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— Example Results Statements

[cf. literature on single-dimensional linear agents]
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— Example Results Statements

Multi-dimensional Agents:  selling “red or blue” car, values i.i.d. U[0, 1]

e second-price auction with reserve for “favorite color” = optimal.
[cf. Myerson '81]

[cf. literature on single-dimensional linear agents]
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— Example Results Statements

Multi-dimensional Agents:  selling “red or blue” car, values i.i.d. U[0, 1]

e second-price auction with reserve for “favorite color” = optimal.
[cf. Myerson '81]

Non-linear Agents: selling item, values i.i.d. U0, 1], common budget

e all-pay auction with reserve (and ironing top) = optimal.
[cf. Bulow, Roberts '89]

[cf. literature on single-dimensional linear agents]
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— Example Results Statements

Multi-dimensional Agents:  selling “red or blue” car, values i.i.d. U[0, 1]

e second-price auction with reserve for “favorite color” = optimal.
[cf. Myerson '81]

e uniform posted pricing = e/(e — 1) = 1.58 approximation.
[cf. “correlation gap” Yan, '11]

® non-identical agents,
anonymous uniform posted pricing = € approximation.
[cf. H., Roughgarden '09; Alaei, H., Niazadeh, Pountourakis, Yuan '15]
Non-linear Agents: selling item, values i.i.d. U0, 1], common budget

e all-pay auction with reserve (and ironing top) = optimal.
[cf. Bulow, Roberts '89]

[cf. literature on single-dimensional linear agents]
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— Example Results Statements

Multi-dimensional Agents:  selling “red or blue” car, values i.i.d. U[0, 1]

e second-price auction with reserve for “favorite color” = optimal.
[cf. Myerson '81]

e uniform posted pricing = e/(e — 1) = 1.58 approximation.
[cf. “correlation gap” Yan, '11]

® non-identical agents,

anonymous uniform posted pricing = € approximation.
[cf. H., Roughgarden '09; Alaei, H., Niazadeh, Pountourakis, Yuan '15]

Non-linear Agents: selling item, values i.i.d. U0, 1], common budget
e all-pay auction with reserve (and ironing top) = optimal.
[cf. Bulow, Roberts '89]
e all-pay auction (no reserve) = n/(n — 1) approximation.

[cf. Bulow, Klemperer '96]

[cf. literature on single-dimensional linear agents]
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]

® single-agent problem: constraint on ex ante allocation probability.
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]
® single-agent problem: constraint on ex ante allocation probability.

e multi-agent composition: marginal revenue mechanism.
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]
® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]
® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

e preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]
® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]
® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]

® single-agent problem: constraint on entire allocation rule.
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]
® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]
® single-agent problem: constraint on entire allocation rule.

e mutli-agent composition: stochastic weighted optimization.
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— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myersion '81; Bulow and Roberts "89]

® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]
® single-agent problem: constraint on entire allocation rule.

e mutli-agent composition: stochastic weighted optimization.

e preference assumption: none:

— remaining multi-dimensional linear (utility) preferences.

— non-linear (utility) preferences.
(e.g., risk aversion, budgets)
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— Agenda

Agenda:

1. Examples of optimal single-agent mechanismes.
(derivations tomorrow)

2. Ex ante reduction (with revenue linearity)
(e.g., unit-demand U [0, 1]%)

3. Interim reduction (without revenue linearity)
(e.g., public budget U [0, 1])
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— Agenda

Agenda:

1. Examples of optimal single-agent mechanismes.
(derivations tomorrow)

2. Ex ante reduction (with revenue linearity)
(e.g., unit-demand U [0, 1]%)

3. Interim reduction (without revenue linearity)
(e.g., public budget U [0, 1])

Goals:
e unified framework.

e highlight differences between revenue linearity and non-linearity.
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1. Examples of optimal single-agent mechanisms
[cf. Laffont, Robert '96] [cf. Armstrong '96]

(derivations tomorrow)



— Public Budget Preferences

Public Budget Preferences:

(single-dimensional non-linear)

e allocation: z € |0, 1]; payment: p

e private value:

e public budget:

e utility: u = {

REDUCTIONS — AUGUST 26, 2015

t

B.

tr—p p< B
— OO O.W.



— Public Budget Preferences

Public Budget Preferences: (single-dimensional non-linear)
e allocation: z € |0, 1]; payment: p
e private value: ¢

e public budget: B.

te — <B
e utility: u = { TP P
—00 0.W.

Running example: t ~ U10,1]; B=1/4
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— Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.
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— Ex ante Pricing: Public Budget
Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(a) “3/4 lottery at price 1/4”

o(t) = {O t<1/3

3/4 ow.
1 -}
3/, 1
/4 Bl z(t)
O - -
0 1/3 1
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— Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(a) “3/4 lottery at price 1/4” (b) “two-agent all-pay auction”
0 t<1/3 t  t<1/2
t = t p—
z(?) {3/4 0.W. z(?) {3/4 0.W.
1t 1+
3/4 + 3/4 +
/ Bl =z(1) / B
0 + 0 + +
0 1/3 1 0 12 1
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— Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(a) “3/4 lottery at price 1/4” (b) “two-agent all-pay auction”
0 t<1/3 t  t<1/2
t = t p—
z(?) {3/4 0.W. z(?) {3/4 0.W.
1t 1+
3/4 + 3/4 +
/ Bl =z(1) / B
0 - + 0 -+ -+
0 1/3 1 0 12 1

Question: What is optimal?
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— Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(a) “3/4 lottery at price 1/4” (b) “two-agent all-pay auction”
0 t<1/3 t  t<1/2
t = t p—
z(?) {3/4 0.W. z(?) {3/4 0.W.
1t 1+
3/4 + 3/4 +
/ Bl =z(1) / B
0 - + 0 -+ -+
0 1/3 1 0 12 1

Question: What is optimal?

Answer: (a)
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— Ex ante Pricing: Public Budget

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(a) “3/4 lottery at price 1/4” (b) “two-agent all-pay auction”
0 t<1/3 t  t<1/2
t = t p—
z(?) {3/4 0.W. z(?) {3/4 0.W.
1t 1+
3/4 + 3/4 +
/ Bl =z(1) / B
0 - + 0 -+ -+
0 1/3 1 0 12 1

Question: What is optimal?
Answer: (a)

Thm: Fort ~ U|0, 1], revenue optimal mechanism for ex ante
constraint § < 1 — Bis“(q + B) lottery at price B’
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— Unit-demand Preferences

Unit-demand Preferences: (multi-dimensional linear)
e allocation: x = ({z}1,{x}2) with ) {z}; < 1; payment: p
e private value: t = ({t}1,{t}2)

o utility: u =) {t};{z}; —p.
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— Unit-demand Preferences

Unit-demand Preferences: (multi-dimensional linear)
e allocation: x = ({z}1,{x}2) with ) {z}; < 1; payment: p
e private value: t = ({t}1,{t}2)
o utility: u =) {t};{z}; —p.

