
LEARNING	AND	EQUILIBRIUM	
	
	
	
	
	
	

	 Simons Institute Economics and Computation Boot Camp 
UC Berkeley 
August 2015	

	
DREW	FUDENBERG	

	 	



 2 

Today:		Static	Games.		
Each	player	takes	a	single	action,	actions	simultaneous.		
	
Tomorrow:	Extensive	Form	Games.			
Strategies	as	“complete	contingent	plans.”	
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 Rationality	(even	common	knowledge		of	rationality)	is	
neither	necessary	nor		sufficient	for	Nash	equilibrium.	
(“NE”)	
	

 Not	sufficient:			In	games	with		multiple	NE,	no	reason	for	
play	to	look	like	any	of	the	equilibria	unless	there	is	a	
reason	all		players	expect	the	same	equilibrium.	

	
 Not	necessary	theoretically	(replicator	dynamic	can	
converge	to	NE)	or	empirically		(convergence	to		
approximation		of	NE	seen	in	colonies	of	bacteria.)		
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 Learning-Theoretic Explanation:  equilibrium arises as long 
run outcome of a non- equilibrium adaptive process. 

 
 Experimental play does converge to Nash equilibrium in a 

reasonable time frame in some games of interest to 
economist, including Cournot duopoly, “voluntary 
contribution” games,  the “beauty contest” game, and the 
“double auctions” used to explain equilibrium prices.  
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(Vesterlund et al [2011] J Pub Econ  on two different voluntary 
contribution games where the Nash equilibrium is for both players to 
contribute 3.)
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Gill and Prowse [2012] on a  “beauty contest” game with NE =0
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To	understand	how	and	when	equilibrium	arises,	look	at	
long‐run	behavior	of	non‐equilibrium	dynamic	processes.	

	
 Many	sorts	of	adjustment	processes,	including	biological	
evolution,		have	been	said	to	involve	“learning”	in	a	broad	
sense.	And	it	can	be	hard	to	draw	a	bright	line	between	
learning	and	other	sorts	of	adjustment.	Examples:	what	if	
everyone	knows	the	current		distribution	of	strategies	and	
plays	a	best	response	to	it?	What	if	each	agent	gets	a	noisy	
signal	of	the	current		distribution?		
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 Today	:		narrow	sense	of	“learning”	:	
	

o Explicitly	specify		how	individual	agents	use	
observations	to	change	their	behavior		
	

o Self‐interested	play	by	the	agent‐	not	agents	hoping	
to	(or	designed	to)	find	an	equilibrium!	
	

o “Uncoupled”	(each	agent’s	rule	independent	of	
payoff	functions	and	rules	of	the	others)	
	

o Use	performance	of	the	rules	as	a	check	on	their	
plausibility,	not	as	a	goal		in	itself.	
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Common	themes	in	the	learning‐in‐games	literature:	
	
Non‐equilibrium	adjustment.		

	
 Pointless	to	explain	equilibrium	in	a	game	by	assuming	
equilibrium	in	some	larger	adjustment	game.		

	
 So	must	allow	for	players	who	“are	making	a	mistake”	
in	the	sense	that	their	behavior	isn't	a	best	response	to	
the	behavior	of	the	other.					
	

 The	issue	is	not	whether	a	model	can	generate	
suboptimal	play	but	rather	whether	players	would	
notice	that	some	other	adjustment	rule	would	be	better.		
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 Focused	on	LR	play		
	
 Convergence	to	equilibrium	not	guaranteed.		

	
 Learning	can	suggest	equilibrium	refinements.	

	
 Play	the	given	game	repeatedly	with	anonymous	
random	matching.		(Note:	they	can	repeatedly	play	a	
repeated	game	as	in	repeated‐game	experiments.)		

		
 Learning	depends	on	what	the	players	observe…		

	
 And	on	whether	their	actions	change	what	is	observed:		
“passive	learning”		or	“active.”		
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Criteria	for	Learning	Rules	
	

 Hard	to	empirically	determine	exact	learning	rules	used,	
so	pick	rules	using	a	combination	of	simplicity,	
plausibility,	and	accuracy.	

