W.l.og. we can 

take the policy to be  deterministic. 

 



Aggregate Play 

• Continuum population, unit mass of agents in each player 

role. 

• Doubly infinite sequence of periods. 

• Overlapping generations, with 1/T  players in each 

generation. 

• Every period, each agent is randomly and independently 

matched with one agent from each of the other populations. 

So  probability of meeting an agent of a particular age 

equals 1/T . 

• Agents do not observe the ages or past experiences of their 

opponents 

• Each population has a common prior and common optimal 

rule (this is just to lighten notation.) 



• The state of the system:  fractions  of the population with 

each possible history. 

 

• For a given distribution  θ  on S ,  we can compute the 

fraction  ( )i i
yθ  of population i that would have  each 

possible history iy , and then  compute the fractions playing 

different strategies 

 

• Continuous map from the space of mixed strategy profiles 

to itself, so  fixed point exists for any  rule. 

 

• These fixed points are the steady states of the system. 
 

  



• FP is stochastic and non-stationary (updating slows down 

as players gain experience) so it only approaches a 

deterministic steady state in the limit. 

 

• Existence of steady states here comes from modelling 

tricks:   Individual agents have stochastic time varying 

beliefs, but the aggregate system is  deterministic  (due to 

continuum population) and stationary  (due to finite 

lifetimes or “memory loss.”) 

 

• Steady state for T=1 is trivially determined by the priors. 

 

• Open problem: characterize steady states for intermediate 

lifetimes in some interesting examples. Here long-lived, 

better informed players might be able to take advantage of 

the new entrants. 



 

• Current results focus on limits as lifetimes long, so most 

players have lots of observations of play. 

 

• Another open problem: stability of the steady states- 

dimensionality problem when lifetimes are long… 



Theorem Fix a non- doctrinaire prior. Then any limit of steady 

states as T →∞  is a SCE. 

 

Three step proof sketch:  

 

• If  a strategy  has a positive share in the limit, then then for 

large lifetimes it is played by a positive fraction of the 

population a positive fraction of their life. 

 

• Most agents who have played the strategy many times have 

approximately correct beliefs about what happens when 

they do. (From LOLN and  Diaconis-Freedman Annals Stat. 

[1990]: posteriors converge to  empirical distribution at a 

rate that depends only on sample size. ) 

 



• Agents eventually stop experimenting and play myopic BR 

 to beliefs.   

 

• Agents also stop experimenting in the solution to 

 discounted bandit problems. Additional complication  here 

 from the assumption that players  know the  extensive 

 form- so they may know some samples are 

 “unrepresentative.”   After such samples they may choose to 

 continue to experiment, in contrast to the claim above, but 

 these histories are rare. 

 

• This is the outline of how to show steady states are SCE. 

 

  



Theorem: any iterated limit of steady states 
1

lim lim
Tδ→ →∞

  

must be a NE. 

 

• Easy to prove under “1/t experimentation.” 

 

• But for generic beliefs rational players don’t randomize in 

decision problems. And it’s not obvious whether players off 

the equilibrium path want to experiment at all. (in fact 

sometimes they won’t,  Fudenberg and Levine AER  [2006].) 

 

• Moreover, patient agents on the equilibrium path may 

never play some actions at all,  because another action 

gives the same information more cheaply- correlated arms 

here as opposed to  the independent arms of the Gittins 

problem. 

 (see chalkboard)  



• So instead of direct bounds on experimentation,  proof uses 

an indirect approach:   In a steady state, most players who 

use a strategy  do so because it maximizes their current 

period’s expected payoff:  If they have played the strategy  

many times, they do not expect to learn much about its 

consequences, so its “option value” is low. (This uses the 

order of limits…) 

 

• If the limit of steady states is not a Nash equilibrium, then 

along the sequence there is a strategy being played with 

non-negligible probability that is not optimal against the 

steady state.  Show that this implies the strategy has a non-

negligible option value, so players would continue to 

experiment, a  contradiction. 

  



Conclusion:  patient players experiment enough to rule out non 

Nash states.  

 

• This does not  say that all NE are limits of steady states with 

patient players. 

 

• FL  AER [2006] examine this in games of perfect 

information with independent beliefs. 