Running Example: ¢ ~ U[0, 1]2.
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— Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

REDUCTIONS — AUGUST 26, 2015 —



— Ex Ante Pricing: Unit-demand
Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(@) “pricing item 1”
1 -4

(0,0)|(1,0)

REDUCTIONS — AUGUST 26, 2015 —



— Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(@) “pricing item 1”  (b) “uniform lottery”
1 -4

(0,0)|(1,0)
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— Ex Ante Pricing: Unit-demand
Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(@) “pricing item 1”  (b) “uniform lottery” (c) “uniform pricing”

gl vl D
(070) (170> (O)O) (1,0)
0 0
0o % 1 0 /11
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— Ex Ante Pricing: Unit-demand

Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(@) “pricing item 1”  (b) “uniform lottery” (c) “uniform pricing”

dl vl D
(070) (170> (O)O) (1,0)
0 0
0o % 1 0 /11

Question: What is optimal?
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— Ex Ante Pricing: Unit-demand
Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(a) “pricing item 1”

1--

(0,0)

0

(1,0)

(b) “uniform lottery”

0 1>

Question: What is optimal?

Answer: (c)

REDUCTIONS — AUGUST 26, 2015

1

(c) “uniform pricing”

(0,1)

(0,0) (L, QP




— Ex Ante Pricing: Unit-demand
Ex ante Pricing: serve with ex ante probability ¢; E.g., § = 1/2.

(@) “pricing item 1”  (b) “uniform lottery” (c) “uniform pricing”

gl vl D
(070) (170> (O)O) (1,0)
0 0
0o % 1 0 /11

Question: What is optimal?
Answer: (c)

Thm: Fort ~ U|0, 1]2, revenue optimal mechanism for ex ante
constraint ¢ is “uniform pricing at price /1 — max(g, 2/3)”
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Questions?



— Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

REDUCTIONS — AUGUST 26, 2015 —



— Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile g of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)
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— Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile g of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and ¢ ~ F’, quantile is U |0, 1].
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— Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile g of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and ¢ ~ F’, quantile is U |0, 1].

Def. (quantile) allocation rule y() Is allocation probability of unit
measure of types sorted in non-increasing order.

(e.g., discrete type spaces: rectangles, width f(t), height x(%);
sort by height)
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— Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile g of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and ¢ ~ F’, quantile is U |0, 1].

Def. (quantile) allocation rule y() Is allocation probability of unit
measure of types sorted in non-increasing order.

(e.g., discrete type spaces: rectangles, width f(t), height x(%);
sort by height)

public budget

1+ '¢ 11

3/4 + 3/4

/ a0 v(q)
0 + 0 -+
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— Quantile and Allocation Rules

Def: (type) allocation rule x(t) is probability type is served.

Def: quantile g of a type is measure of types with higher allocation
probability (i.e., strength relative to distribution according to
mechanism; break ties randomly)

Note: for any mechanism and ¢ ~ F’, quantile is U |0, 1].

Def. (quantile) allocation rule y() Is allocation probability of unit
measure of types sorted in non-increasing order.

(e.g., discrete type spaces: rectangles, width f(t), height x(%);
sort by height)

public budget unit demand
1t e 17 1+ 1
3/, 1 & 3 (07 1)
/4 4 1/
(1) y(q)
(0,0) ({L.
0 + 0 + 0 0

o Y2 1 o0 12 1 0 /Y21 0 12 1
11|
REDUCTIONS — AUGUST 26, 2015



— Interim Pricing

Interim Pricing Problem:

for allocation constraint ¢, find

e stationary transformation o : [0, 1] — A(]0, 1]), and
(with o(q) ~ U|0, 1] for g ~ U0, 1))

e single agent mechanism with y(q) < E,|y(o(t))]

to maximize revenue.
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— Interim Pricing

Interim Pricing Problem:

for allocation constraint ¢, find

e stationary transformation o : [0, 1] — A(]0, 1]), and
(with o(q) ~ U|0, 1] for g ~ U0, 1))

e single agent mechanism with y(q) < E,|y(o(t))]

to maximize revenue.

Def: cumulative allocation rule Y (§) is Y (g fo
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— Interim Pricing

Interim Pricing Problem: for allocation constraint 7/, find

e stationary transformation o : [0, 1] — A(]0, 1]), and
(with o(q) ~ U|0, 1] for g ~ U0, 1))

e single agent mechanism with y(q) < E,|y(o(t))]

to maximize revenue.
Def: cumulative allocation rule Y (q) fo

Thm: y is feasible for g iff Y (§) < ?(q) for all q.
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— Interim Pricing

Interim Pricing Problem: for allocation constraint 7/, find

e stationary transformation o : [0, 1] — A(]0, 1]), and
(with o(q) ~ U|0, 1] for g ~ U0, 1))

e single agent mechanism with y(q) < E,|y(o(t))]

to maximize revenue.
Def: cumulative allocation rule Y (§) is Y (g fo

Thm: y is feasible for ¢ iff Y (§) < Y'(§) for all §.

Proof sketch: resampling on |a, b] is line segment on cumulative alloc.
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— Interim Pricing

Interim Pricing Problem: for allocation constraint 7/, find

e stationary transformation o : [0, 1] — A(]0, 1]), and
(with o(q) ~ U|0, 1] for g ~ U0, 1))

e single agent mechanism with y(q) < E,|y(o(t))]

to maximize revenue.

Def: cumulative allocation rule Y (§) is Y (g fo

Thm: y is feasible for ¢ iff Y (§) < Y'(§) for all §.

Proof sketch: resampling on |a, b] is line segment on cumulative alloc.
A o
-
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— Interim Pricing: Examples

Example: allocation constraint j(q) = 1 — q.
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— Interim Pricing: Examples

Example: allocation constraint j(q) = 1 — q.

public budget
“Iron 1t(i)‘p; reserve bottom”

~g(q)
b(a) s,
A3
S
0 bt
0 gt 1
1--
B

0 tif 1

Note: ¢T,¢* depend on 4.
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— Interim Pricing. Examples

Example: allocation constraint §j(q) = 1 — q.

public budget unit-demand
“Iron fop; reserve bottom” “unifogm price with reserve”
4(q) 9(q)
pia y(q)
0 bt 0 -
0 gt 1 0 2/3 1
1+ 1
(0,{t}2)
B 1/3
(0,0 ({t}1,4)
0 - -+ -+ 0
o ¢ 1 0 /3 1
Note: t', ¢+ depend on . Note: +/1/3 reserve for all .
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— Unit Demand Example is Revenue Linear

Properties of unit-demand example:

e interim optimal is convex combination of ex ante optimal.
—> revenue linearity
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— Unit Demand Example is Revenue Linear

Properties of unit-demand example:

e interim optimal is convex combination of ex ante optimal.
—> revenue linearity

® exists consistent ordering on types for all interim optimal mechs.
—> orderability
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— Unit Demand Example is Revenue Linear

Properties of unit-demand example:

e interim optimal is convex combination of ex ante optimal.
—> revenue linearity

® exists consistent ordering on types for all interim optimal mechs.
—> orderability

Def: Rev|y] is interim optimal revenue for 3.
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— Unit Demand Example is Revenue Linear

Properties of unit-demand example:

e interim optimal is convex combination of ex ante optimal.
—> revenue linearity

® exists consistent ordering on types for all interim optimal mechs.
—> orderability

Def: Rev|y] is interim optimal revenue for 3.

Def: Agent is revenue linear if Rev[j] = Rev[j'] + Rev[j*] for
any § = §' + g+,
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— Unit Demand Example is Revenue Linear

Properties of unit-demand example:

e interim optimal is convex combination of ex ante optimal.
—> revenue linearity

® exists consistent ordering on types for all interim optimal mechs.
—> orderability

Def: Rev|y] is interim optimal revenue for 3.