	
 Different	criteria	in	the	literature	
	

o worst	case/minmax	considerations	(e.g.	no	regret)	
	

o Bayesian,	Savage‐rational		utility	maximization	
	

o exogenously	specified,	“boundedly	rational”	or	
“behavioral”			(may	not	differ	from	Bayesian)	
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	Fictitious	Play	
	

Introduced	by	Brown	[1951]	as	a	way	to	compute	
equilibrium	in	two‐player	games.		(hence	“fictitious”	play.)	
	
Now	used	as	a	simple	stylized	descriptive	model	of	
learning.		Easy	to	motivate	and	analyze,	too	simple	to	match	
experimental	data;	foundation	for	more	complex	models.	
	
Motivation:	Suppose	that	an	agent	is	going	to	repeatedly	
play	a	fixed	strategic‐form	game.		The	agent	knows	the	
structure	of	the	game	(the	strategy	spaces	and	payoff	
functions)	but	not	how	the	other	side	is	going	to	play.	(can	
be	adapted	to	less	prior	knowledge.)	
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All	that		the	agent	observes	is	the	outcome	of	play	in	their	
own	matches.			Doesn’t	observe	what	happens	in	other	
matches,	or	opponents’	past	play.	
	
 Agent	believes	she	is	playing	against	a	randomly	drawn	
opponent	from	a	large	population,		doesn’t	try	to	
influence	opponent’s	play:	strategic	myopia.	

	
 What	the	agent	observes	is	independent	of		own	action,			
no	incentive	for	“experimentation”:	passive	learning	

	
 Agents	act	as	if	they	are	Bayesian	expected	utility	
maximizers,	facing		a	stationary,	but	unknown,	
distribution	of	opponents	strategies.				
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 Stationarity	i	splausible	first	hypothesis	in	many	
situations.		

 Might	expect	players	to	stick	with	it	when	it	is	
approximately	right	but	to	reject	stationarity	given	
sufficient	evidence	to	the	contrary‐	as	when	there	is	a	
strong	time	trend	or	a	high‐frequency	cycle.	

 Stationarity	impies	all	observations	equally	informative,	
and	 that	 beliefs	 are	 asymptotically	 empirical¸	 so	 that	
they	 converge	 to	 the	 empirical	 distribution	 as	 the	
sample	grows.	
	

 In	 some	 settings	 people	 	 seem	 to	 give	 less	 weight	 to	
older	 data	 (displaying	 “recency	 bias”)	 as	 if	 facing	 a	
hidden	Markov	process.		More	on	this	at	end	of	talk.	
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In	FP	the	belief	updating	has	a	special	simple	form:	
	
 Player	 i	 has	 an	 initial	 weight	 function	 that	 gives	 a	
weight	to	each	opponent’s	strategy.	
	

 Add	1	to	the	weight	of	each	opponent	strategy	each	time	
it	is	played.	
	

 Probability	that	player	i	assigns	to	‐i		playing		 is- 	is	the	
weight	on	 is- 	divided	by	the	sum	of	the	weights.	

	
Fictitious	 play	 is	 any	 behavior	 rule	 that	 at	 each	 history	
specifies	a		static	best	response	to	these	beliefs.	
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FP	has	a	Bayesian	interepretation:		
		
 Player	 believes	 opponents’	 play	 is	 sequence	 of	 i.i.d.	
multinomial	 random	 variables	 with	 a	 fixed	 but	
unknown	distribution.	
	

 Prior	 beliefs:	 Dirichlet	 distribution,	 where	 the	
parameters	correspond	to	FP’s	 initial	weights.	 	 (details	
at	end	of	these	notes.)	
	

 Play	maximized	expected	payoff	given	beliefs.	
	

 Methodological	Point:	the	distinction	between	“rational”	
and	“boundedly	rational”	isn’t	very	firm…	
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 Conceptual	point:		beliefs	about	distribution	of		
opponent’s		play	is	the	expected	value	of	beliefs	over	
opponent’s	mixed	strategies.		The	updating	depends	on	
more	than	this	expected	value:		Compare	“I’m	sure	my	
opponent	plays	(1/2	H,	1/2T)	to	“with	probability	.5	my	
opponent	will	play	H	every	period,	with	probability	.5	
she	will	always	play	T.”	
	