 

• Simplifies optimal experimentation for the same reason it 

simplifies inference:  no reason to take action A to learn 

about payoff to action B. 

 

• Show that for some non-doctrinaire priors there is no off-

path experimentation. 



• But  off-path play isn’t completely arbitrary: players one 

step off the path are reached infinitely often, and so play 

there looks like a SCE. 

 

Defn: Node x  is one step off the path of π  if x  is not reached 

under π  and it is an immediate successor of a node that is 

reached with positive probability under π . 

 

 

Defn:  Profile π   is a subgame-confirmed Nash equilibrium if it is 

a Nash equilibrium and if, in each subgame beginning one step 

off the path, the restriction of  π  to the subgame is self-

confirming in that subgame. 

  



Theorem   In simple games with no own ties, any subgame-

confirmed Nash   equilibrium that is nearly pure is path-

equivalent to  a patiently stable state. (may need to choose the 

priors carefully..) 

 

• No own ties: no player has a pair of actions that lead to the 

same payoffs for him.  Implies unique BI solution, also 

implies that players will not randomize on the equilibrium 

path. 

 

• Nearly pure: no randomization on path, only Nature 

randomizes off the path. Not necessary in games of length 3 

or less, don’t know if needed in general.    (General result 

would need bounds on   experimentation at off-path nodes 

when there is mixing on the equilibrium path) 

  



Implications of subgame- confirmed equilibria: 

 

• In a simple game with no more than two consecutive 

moves, self-confirming equilibrium for any player moving 

second implies optimal play by that player, so subgame-

confirmed Nash equilibrium implies subgame perfection. 

 

• This can fail when there are paths of length three: 



Example (Three Player Centipede Game) 

• Unique subgame-perfect equilibrium: all players pass. 

 

• (drop, drop, pass)  is subgame-confirmed: 1 is playing a 

best response to 2’s action, and since 2 drops and doesn’t 

experiment, doesn’t learn 3’s play.  

1

2

3

drop (1,0,0)

(0,1,0)

(0,0,1)

(2,2,2)

drop

drop

pass

pass

pass



How much patience and experimentation should we expect? 

(open) 

 

• Discount factor/continuation probability  in lab sessions 

bounded away from 1.  

 

• In which field settings do very high discount factors seem 

plausible? 

 

• To what extent can word of mouth, social learning, 

historical records serve to provide extra information about 

off path play? 

  



Prior Information about Payoffs+ Rationality 

 

• In SCE the only constraint on beliefs is what players 

observe about others’ play- players aren’t required to use 

information about opponents’ payoff functions.  

 

• May be a good approximation of some field situations and 

for experiments in which subjects are given no information 

about opponents’ payoffs. 

 

• In other cases,  players do have some prior information 

about their opponents’ payoffs. 

  



• Experimental evidence that giving subjects information 

about other players’ payoff functions  makes a difference, 

and in some cases (e.g. Prasnikar-Roth QJE [1992 ]) this 

difference corresponds to the distinction between SCE and 

SCE+payoff information as modelled by “Rationalizable Self 

Confirming Equilibrium” or RSCE. (Dekel, Fudenberg, 

Levine JET  1999). 

 

• RSCE is “unitary”- a single belief for all players, and all 

players see the same distribution on terminal nodes. 

Fudenberg-Kamada [in preparation]  handles the 

heterogeneous case. 

  



• RSCE imposes some off-path optimality restrictions. It  

coincides with backwards induction in two-stage games of 

perfect information, but in longer games it is much weaker 

and more like SCE. 

 

• RSCE has implications beyond the intersection of SCE and 

rationalizability 

 

• These come from the assumption that the outcome path is 

public information. 

 

Try to explain this w/o the formal definition…  



 
 

(u,U) is a Nash outcome (so self-confirming) not RSCE:  

Intuitively, if player 1 knows  2 knows 3 is playing up, can use 

this knowledge and his knowledge of player 2’s payoffs to 

deduce that 2 will play a. 



Fudenberg-Kamada TE [2015]: players only see a partition of 

the terminal nodes, and different players have different 

partitions. . 

 

Then  there isn’t a publicly observed outcome path, so the 

implications of common knowledge of  the observation 

structure are less immediate and  more complicated to 

formalize.  