Def: Agent is revenue linear if Rev[j] = Rev[j'] + Rev[j*] for
any § = §' + g+,

Thm: revenue linearity implies orderability.
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2. Ex Ante Reduction (with revenue linearity)

[Alaei, Fu, Haghpanah, H '13] [cf. Myerson '81; Bulow, Roberts '89]



— Marginal Revenue

Def:

O R(Q) is ex ante optimal revenue for §;

e R(-)isrevenue curve;
d

o R'(q) = gz R(q) is marginal revenue.
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— Marginal Revenue

Def:
O R(Q) is ex ante optimal revenue for §;

e R(-)isrevenue curve;

e R'(q) = d% (q) is marginal revenue.

Theorem: optimal revenue for ¢ is marginal revenue for 1.

l.e., Rev|y| = E[R'(¢)y(q)]
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— Marginal Revenue

Def:
O R(d) is ex ante optimal revenue for §;

e R(-)isrevenue curve;

e R'(q) = d%R((j) is marginal revenue.

Theorem: optimal revenue for ¢ is marginal revenue for 1.

l.e., Rev|y| = E[R'(¢)y(q)]

Proof:

e R(q) is optimal revenue of step function at g. ,
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— Marginal Revenue

Def:
O R(Q) is ex ante optimal revenue for §;

e R(-)isrevenue curve;

e R'(q) = d% (q) is marginal revenue.

Theorem: optimal revenue for ¢ is marginal revenue for 1.

e, Rev[j] = E[R(¢)9(q)]

Proof:

e R(q) is optimal revenue of step function at g. ,

e (q) is convex combination of step functions.
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— Marginal Revenue

Def:
O R(Q) is ex ante optimal revenue for §;

e R(-)isrevenue curve;

e R'(q) = d% (q) is marginal revenue.

Theorem: optimal revenue for ¢ is marginal revenue for 1.

e, Rev[j] = E[R(¢)9(q)]

Proof:

e R(q) is optimal revenue of step function at g. ,

g
® ;Q(q) IS convex combination of step functions. Coefficients —@’(q)
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— Marginal Revenue

Def:
O R(d) is ex ante optimal revenue for §;

e R(-)isrevenue curve;

e R'(q) = d%R((j) is marginal revenue.

Theorem: optimal revenue for ¢ is marginal revenue for 1.

l.e., Rev|y| = E[R'(¢)y(q)]

Proof:

e R(q) is optimal revenue of step function at g. ,

g
® yf(q) IS convex combination of step functions. Coefficients —@’(q)

e Rev|y] =E[-7'(q)R(q)]

(by revenue linearity)
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— Marginal Revenue

Def:
O R(Q) is ex ante optimal revenue for §;

e R(-)isrevenue curve;

e R'(q) = d%R((j) is marginal revenue.

Theorem: optimal revenue for ¢ is marginal revenue for 1.

e, Rev[j] = E[R(¢)9(q)]

Proof:

e R(q) is optimal revenue of step function at g. ,

g
® ;Q(q) IS convex combination of step functions. Coefficients —@’(q)

e Rev[j] = E[—4(q¢)R(q)] = E[R'(¢){(q)]

(by revenue linearity)
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— Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)
1. map agent types to quantiles via ordering: t — q = (ql, e ,qn)
2. calculate marginal revenues of agent quantiles: R (q;)
3. serve agents to maximize total marginal revenues ) . R;(q;) - x;

4. outcome/payments for each ¢ are from R;(g;) mechanism
for “critical quantile” g; .
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— Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)
1. map agent types to quantiles via ordering: t — q = (ql, e ,qn)
2. calculate marginal revenues of agent quantiles: R;(qi)
3. serve agents to maximize total marginal revenues ) . R;(q;) - x;

4. outcome/payments for each ¢ are from R;({;) mechanism
for “critical quantile” g; .

Theorem: marginal revenue mechanism is optimal.
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— Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)
1. map agent types to quantiles via ordering: t — q = (ql, e ,qn)
2. calculate marginal revenues of agent quantiles: R (q;)
3. serve agents to maximize total marginal revenues ) . R;(q;) - x;

4. outcome/payments for each ¢ are from R;(g;) mechanism
for “critical quantile” g; .
Theorem: marginal revenue mechanism is optimal.
Proof:

® maximizing marginal revenue point-wise also maximizes expected
marginal revenue.
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— Optimal Multi-agent Mechanisms

Marginal Revenue Mechanism: (for orderable agents)
1. map agent types to quantiles via ordering: t — q = (ql, e ,qn)
2. calculate marginal revenues of agent quantiles: R (q;)
3. serve agents to maximize total marginal revenues ) . R;(q;) - x;

4. outcome/payments for each ¢ are from R;(g;) mechanism
for “critical quantile” g; .
Theorem: marginal revenue mechanism is optimal.
Proof:

® maximizing marginal revenue point-wise also maximizes expected
marginal revenue.

® revenue curves are concave; marginal revenue curves are monotone;
critical quantiles exist; mechanism is incentive compatible.
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— MRM for Unit-demand Example

Example: red-blue car, types i.i.d. U[0, 1]?.
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— MRM for Unit-demand Example

Example: red-blue car, types i.i.d. U[0, 1]?.
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— MRM for Unit-demand Example

1
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Example: red-blue car, types i.i.d. U[0, 1]?.

0

0 1
e Recall Thm: U[0, 1] agent is revenue linear;

revenue curve RR(§) posts price (/1 — ¢,v/1 — q).
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— MRM for Unit-demand Example

1

Example: red-blue car, types i.i.d. U[0, 1]?.

0

0 1
e Recall Thm: U[0, 1] agent is revenue linear;

revenue curve RR(§) posts price (/1 — ¢,v/1 — q).

L=

0 2/31

e R(q) =qv1-

K>
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1

Example: red-blue car, types i.i.d. U[0, 1]?.

0

0 1
e Recall Thm: U[0, 1] agent is revenue linear;

revenue curve RR(§) posts price (/1 — ¢,v/1 — q).

L=

0 2/31

e R(q) =qv1-

K>

e quantile for type (tred, toue) IS ¢ = 1 — max(treq, towe ).
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— MRM for Unit-demand Example

1

Example: red-blue car, types i.i.d. U[0, 1]?.

0

0 1
e Recall Thm: U[0, 1] agent is revenue linear;

revenue curve RR(§) posts price (/1 — ¢,v/1 — q).

L=

0 2/31

e R(q) =qv1-

K>

e quantile for type (tred, toue) IS ¢ = 1 — max(treq, towe ).

e Maximize > . R'(q;) - ©;?
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— MRM for Unit-demand Example

1

Example: red-blue car, types i.i.d. U[0, 1]?.

0

0 1
e Recall Thm: U[0, 1] agent is revenue linear;

revenue curve RR(§) posts price (/1 — ¢,v/1 — q).

L=

0 2/31

e R(q) =qv1-

K>

e quantile for type (tred, toue) IS ¢ = 1 — max(treq, towe ).

e Maximize » . R'(q;) - x;? serve agent with smallest ¢ < 2/3.
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— MRM for Unit-demand Example

Example: red-blue car, types i.i.d. U[0, 1]?.