 Functional	 form	 of	 FP	 	 convenient	 but	 not	 needed	 for	
most	results.	
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 Key		features	are	that	the	player	treats	the	environment	
as	stationary	so	that	beliefs	are	asymptotically	empirical,		
and	that	players	are	asymptotically	myopic:		at	least	in	
the	long	run	they		play	best	responses	to	their	beliefs.	
	

 Note:	in	FP	(or	in	any	Bayesian	scheme)	the	beliefs	
differ	from	the	empirical	distribution			because	of	the	
influence	of	the	prior.			Over	time	the	data	swamps	the	
prior,	and	the	assessments	converge	to	the	marginal	
empirical	distributions.	

	
 FP	beliefs	suppose	opponent's	strategy	is	constant;	this	
is	wrong		if	the	process	cycles	or	has	a	time	trend.			
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 If	cycles	persist,	player	might	eventually	notice	them.		
	

 But	 at	 least	 his	 beliefs	will	 not	 be	 falsified	 in	 the	 first	
few	periods!	(in	contrast	to	Cournot	adjustment).	
	

Alternative	learning	model:	(more	popular	in	psychology)	
	Reinforcement	learning	(REL).	(cut	for	lack	of	time…	could	
add	at	end..)	
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The	Interpretation	of	Cycles	in	Belief‐Based	Learning	
	 	
	(Fudenberg	Kreps	GEB	[1993])		
	
	 A	 B
A	 0,0 1,1
B	 1,1 0,0
					
	FP,		1	agent	per	side,		each	player’s	initial	weight	(1, 2)		
	
 First	period:	both	think	other	will	play		B,		both	play		A.			
 Next	period	weights	are	(2, 2)	)	and	both	play		B;	the	
outcome	is	the	alternating	sequence		((B,B),(A,A),(B,B),	
etc.)			
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 Empirical	frequencies	of	each	player's	choices	converge	
to	 	 (½,	 ½),	 	 which	 is	 the	 Nash	 equilibrium.	 So	 FP	
“works”	for	the	purpose	of	computing	equilibrium.	
	

 Not	a	good	model	of	learning:	Both	players	receive	
payoff		0		in	every	period	even	though	each	can	
guarantee	a	payoff	of	½.
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Reason:	the	empirical	joint	distribution	on	pairs	of	
actions	does	not	equal	the	product	of	the	two	marginal	
distributions,	so	that	the	empirical	joint	distribution	
corresponds	to	correlated	as	opposed	to	independent	
play.		

	
 Claim:	Players	would	notice	this	cycle	and	do	something	
else,	maybe	form	more	sophisticated	beliefs.	

	
 So	in	general	we	won’t	want	to	identify	a	cycle	with	its	
average.	

	
 And	 we	 may	 want	 to	 worry	 about	 how	 sensitive	 the	
players	are	to		correlations	in	the	data.		
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	Important	facts	about	FP:		
	
 If	actions	converge	they	converge	to	a	pure	strategy	NE.		
	

 If	 time	 averages	 of	 empirical	 marginals	 converge	 the	
joint	 distribution	 is	 a	 NE.	 	 (proof	 sketch:	 if	 player	 2’s	
marginal	converges	to	 2 ,	1’s	beliefs	converge	to	 2 .	If	the	
mixed	 action	 1 	 corresponding	 to	 the	 limit	 of	 1’s	
empirical	marginal	is	not	a	best	response	to	 2 ,		some	 1s 	is	
strictly	better	 	 than	any	other	strategy	 in	 the	support	of	

1 	 for	all	 large	enough	 times.	At	 such	 times	1	must	play	
only	 1s )	
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 The above holds in any belief-based learning model that is 
asymptotically empirical and “asymptotically myopic” 
(eventually players choose actions that are myopic best 
responses to their beliefs.) 

 

 FP	“behaves	well”	when	there	are	“infrequent”	changes	
of	 play:1	 In	 this	 case	 it	 is	 “e‐consistent”	 (do	 as	well	 as	
maximizing	vs	 time	average	of	 opponents’	 play)	 and	 it	
also	 converges	 to	 the	 best	 response	 dynamic.	
(Monderer,		Samet,	and	Sela	JET	 	[1997]).	Note	that	the	
example	where	FP	looked	odd	had	a	two	cycle.	