 



 
  



• Can 1 play Out, fearing that In will give -.9? 

 

• Out is only a best response if 1 thinks 3 will “beat” 2, that is if 

the outcome is likely to be (H2,T3) or (T2,H3). 

 

• In RPCE, 1 correctly forecasts 2’s observations.  

 

o 2 has a discrete terminal node partition, so 1 knows 2 

sees actual play.  

 

o So 1 must expect that 2 is playing a best response to 3. 
 
o So 1 plays In. 

• More generally, in a “player 1 participation game,” 1’s 

beliefs about play of other players must correspond to a 

Nash equilibrium.  



Mistakes in Inference/Behavioral Game Theory 

 

• SCE and RSCE assume that the players’ inferences are 

consistent with their observations. 

 

• Related literature assumes that players make systematic 

mistakes in inference, as in Jehiel’s  JET [2005] notion of 

analogy-based expectations equilibrium or “ABEE:”  

 

 Players group the opponents’ decision nodes into “analogy 

 classes,” with the player believing that play at each node in 

 a  given class is identical. Given this, the player’s beliefs 

 must  then correspond to the actual average of play across 

 the nodes  in the analogy class.  



Example: Perfect  information.  

 

Nature moves first, choosing state A with probability 2/3 or 

state B with probability 1/3. 

 

Player 1 moves second, choosing either action A1 or action B1.  

 

Player 2 moves last, choosing either action A2 or action B2.  

 

Player 2 is a dummy who chooses A2 in state A and B2 in state 

B regardless of what player 1 did.  

 

Player 1 gets 1if his action matches that of player 2 and zero if 

not.  

 



Then in state A player 1 should optimally play A1 (forecasting 

2 will play A2)  and in state B player 1 should play B1.   

 

ABEE: suppose player 1 views all nodes of player 2 as 

belonging to a single “analogy class.”   

 

Then he believes that player 2 will play A2  2/3rds the time, 

regardless of the state, and so player 1 will play always play 

A1. 

 

Note: If player 1 observes and remembers each outcome, and if 

he is Bayesian and assigns positive probability to player 2 

observing the state, he will eventually learn that this is the 

case.    

 

Is the ABEE outcome here reasonable?   



 

• Can be seen as approximation of cases where player 1 has a 

very strong prior conviction that 2’s play is independent of 

the state, so that it will take a long time to learn that this is 

not true.  

 

• Alternative explanation: players are unable to remember all 

that they have observed, perhaps because at an earlier 

stage they chose not to expend the resources required for a 

better memory.   So in the example, maybe player 1 is only 

able to remember the fraction of time that 2 played A2, and 

not the correlation of this play with the state? 

 

• Corresponds to SCE when player 1’s end-of-stage 

observation is only player 2’s action, and includes neither 

Nature’s move nor player 1’s own realized payoff. 



 

• Relate ABEE to Eyster-Rabin’s Ema [2005] “cursed 

equilibrium” of Bayesian games.  

 

• “Fully cursed” players think opponents’ play is independent 

of their types- thus in a lemons problem buyers don’t 

realize that lower-value sellers are more likely to sell. 

 

• Can  represent cursed equilibria as ABEE (Miettinen  JET 

(2007)).  (note this doesn’t mean that the cursed  

equilibrium makes sense, just that it can be interpreted as 

ABEE). 

  



(Some of the) Open questions/problems:  

 

•  Characterize the implications of patient rational learning 

outside of simple games. 

 

• Model what happens in mixed pools of experienced and 

novice players. 

 

• Model how people extrapolate between “similar” games. 

 

• Combine stochastic choice with learning in extensive-form  

games. If stochastic terms uniformly bounded away from 0, 

eventually players have many observations at every 

information set. This may take some time; what happens in 

the “intermediate run”? 

 



• What are the implications of learning   when agents use 

mis-specified models? (as it seems sometimes they do) 

 

• In decision problems? In games? 

 

• Older stat literature looks at mispecified learning when 

signals are exogenous; in a system of learners signals can 

depend on actions… 

 

• See e.g Esponda-Pouzo [2015], Heidhues, Kozegyi, Strack 

[2015],  Fudenberg, Romanyuk, Strack [2015]. 
 

• Strack is here at Berkeley… 
 
 



 