1

0

0 1

e Recall Thm: U[0, 1] agent is revenue linear;
revenue curve RR(§) posts price (/1 — ¢,v/1 — q).

e R(q) =qv1-

e quantile for type (tred, thwe) is ¢ = 1 — max(treq, towe)”.

K>

L=

0 2/31
2

e Maximize » . R'(q;) - x;? serve agent with smallest ¢ < 2/3.

e Marginal Revenue Mechanism: serve agent with highest maximum
value, charge second highest maximum value or reserve y/1/3.
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— MRM for Unit-demand Example

1

Example: red-blue car, types i.i.d. U[0, 1]?.

0

0 1
e Recall Thm: U0, 1]* agent is revenue linear;

revenue curve RR(§) posts price (/1 — ¢,v/1 — q).

L=

0 2/31

e R(q) =qv1-

K>

e quantile for type (tred, toue) IS ¢ = 1 — max(treq, towe ).

e Maximize » . R'(q;) - x;? serve agent with smallest ¢ < 2/3.

e Marginal Revenue Mechanism: serve agent with highest maximum
value, charge second highest maximum value or reserve y/1/3.

e Cor: the marginal revenue mechanism is revenue optimal.
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Multl-dimensional and Non-Linear

Mechanism Design (and Approximation)
Part Il: Solving Single-agent Problems

Jason Hartline

Northwestern University
August 27, 2015



— Multi- to Single-agent Reductions

Ex ante Reduction: [cf. Myerson '81; Bulow and Roberts '89]

® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]
® single-agent problem: constraint on entire allocation rule.

e multi-agent composition: stochastic weighted optimization.

e preference assumption: none:

— remaining multi-dimensional linear (utility) preferences.

— non-linear (utility) preferences.
(e.g., risk aversion, budgets)
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1. How do you prove revenue linearity?

REDUCTIONS — AUGUST 26, 2015

21|



— Loose Ends

1. How do you prove revenue linearity?

(a) payment identity

REDUCTIONS — AUGUST 26, 2015

21|



— Loose Ends

1. How do you prove revenue linearity?

(a) payment identity
e single-dimensional linear preferences have payment identity.
e multi-dimensional preferences do not have payment identity.

REDUCTIONS — AUGUST 26, 2015 —



— Loose Ends

1. How do you prove revenue linearity?

(a) payment identity
e single-dimensional linear preferences have payment identity.
e multi-dimensional preferences do not have payment identity.
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e some multi-dimensinal preferences have virtual values.
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— Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

e single-dimensional linear preferences have payment identity.
e multi-dimensional preferences do not have payment identity.

(b) existence of virtual values
e some multi-dimensinal preferences have virtual values.

2. Are optimal mechanisms for U |0, 1]2 are single-dimensional
projection to “favorite item”?
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— Loose Ends

1. How do you prove revenue linearity?
(a) payment identity

e single-dimensional linear preferences have payment identity.
e multi-dimensional preferences do not have payment identity.

(b) existence of virtual values
e some multi-dimensinal preferences have virtual values.

2. Are optimal mechanisms for U |0, 1]2 are single-dimensional
projection to “favorite item”?

® yes, but this must be proved. [later today]
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agent like a convex combination of ex ante optimal mechanismes.
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Def. A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanismes.

Challenge: optimal mechanism is not marginal revenue based.

Approach: relax ex post feasibility to hold in expectation, a.k.a., ex
ante relaxation.
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Def. A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanismes.

Challenge: optimal mechanism is not marginal revenue based.

Approach: relax ex post feasibility to hold in expectation, a.k.a., ex
ante relaxation.

Observation:
e optimal ex ante relaxation is marginal revenue based.

e all single-dimensional linear agent mechanisms are marginal revenue
based.
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— Approx. Ex Ante Reduction w.o. Revenue Linearity -

Def. A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanismes.

Challenge: optimal mechanism is not marginal revenue based.

Approach: relax ex post feasibility to hold in expectation, a.k.a., ex
ante relaxation.

Observation:
e optimal ex ante relaxation is marginal revenue based.

e all single-dimensional linear agent mechanisms are marginal revenue
based.

Meta-theorem: any approximation result for single-dimensional linear
agents w.r.t. the optimal ex ante relaxation extends to general agents.
(but may need to be reinterpreted)

REDUCTIONS — AUGUST 26, 2015 —



— Approx. Ex Ante Reduction w.o. Revenue Linearity -

Def. A marginal-revenue-based mechanism is one that looks to every
agent like a convex combination of ex ante optimal mechanismes.

Challenge: optimal mechanism is not marginal revenue based.

Approach: relax ex post feasibility to hold in expectation, a.k.a., ex
ante relaxation.

Observation:
e optimal ex ante relaxation is marginal revenue based.

e all single-dimensional linear agent mechanisms are marginal revenue
based.

Meta-theorem: any approximation result for single-dimensional linear
agents w.r.t. the optimal ex ante relaxation extends to general agents.
(but may need to be reinterpreted)

Examples: posted pricing; anonymous pricing.
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3. Interim Reduction (without revenue linearity)
[Alaei, Fu, Haghpanah, H, Malekian '12]

[cf. Cai, Daskalakis, Weinberg '12,13]
[cf. Maskin, Riley '84; Matthews '84; Border '91,07; Mierendorff '11]



— Approach

Def: Interim allocation constraints g (with 77; : [0, 1] — [0, 1])is
Interim feasible if exists ex post feasible mechanism
g :10,1]" — X C [0, 1]™ that induces them.

~EP

(e, i(qi) = Eql; (q) | 4]
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Def: Interim allocation constraints g (with 77; : [0, 1] — [0, 1])is
Interim feasible if exists ex post feasible mechanism
g :10,1]" — X C [0, 1]™ that induces them.

~EP

(e, i(qi) = Eql; (q) | 4]

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.
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— Approach

Def: Interim allocation constraints ¢ (with ¢; : [0, 1] — [0, 1]) is
Interim feasible if exists ex post feasible mechanism
g :10,1]" — X C [0, 1]™ that induces them.

~EP

(e, i(qi) = Eql; (q) | 4]

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Agenda:
e theorem proof sketch.
e understanding interim feasibility.
® characterizing ex post mechanisms.

® optimization subject to interim feasibility.

REDUCTIONS — AUGUST 26, 2015 —



—

Theorem Proof Sketch

Thm: The optimal revenue is given by the program
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Theorem Proof Sketch

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Note: program upper bounds optimal revenue.
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Theorem Proof Sketch

—

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Note: program upper bounds optimal revenue.

Lemma: For any
® eXx post feasible (not incentive compatible) mechanism @EP and

® incentive compatible (not ex post feasible) mechanism y

if ex post ¢/~ induces interim ¢4 and y; is feasible for 4j; (for all 7), then
combined mechanism exists.
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— Theorem Proof Sketch

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Note: program upper bounds optimal revenue.

Lemma: For any
® eXx post feasible (not incentive compatible) mechanism QEP and

® incentive compatible (not ex post feasible) mechanism y

if ex post ¢/~ induces interim ¢4 and y; is feasible for 4j; (for all 7), then
combined mechanism exists.