                                                 

1 Meaning that for every    there exists a T  s.t. for all t T>  the 
fraction of the periods   where play at   differs from that in 

1 -   is at most   . 
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Heuristic: Time rescaling and asymptotics  of FP 
 
Let empirical distribution of i’s play be itd . 
 
Ignoring priors (won’t matter for large t) then 

 1 1
1 1

( )i i i i
t t t
t

d d BR d
t t

-
- -

-
= + . 

(make a pure selection when indifferent.) 
 
Now change the units in which time is measured:  

 
   logt = exp( )t « = ,   exp( )

i id d =  
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Suppose infrequent switches, so for large enough   play 
remains more or less constant between   and  +D.   (this 
rules out any fixed-period 2-cycle, any cycle must be slowing 
down..) 
 
Then for large t and small D can approximate the difference 
equation by   
    ( )i i i id BR d d  

-= -  .   
 
When this approximation is valid, can study long run behavior 
of FP by studying the continous time best response dynamic.  
 
Steady states= NE,  and get stability and convergence 
conditions. 
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Stochastic	(or	“Smooth”)	Fictitious	Play		
	 (Fudenberg‐Kreps	GEB	[1993])	
		
Like	 FP	 but	 with	 a	 smooth	 (continuous)	 “stochastic	 best	
response	 function”	 that	assigns	a	mixed	strategy	response	
to	each	belief	in	place	of	the	exact	best	response	on	FP.	
	
Advantages:	
	
 If		beliefs	converge	behavior	does	too;	not	the	case	with	
standard	fictitious	play	
	

 Allows	 convergence	 to	 mixed‐strategy	 equilibria	 in	
fictitious	 play‐like	 models:	 Actual	 play	 in	 FP	 can’t	
converge	to	a	mixed	equilibrium.		
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 Avoids the discontinuity in standard fictitious play, where a 

small change in the data can lead to an abrupt change in 
behavior.  
	

 Discontinuous	responses		
 may	not	be	descriptively	realistic	
 can	 lead	 to	 “frequent	 switches”	 and	 so	 	 poor	
worst‐case	performance,		
 create	 technical	 complications	 with	 the	 ODE	
approximation,	 which	 becomes	 a	 differential	
inclusion.	
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 There	 is	 a	 (non‐Bayesian)	 sense	 in	 which	 stochastic	
rules	perform	better	 than	deterministic	ones‐	 they	can	
be	“e‐consistent.”	
	

 	“Harsanyi‐purification”	foundation	based	on	private	
payoff	shocks:	Let	 i 		be	the	random	shock	to	i’s	payoff,	
then	player	i’s	stochastic	best	response	to	mixed	
strategy	profile	 i-s 		for	i’s	opponents	is			

	

	 ( )( )

Prob[  s.t.  is a best response to ]

i i i

i i i

BR s

s

-

-

=s

h s
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 Stochastic	 responses	 also	 arsie	 from	 indecision	 or	
ambiguity‐aversion	on	the	part	of	the	agents.	

	
 Intersection	of	the	smooth	best	response	curves	may	be	
far	 from	 any	 Nash	 equilibria	 of	 the	 original	 game,	 but	
converge	 to	 them	 	 Nash	 equilibria	 of	 the	 unperturbed	
game	 as	 random	 components	 converge	 to	 0	 in	
probability	(Hofbauer	and	Sandholm	Ema	[2002]).	
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Observation:	 If	 iv 	 is	 a	 smooth,	 strictly	 differentiable,	
concave	 function	 on	 the	 interior	 of	 iS 	 whose	 gradient		
becomes	 infinite	 at	 the	 boundary,	 then	 argmax	

( ) ( )i i iu v+s s 	 is	 a	 smooth	best	 response	 function,	 and	 the	
argmax	 assigns	 positive	 	 probability	 	 to	 each	 of	 i's	 pure	
strategies.				
	
Call	such	 iv 	"admissible	perturbations"	
			
If	v		is	bounded	and	 '

'
, ,

sup | ( ) ( ) |i i
i i i

i
v v-

s s
s s 	is	small,	fixed	

points	of	BR	are	become	close	to	the	Nash	equilibria.	
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Canonical	example:	 lni
i iv   = å 			is	entropy;		

generates	logit	best	responses	
		
(Fudenberg,	Iijima	and	Strzalecki		Ema	[2016]	
characterizes	the	revealed‐	preference	implications	of		a	
subclass	of	these	perturbations,	and	show	they	correspond	
to	ambiguity‐aversion	by	an	agent	who	is	afraid	of	making	
the	wrong	choice.)	
	
In	smooth/stochastic	FP,	players	form	beliefs	as	in	FP,	play	
smooth	best	responses.		
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Stochastic	Approximation:			
	
 Determine	 	 long‐run	 behavior	 of	 discrete‐time		
stochastic	 systems	 with	 1/t	 step	 size	 by	 	 analyzing	
related	deterministic	continuous	time	systems.		

	
 Applied	 to	 stochastic	 FP	we	 can	 use	 this	 to	 relate	 the		
long‐run	 outcome	 to	 Nash	 equilibria	 of	 the	 perturbed	
game‐	 i.e.	 the	 intersection	of	 the	smooth	best	response	
functions.	
	

 Can	 be	 applied	 to	 any	 system	 (like	 REL)	 whose	
evolution	 can	 be	 determibed	 from	 the	 empirical	
distribution	of	outcomes…		
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Some	definitions	for	reference…	
	
The	‐limt	set	of	a	sample	path	{ }t 	 is	 the	set	of	 long‐run	
outcomes:			
y	 	 is	 in	 the	  ‐limit	 if	 there	 is	 an	 increasing	 sequence	 of	
times	{ }kt 	such	that	

kt
y  	as		k  ¥.	

	
A	flow		on		X		is	a	continuous	function	 : X R XF ´  	such	
that	 0( )x xF = 	and	 ( ( )) ( )s t t sx x+F F = F .		
	
(X	a	subset	of		finite	dimensional	Euclidean	space.)		
(the	solution	of	a	differential	equation	is	a	semi‐flow:	time	is	
non‐negative.)		
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Extend	to	image	of	sets:	 ( ) { ( ) : }t tA x x AF = F Î 	
	
Invariant	set	:		A		s.t.		 ( )t A AF Í 	for	all	t	.	
	
	Attractor:			A		is	non‐empty,	compact,	invariant,	and	
“attracts”		a	nghbd	W:					

( ,A) 0t tdist xF  			uniformly	for	x WÎ 	
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Consider		the	discrete‐time	stochastic	system		
		
	 1 1 1( ( ) ) / ( 1)t t t t tF b t+ + +- = + + +q q q h ,	where		
	
 	F	is	 2C 	
				

 the	 th 	are	mean‐zero	noise	terms:			 1 1[ | ,... ] 0t tE + =h q q ;		
bounded	variance	(and	as	needed	bounds	on	additional	
moments)		
	

 		 tb 	converges	to	0	a.s.		
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Ideas:			
	
 1/t	step	size‐	so	absent	the	stochastic	terms	we	expect	a	
continuous‐time	limit	when	things	are	“well	behaved.”	

	
 Limit	system	deterministic	because	weight	on	shocks	is	
1/t,	so	use	variant	of	LOLN.			
	

 	 tb 	are	nuisance	terms	that	vanish	asymptotically	
	

 Limit	is	a	continuous	time	system	after	time	rescaling.	
	
Important:		the	 th 	don’t	need	to	be	independent	or	even	
exchangeable.			
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First	step:	show	that	almost	surely	the	sample	path	 lies	 in	
some	invariant	set	of	the	continuous‐time	process.			
	
Proposition:		(Benaim	and	Hirsch	GEB	[1999])	With	
probability	one,	the	‐limit	set	of	any	realization	of	the	
discrete‐	time	process	is	an	invariant	set	of	the	continuous‐
time	process;	this	set	is	compact,	connected,	and	contains	
no	proper	subsets	that	are	attractors	for	the	continuous‐	
time	process.	(so	it	is		connected		and	“internally	chain	
recurrent.”)	
	
(Benaim‐	Hirsch	have	 0tb = ,	easy	extension	in	Fudenberg‐
Takahashi	GEB	[2011].)	
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Benaim‐Hirsch	:	If	the	stochastic	system	eventually	
converges	to	a	point	or	a	cycle,	the	point	or	cycle	should	be	
a	closed	orbit	of	the	continuous‐time	dynamics.					
	