Proof: from definition of interim pricing problem.
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— Interim Feasiblility: Examples

Question: Consider single-item and allocation rules:

i 1
1 Y 1 2
L.
0 + 0
0 1 0o a2 1

Which are interim feasible:

@ (¥, y"), ® (y',y*), or (© (¥, yt)?
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i 1
1 Y 1 2
L.
0 + 0
0 1 0o a2 1

Which are interim feasible:

@ (¥, y"), ® (y',y*), or (© (¥, yt)?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is
“double dictator” and infeasible.
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Question: Consider single-item and allocation rules:

i 1
1 Y 1 2
L.
0 + 0
0 1 0o a2 1

Which are interim feasible:

@ (¥, y"), ® (y',y*), or (© (¥, yt)?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is
“double dictator” and infeasible.

Note: for (c), Pr|qy or g2 is high] = 3/4 but E|alloc. to high| = 1.
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— Interim Feasiblility: Examples

Question: Consider single-item and allocation rules:

i 1
1 Y 1 2
L.
0 + 0
0 1 0o a2 1

Which are interim feasible:

@ (¥, y"), ® (y',y*), or (© (¥, yt)?

Answer: (a) is lottery mechanism; (b) is dictator mechanism; (c) is
“double dictator” and infeasible.

Note: for (c), Pr|qy or g2 is high] = 3/4 but E|alloc. to high| = 1.
(but cannot allocate to types more often than types are realized)
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.
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Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

REDUCTIONS — AUGUST 26, 2015 —



— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.

e claim: any feasible symmetric y = (y, y) is feasible for ¢y = (9, 3).
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.

e claim: any feasible symmetric y = (y, y) is feasible for ¢y = (9, 3).

e suppose y infeasible for ¢, then exists § with Y (§) > Y (§).
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.
e claim: any feasible symmetric y = (y, y) is feasible for ¢y = (9, 3).

e suppose y infeasible for ¢, then exists § with Y (§) > Y (§).
e note Prlg; € [0, 4]] = ¢;
Pr(3i,q: € 0,4]] =1~ (1 —4¢)* =24 —q"
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.
Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.
e claim: any feasible symmetric y = (y, y) is feasible for ¢y = (9, 3).
e suppose y infeasible for ¢, then exists § with Y (§) > Y (§).
e note Prlg; € [0, 4]] = ¢;
Pr(Ji, qi € [o dl=1-(1-§>=24-

onoteY fo (1—¢q)dg=4—4°/2
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.
e claim: any feasible symmetric y = (y, y) is feasible for ¢y = (9, 3).
e suppose y infeasible for ¢, then exists § with Y (§) > Y (§).

e note Prg; € [0,q]] = ¢;

Pr(3i, q; € [0 Jl=1-01-9°=24—-¢"

o noteY fo (1—¢q)dg=4—4°/2
e so expected number served = 2Y (§) = 2§ —
= Pr|d¢, q1 € |0, ¢]] = expected number realized.
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— The Symmetric Case: Interim Feasibilily

Example: one item, two agents, i.i.d. F', common budget B5.

Fact: every symmetric convex optimization has symmetric optimal
solution.

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Proof: e.g., for n = 2, strongest quantile wins gives j&(q) =1—q.
e claim: any feasible symmetric y = (y, y) is feasible for ¢y = (9, 3).
Y (

Y (4).

e suppose y infeasible for g, then exists § with Y (§) >
e note Pr(q; € [0, 4]] = ¢;
Pr(3i, q; € [0 Jl=1-01-9°=24—-¢

o noteY fo (1—¢q)dg=4—4°/2
e so expected number served = 2Y(q) = 24 — §¢°
= Pr[3¢, q1 € [0, q]] = expected number realized.

e but Y (4) > Y (§) so constraint violated for y.
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— Symmetric Case: Conclusions

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.
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— Symmetric Case: Conclusions

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Note: “strongest quantile wins” allocation constraint is independent of
single-agent problems.

REDUCTIONS — AUGUST 26, 2015 —



— Symmetric Case: Conclusions

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Note: “strongest quantile wins” allocation constraint is independent of
single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and
reserve prices bottom (with regularity assumption). [Laffont, Robert '96]
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— Symmetric Case: Conclusions

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Note: “strongest quantile wins” allocation constraint is independent of
single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and
reserve prices bottom (with regularity assumption). [Laffont, Robert '96]

1

~g(q)
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— Symmetric Case: Conclusions

Lemma: “strongest quantile wins” is optimal ex post feasible allocation
constraint for program.

Note: “strongest quantile wins” allocation constraint is independent of
single-agent problems.

Corollary: optimal mechanism is all-pay auction that irons top and
reserve prices bottom (with regularity assumption). [Laffont, Robert '96]

1

~g(q)

0 gyt 1
Note: almost all positive results in literature for non-linear mechanism
design are based on this fact. (e.g., budget, risk aversion.)
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— Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, gorer o1

> Yi@) <1-1[a-a),  vae[o1"
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— Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, gorer o1

> Yi@) <1-1[a-a),  vae[o1"

Proof: max-flow/min-cut argument
dictator mechanism

Hy » L
1 ‘2, 2\

) ./' ,ar'\\\\‘
\I\ﬁ;\ 4 °

<
-
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— Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, gorer o1

> Yi@) <1-1[a-a),  vae[o1"

Proof: max-flow/min-cut argument
dictator mechanism

L+1Lo OK——'\;O\IA
1H2 LQ\\
0" () \

N
® )

[ J [ J
KHQ
-

Capacities: a to q: f(q); g to q;: f(q); q; to b: yz(qz)
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— Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, gorer o1

> Y@ <1-1[a-a),  vaelo"

Proof: max-flow/min-cut argument

dictator mechanism double dictator
L1y @ = = = =0 [, L1l @ o [
,I \\ E z
1Ib¢\L2 \ 1H2 LQ\
o” ° °

~. -
< S
-’ |
H1H- 0 Cr @ H1 HiH, o o

Capacities: a to q: f(q); g to q;: f(q); q; to b: yz(qz)
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— Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, gorer o1

> Y@ <1-1[a-a),  vaelo"

Proof: max-flow/min-cut argument

dictator mechanism double dictator
L1y @ = = = =0 [, L1l o [
¢7 \
11‘>\L2\\ 1H2;Z
o~ o, \ ° o -’
a‘/HlL2\¢<\\\‘ba‘ @>(Yx “e b
\.¢’ ./ ¢’A‘]
Kh& >_< H-
> &
H1H- 0 Cr @ H1 H1H2 o

Capacities: a to q: f( ); g to q;: f(q . qitob: y@ q@

Note: generalizes to matroids with ) . Y;(g;) < ESNq[rank(S)]
[Alael Fu, Haghpanah , Malekian '12]
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— Characterization of Interim Feasibility

Thm: For single-item, allocation rules y are interim feasible iff, gorer o1

> Y@ <1-1[a-a),  vaelo"

PI‘OOf maX'ﬂOW/m|n'Cut argument [cf. Aggarwal, Fiat, Goldberg, H., Immorlica, Sudan '05]

dictator mechanism double dictator
L1y @ = = = =0 [, L1l o [
¢7 \
11‘>\L2\\ 1H2;Z
o~ o, \ ° o -’
a‘/HlL2\¢<\\\‘ba‘ @>(Yx “e b
\.¢’ ./ ¢’A‘]
Kh& >_< H-
> &
H1H- 0 Cr @ H1 H1H2 o

Capacities: a to q: f( ); g to q;: f(q . qitob: y@ q@

Note: generalizes to matroids with ) . Y;(g;) < ESNq[rank(S)]
[Alael Fu, Haghpanah , Malekian '12]

29
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— Characterization of Ex Post Implementation

Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.
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— Characterization of Ex Post Implementation

Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]
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— Characterization of Ex Post Implementation
Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]

Proof sketch:

e discretize quantiles

30|
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— Characterization of Ex Post Implementation

Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]

Proof sketch:

e discretize quantiles

e view y as “flattened” vector z in [0, 1]™ (total number of types )
defined as ziq; = yi(q) (right-hand column of network flow)

30|
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— Characterization of Ex Post Implementation

Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]

Proof sketch:

e discretize quantiles

e view y as “flattened” vector z in [0, 1]™ (total number of types )
defined as ziq; = yi(q) (right-hand column of network flow)

Important Fact: 2iq = Eq |25;(q)] (interim z is expectation of ex post z=°)

30|
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— Characterization of Ex Post Implementation
Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]

Proof sketch:
e discretize quantiles

e view y as “flattened” vector z in [0, 1]™ (total number of types )
defined as ziq; = yi(q) (right-hand column of network flow)

® interim feasible z is convex (in fact: a polytope)

Important Fact: 2iq = Eq |25;(q)] (interim z is expectation of ex post z=°)
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— Characterization of Ex Post Implementation

Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]

Proof sketch:
e discretize quantiles

e view y as “flattened” vector z in [0, 1]™ (total number of types )
defined as ziq; = yi(q) (right-hand column of network flow)

® interim feasible z is convex (in fact: a polytope)

e any interim feasible z is convex combination of vertices.

Important Fact: 2iq = Eq |25;(q)] (interim z is expectation of ex post z=°)
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— Characterization of Ex Post Implementation

Def. a stochastic weighted optimizer randomly maps quantiles to
weights and then chooses feasible outcome to maximize weight.

Thm: Any interim feasible allocation ¢y can be ex post implemented by
stochastic weighted optimizer y=". [Cai, Daskalakis, Weinberg '13]

Proof sketch:
e discretize quantiles

e view y as “flattened” vector z in [0, 1]™ (total number of types )
defined as ziq; = yi(q) (right-hand column of network flow)

® interim feasible z is convex (in fact: a polytope)
e any interim feasible z is convex combination of vertices.

® vertices are given by (deterministic) weighted optimizer.

Important Fact: 2iq = Eq |25;(q)] (interim z is expectation of ex post z=°)
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— Flattened Ex Post Feasibility

Ex Post Feasibility y="(q) € X (e.g.singleitem > v, (q) < 1)
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e 2, (q) =0ifg #q.

® Xi—1%ig,(q) € X
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Ex Post Feasibility y="(q) € X (e.g.singleitem > v, (q) < 1)
Ex Post Flattened Feasibility:

e 2, (q) =0ifg #q.

® Xi—1%ig,(q) € X

Example: discretize 1 as { L, H }; discretize 2 as { M }; index H LM
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— Flattened Ex Post Feasibility

Ex Post Feasibility y="(q) € X (e.g.singleitem > v, (q) < 1)
Ex Post Flattened Feasibility:

e 2, (q) =0ifg #q.

® Xi—1%ig,(q) € X

Example: discretize 1 as { L, H }; discretize 2 as { M }; index H LM

100
| |
|
|
| 010
000 000
"
001 001
q:(HaM) q:(LvM)
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— Flattened Ex Post Feasibility

Ex Post Feasibility y="(q) € X (e.g.singleitem > v, (q) < 1)
Ex Post Flattened Feasibility:

e 2i,(q) =0ifg #q

o XI,25F (g) € X

Example: discretize 1 as { L, H }; discretize 2 as { M }; index H LM

100

|

1 100/ 110/

1

1 010 ]
000 000 000

" 011
001 001 001
q=(H,M) q= (L, M) interim
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— Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.
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— Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Computational Tractability:
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— Optimization subject to Interim Feasibility

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Computational Tractability:

e Can optimize in general via separation oracle and sampling. :
[Cal, Daskalakis, Weinberg '12,'13]
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— Optimization subject to Interim FeasibDility

Thm: The optimal revenue is given by the program

max Rev|y;
ax ) | Rev[j]
s.t. “y is interim feasible.
Computational Tractability:
e Can optimize in general via separation oracle and sampling.

[Cal, Daskalakis, Weinberg '12,'13]

e Single item: Can optimize with m?-sized linear program.
[Alaei, Fu, Haghpanah, H., Malekian '12]
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— Optimization subject to Interim FeasibDility

Thm: The optimal revenue is given by the program

ma Rev|y;
ax ) | Rev[j]

s.t. “y is interim feasible.

Computational Tractability:

e Can optimize in general via separation oracle and sampling. :
[Cal, Daskalakis, Weinberg '12,'13]

e Single item: Can optimize with m?-sized linear program.
[Alaei, Fu, Haghpanah, H., Malekian '12]

e Matroid: Can optimize as interim feasibility is polymatroid.
[Alaei, Fu, Haghpanah, H., Malekian '12]
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— Conclusions: Multi- to Single-agent ReductionS e

Ex ante Reduction: [cf. Myerson '81; Bulow and Roberts '89]

® single-agent problem: constraint on ex ante allocation probability.
e multi-agent composition: marginal revenue mechanism.

® preference assumption: revenue linearity
— single-dimensional linear (utility) preferences.
— some multi-dimensional linear (utility) preferences.

Interim Reduction: [cf. Border; Alaei et al; Cai et al]
® single-agent problem: constraint on entire allocation rule.

e multi-agent composition: stochastic weighted optimization.

e preference assumption: none:

— remaining multi-dimensional linear (utility) preferences.

— non-linear (utility) preferences.
(e.g., risk aversion, budgets)
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4. Solving Public Budget Single-agent Problem
[cf. Laffont, Robert '96; Bulow, Roberts '89; Devanur, Ha, H. '13]

[cf. Bulow, Klemperer '96]



5. Solving Unit-demand Single-agent Problem
[Haghpanah, H. '15]

[cf. Daskalakis, Deckelbaum, Tzamos '13,14] [cf. Wang, Tang '14]
[cf. Glannakopoulos, Koutsoupias '14]

[cf. Armstrong '96; Rochet, Chone '98]



— Unit-demand Preferences

Unit-demand Preferences:

® M items.

e allocation: = ({Z}1,...,{@}m) with ) {z}; < 1;
payment: p

e private type: t = ({t}1,...,{t}m) intype space 7 = [0, 1|™
o utility: u=) .t -x—p.

(t-x = {thi{z}))

e distribution: t ~ F' (with density function f (%))
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® M items.

e allocation: = ({Z}1,...,{@}m) with ) {z}; < 1;
payment: p

e private type: t = ({t}1,...,{t}m) intype space 7 = [0, 1|™
o utility: u=) .t -x—p.

(t-x = {thi{z}))
e distribution: t ~ F' (with density function f (%))
Examples:
e single-dimensional linear: m = 1

e two-item uniform: m = 2, t ~ U[0, 1]°.
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— Unit-demand Preferences

Unit-demand Preferences:

® M items.

e allocation: = ({Z}1,...,{@}m) with ) {z}; < 1;
payment: p

e private type: t = ({t}1,...,{t}m) intype space 7 = [0, 1|™
o utility: u=) .t -x—p.

(t-x = {thi{z}))
e distribution: t ~ F' (with density function f (%))
Examples:
e single-dimensional linear: m = 1

e two-item uniform: m = 2, t ~ U[0, 1]°.

Assumption: item-symmetric distributions; wlog {t}1 > {t};.
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— Motivation: Second-degree Price Discrimination m

Example: red or blue car.
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— Motivation: Second-degree Price Discrimination m

Example: red or blue car.

Intuition: price discrimination can improve revenue if high-value
agents are more sensitive to color.

e offer high price to choose color

e offer low price for random color
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— Motivation: Second-degree Price Discrimination m

Example: red or blue car.

Intuition: price discrimination can improve revenue if high-value
agents are more sensitive to color.

e offer high price to choose color
e offer low price for random color
Today: when high-value agents are less sensitive to color

e price discrimination is unhelpful.
(without loss to project multi-dimensional type to
single-dimensional value for favorite item)

e single-dimensinal theory gives optimal mechanism for projection.
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— Motivation: Second-degree Price Discrimination mm

Example: red or blue car.

Intuition: price discrimination can improve revenue if high-value
agents are more sensitive to color.

e offer high price to choose color
e offer low price for random color
Today: when high-value agents are less sensitive to color

e price discrimination is unhelpful.
(without loss to project multi-dimensional type to
single-dimensional value for favorite item)

e single-dimensinal theory gives optimal mechanism for projection.

Thm: For item-semetric distributions, favorite-item projection is optimal
if Dist¢|[{t}2/{t}1 | {t}1]is ordered according to {¢}; by first-order
stochastic dominance.
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. Ant - 2
—— Warmup: Optimal Mechanism for U0, 1]* ——

Approach: solve on rays from origin; check consistency [Armstrong '96]
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Approach: solve on rays from origin; check consistency [Armstrong '96]

o Let I}, denote Dist;[{t}1 | {t}1 > {t}2];
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. Ant - 2
—— Warmup: Optimal Mechanism for U0, 1]* ——

Approach: solve on rays from origin; check consistency [Armstrong '96]

o Let F,.x denote Dist;[{t}1 | {t}1 > {t}2];
fort ~ U0, 1]%: c.df. Flpax(2) = 22; density fmax(z) = 22.
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e Condition on {t}5/{t}1 = 0 and assume @ is public.
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. Ant - 2
—— Warmup: Optimal Mechanism for U0, 1]* ——

Approach: solve on rays from origin; check consistency [Armstrong '96]

o Let F,.x denote Dist;[{t}1 | {t}1 > {t}2];
fort ~ U0, 1]%: c.df. Flpax(2) = 22; density fmax(z) = 22.

e Condition on {t}5/{t}1 = 0 and assume @ is public.
e Note Disty[{t}1 | {t}2/{t}1 = 0]is Fuax.

e The following are isomorphic:
— single probabilistic item: value {t}1, can allocate w.p. 1, 8, or 0

— two items, value {t}; for item 1, value 6 - {t}; for item 2.
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. Ant - 2
—— Warmup: Optimal Mechanism for U0, 1]* ——

Approach: solve on rays from origin; check consistency [Armstrong '96]

o Let F,.x denote Dist;[{t}1 | {t}1 > {t}2];
fort ~ U0, 1]%: c.df. Flpax(2) = 22; density fmax(z) = 22.

e Condition on {t}5/{t}1 = 0 and assume @ is public.
e Note Disty[{t}1 | {t}2/{t}1 = 0]is Fuax.

e The following are isomorphic:
— single probabilistic item: value {t}1, can allocate w.p. 1, 8, or 0

— two items, value {t}; for item 1, value 6 - {t}; for item 2.
e optimal auction for single probabilistic item sells deterministically by

posting price ¢,L (0) = /1/3.
[“no haggling”; Stokey '79; Myerson '81; Riley, Zeckhauser '83]

38
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. Ant - 2
—— Warmup: Optimal Mechanism for U0, 1]* ——

Approach: solve on rays from origin; check consistency [Armstrong '96]

o Let F,.x denote Dist;[{t}1 | {t}1 > {t}2];
fort ~ U0, 1]%: c.df. Flpax(2) = 22; density fmax(z) = 22.

e Condition on {t}5/{t}1 = 0 and assume @ is public.
e Note Disty[{t}1 | {t}2/{t}1 = 0]is Fuax.

e The following are isomorphic:
— single probabilistic item: value {t}1, can allocate w.p. 1, 8, or 0

— two items, value {t}; for item 1, value 6 - {t}; for item 2.

e optimal auction for single probabilistic item sells deterministically by
posting price ¢,L (0) = /1/3.
[“no haggling”; Stokey '79; Myerson '81; Riley, Zeckhauser '83]
e optimal auction with known 6 is independent of 6; therefore, it is
optimal without knowledge of 6.

38
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— Beyond Rays from Origin

Challenges for Generalization:

® must consider paths other than rays from origin
(but there are many, and most “do not work”)

® must solve mechanism design problem on general paths
(argument for rays does not generalize)
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— Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue
(must maximize revenue in expectation for distribuion of types)
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— Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue

(must maximize revenue in expectation for distribuion of types)

Def: function ¢ : 7 — R™

(a) is amortization of revenue if for any IC IR mech. (7, pT).
(E[virtual surplus] = revenue: E; |¢(¢)-zT(t)| =E¢[pT(¢))])

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) c
argmax,; ¢(t) - 1 is incentive compatible.
(z is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).
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(must maximize revenue in expectation for distribuion of types)

Def: function ¢ : 7 — R™

(a) is amortization of revenue if for any IC IR mech. (7, pT).
(E[virtual surplus] = revenue: E; |¢(¢)-zT(t)| =E¢[pT(¢))])

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) c
argmax,; ¢(t) - 1 is incentive compatible.
(z is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.
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— Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue
(must maximize revenue in expectation for distribuion of types)

Def: function ¢ : 7 — R™

(a) is amortization of revenue if for any IC IR mech. (7, pT).
(E|virtual surplus] = revenue: E; |¢(t)-zT(t)| =E¢|p'(t)])

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) c
argmax,; ¢(t) - 1 is incentive compatible.
(z is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.

Proof: E [p(t)] = E[6(1) - 2(1)] = E[(t) - ' (1)] = E[p (1)
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— Codification of Approach of Virtual Values

Recall: no pointwise optimal mechanism for revenue
(must maximize revenue in expectation for distribuion of types)

Def: function ¢ : 7 — R™

(a) is amortization of revenue if for any IC IR mech. (7, pT).
(E[virtual surplus] = revenue: E¢ |¢(t)-zT(t)| =E¢|p'(t)])

(b) is incentive compatible if pointwise virtual surplus maximizer x(t) €
argmax,; ¢(t) - 1 is incentive compatible.
(x is IC if exists p such that (x, p) is IC)

(c) is virtual value if (a) and (b).

Prop: If virtual value exists, virtual surplus maximizer is optimal.

Proof: E [p(t)] = E[6(1) - 2(1)] = E[(t) - ' (1)] = E[p (1)

Conclusion: virtual values reduce optimization in expectation to
pointwise.
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}55” is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}{;5” is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f

Intuition: consider price ¢ instead of price ¢ + dt.
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}{;5” is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
Intuition: consider price ¢ instead of price ¢ + dt.

e gain: t from typesin [t,t + dt) (with probability f(#)d?)
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}55” is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
Intuition: consider price ¢ instead of price ¢ + dt.
e gain: t from typesin [t,t + dt) (with probability f(#)d?)

o loss: dt fromtypes t™ > ¢ +dt  (with probability 1 — F'(t))
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}{;5” is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
Intuition: consider price ¢ instead of price ¢ + dt.

e gain: t from typesin [t,t + dt) (with probability f(#)d?)

o loss: dt fromtypes t™ > ¢ +dt  (with probability 1 — F'(t))

o net: t f(t)dt — (1 — F(t))dt
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}{;?) is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
Intuition: consider price ¢ instead of price ¢ + dt.
e gain: t from typesin [t,t + dt) (with probability f(#)d?)
o loss: dt fromtypes t™ > ¢ +dt  (with probability 1 — F'(t))
o net: ¢ f(£)dt — (1 — F(t))dt

e virtual surplus: integrate (net x allocation): E|¢(t)x(t)]
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}{;?) is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
Intuition: consider price ¢ instead of price ¢ + dt.
e gain: t from typesin [t,t + dt) (with probability f(#)d?)
o loss: dt fromtypes t™ > ¢ +dt  (with probability 1 — F'(t))
e net: t f(t)dt — (1 — F(t))dt
e virtual surplus: integrate (net X allocation): E[¢(t)x(?)]

Lemma: if ¢(+) is monotone (a.k.a. F' is regular), pointwise
optimization of virtual surplus is IC. [Myerson '81]
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— Single-dimensional Linear (1M = 1)

Lemma: ¢(t) =1 — 1}{;?) is an amortization of revenue.

(.BI\)/Iyerson '81]

(cumulative distribution function F'(-); density function f
Intuition: consider price ¢ instead of price ¢ + dt.
e gain: t from typesin [t,t + dt) (with probability f(#)d?)
o loss: dt fromtypes t™ > ¢ +dt  (with probability 1 — F'(t))
e net: t f(t)dt — (1 — F(t))dt
e virtual surplus: integrate (net X allocation): E[¢(t)x(?)]

Lemma: if ¢(+) is monotone (a.k.a. F' is regular), pointwise
optimization of virtual surplus is IC. [Myerson '81]

Eg.t~U|0,1];, F()=t f(t)=1, o) =2t—1.
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—— General (m = 2) ——



—— General (m = 2) ——

Lemma: For and IC mechanism, utility u(%) is convex and allocation
x(t) is gradient of utility Vu(t). [Rochet '85]
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Lemma: For and IC mechanism, utility u(%) is convex and allocation
x(t) is gradient of utility Vu(t). [Rochet '85]

Amortization of Revenue: [Rochet, Chone '98]
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—— General (m = 2) ——

Lemma: For and IC mechanism, utility u(%) is convex and allocation
x(t) is gradient of utility Vu(t). [Rochet '85]

Amortization of Revenue: [Rochet, Chone '98]

e write revenue = surplus — utility: E[p(t)] = E[t - x(t) — u(t)].
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—— General (m = 2) ——

Lemma: For and IC mechanism, utility u(%) is convex and allocation
x(t) is gradient of utility Vu(t). [Rochet '85]

Amortization of Revenue: [Rochet, Chone '98]
e write revenue = surplus — utility: E[p(t)] = E[t - x(t) — u(t)].

e integrate by parts on paths to rewrite E{u(t)] in terms of gradient

Vul(t).
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e write revenue = surplus — utility: E[p(t)] = E[t - x(t) — u(t)].

e integrate by parts on paths to rewrite E{u(t)] in terms of gradient
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—— General (m = 2) ——

Lemma: For and IC mechanism, utility u(%) is convex and allocation
x(t) is gradient of utility Vu(t). [Rochet '85]

Amortization of Revenue: [Rochet, Chone '98]
e write revenue = surplus — utility: E[p(t)] = E[t - x(t) — u(t)].

e integrate by parts on paths to rewrite E{u(t)] in terms of gradient

Vul(t).
e regroup as E[p(t)] = E|o(t) - x(1)]

Note: for m = 2, a degree of freedom in chosing paths.
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—— General (m = 2) ——

Lemma: For and IC mechanism, utility u(%) is convex and allocation
x(t) is gradient of utility Vu(t). [Rochet '85]

Amortization of Revenue: [Rochet, Chone '98]
e write revenue = surplus — utility: E[p(t)] = E[t - x(t) — u(t)].

e integrate by parts on paths to rewrite E{u(t)] in terms of gradient

Vul(t).

e regroup as E[p(t)] = E|o(t) - x(1)]
Note: for m = 2, a degree of freedom in chosing paths.

Note: multi-dimensional amortizations of revenue are not generally
Incentive compatible. (thus, are not generally virtual value functions)
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— Reverse Solving for Virtual Values

Main ldea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.
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— Reverse Solving for Virtual Values

Main ldea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it
only serve the agent her favorite item (or nothing).
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Main ldea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it
only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the
single-dimensional theory: t,ax = max;{t};; Fimax; fmax; Pmax-:
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— Reverse Solving for Virtual Values

Main ldea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it
only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the
single-dimensional theory: t,ax = max;{t};; Fimax; fmax; Pmax-:

Goal: prove optimality of favorite-item projection among all mechs.
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— Reverse Solving for Virtual Values

Main ldea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it
only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the
single-dimensional theory: t,ax = max;{t};; Fimax; fmax; Pmax-:

Goal: prove optimality of favorite-item projection among all mechs.

Informally: for favorite-item projection to be optimal need virtual value
of favorite item to equal virtual-value of projection.

{¢(t)}1 — ¢max({t}1)
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of favorite item to equal virtual-value of projection.

{¢(t)}1 — ¢max({t}1)

Note: pins down a degree of freedom in chosing paths.
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— Reverse Solving for Virtual Values

Main ldea: guess form of optimal mechanism, use guess to reduce
degree of freedom in chosing paths.

Def: a mechanism is a (single-dimensional) favorite-item projection if it
only serve the agent her favorite item (or nothing).

Note: the optimal favorite-item projection mechanism is from the
single-dimensional theory: t,ax = max;{t};; Fimax; fmax; Pmax-:

Goal: prove optimality of favorite-item projection among all mechs.

Informally: for favorite-item projection to be optimal need virtual value
of favorite item to equal virtual-value of projection.

{¢(t>}1 — ¢max({t}1>

Note: pins down a degree of freedom in chosing paths.

Consistency: identify sufficient conditions on distribution by checking
consistency, i.e.,

(a) when positive, virtual value for favorite item > virtual value for other item.
(b) when negative, both are negative.
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— Results of Analysis (m = ) J—
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— Results of Analysis (m = ) J—

Thm: The right paths for integration by parts are “equi-quantile curves”
(probability {¢}5 is below path conditioned on {t}1 is constant in

{t}1)
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— Results of Analysis (m = ) J—

Thm: The right paths for integration by parts are “equi-quantile curves”
(probability {¢}5 is below path conditioned on {t}1 is constant in

{t}1)

Thm: favorite item project is optimal if slope of equi-quantile curve at ¢
is at least {t}o/{t}1.
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— Conclusions

multi-dimensional and non-linear mechanism design theory that mirrors
single-dimensional linear theory

1. multi- to single-agent reductions
2. marginal revenue

3. multi-dimensional virtual values
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