Moreover,	the	noise	will	eventually	“kick”	the	system	away	
from	any	unstable	states,		at	least	if	there	is	“enough	noise.”	
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Applying	Stochastic	Approximation	to	Stochastic	FP	
	
Following	Benaim‐Hirsch	assume	only	one	agent	per	player	
role,	even	though	this	undercuts	the	idea	that	agents	don’t	
treat	this	as	a	repeated	game;		Fudenberg‐Takahashi	extend	
to	large	populations.			
	
	
 State	space	is	the	empirical		distribution	of	play	
 F		is	 ( )BR -q q .			
 Noise	terms	are	the	differences	between	the	expected	
value	of	 ( )tBR q 	and	its	realized	value;	so	(ignoring	the	
prior)	the	noise	terms	have	a	conditional	expectation	of	
zero,	but	are	not	in	general	i.i.d.	or	even	exchangeable.		
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Illustration:	2	players,	2	actions	each.				
	
Let		 1 2( , )=q q q 	where	 iq 	is	the	empirical	fraction	of	the	time	
that		i		takes	his	first	action.			Theorem	says	we	can	
determine	long	run	behavior	by	study	of			
	

1 2 1

2 1 2

( )
( )

( )

BR
BR

BR

-
= - =

-
 q q
q q q

q q
.	

	
(here	players	respond	to	empirical	distribution	and	not	
their	beliefs‐	but	the	two	are	close	when	players	have	a	lot	
of	observations,	so	can	correct	with	a	nuisance	term	 tb )		
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More	generally,	the	mean	field	for	smooth	fictitious	play	is	
the		smooth	best	response	dynamic	 ( )BR= -q q q .	
	
Theorem	(Benaim	and	Hirsch):	Smooth	fictitious	play	
converges	to	the	Nash	distribution	in	any	game	where	the	
(unique)	Nash	distribution	is	a	global	attractor	for	the	
continuous‐time	dynamics.		
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 In	 2x2	 games	 with	 unique	 mixed	 equilibrium	 (like	
“matching	 pennies””)	 the	 process	 must	 converge	 to	
somewhere	near	the	mixed	equilibrium	when	the	payoff	
perturbations	are	small.			

	
 What	about	2x2	games	with	2	strict	equilibria	and	one	
mixed?		

	
	 Benaim	Hirsch	show	that	SFP	can’t	cycle	in	2x2	games	
	 as	it	is	“volume	contracting.”		So	it	must	converge	to	a	
	 steady	state.		Which?	
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Proposition		(Benaim	and	Hirsch)		If	every	strategy	profile	
has	positive	probability	at	every	state,	and		 *q 	is	an	
asymptotically	stable	equilibrium	of	the	continuous	time	
process,	then	 *[ ] 0tP  >q q .		
	
The	 mixed	 equilibrium	 is	 unstable,	 and	 when	 payoff	
perturbations	are	small	 the	only	stable	equilibria	are	near	
the	NE.		
	
Conclusion:	 In	 battle	 of	 the	 sexes,	 the	 two	 pure	 equilibria	
have	 positive	 probability	 and	 the	 mixed	 equilibrium	 has	
probability	0.	
	
What	about	other	games?	
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Hofbauer‐Sandholm	Ema	[2002]	show	no	cycles	in		
	 “potential	games:”	
	
Potential	game:	we	can	transform	payoffs	w/o	changing	
best	responses	so	that	the	game	is	a	team	problem:	

( ) ( )i ju s u s= 	for	all	i,j,s.			
 
In  other  games continuous-time smooth best response 
dynamic does cycle. This corresponds to the underlying 
discrete-time system cycling slower and slower.  (remember 
the time rescaling !) 
 
Cycles can be stable, even in presence of noise and even when 
agents move at different rates. 
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		SFP	with	Heterogeneous	Agents		
	
 Non‐strategic	behavior	in	SFP	doesn't	make	sense	with	
one	agent	per	role.	

	
 Fudenberg‐Takahasi	(GEB	2011)	extend	to	case	of	a	
large	populations	of	agents	each	of	whom	only	sees	
outcomes	of	own	matches.	

	
 Most	interesting	model:	one	population,	"asynchronous	
clocks":	a	pair	of	agents	is	selected	at	random	each	
period,	so	ex‐post	some	agents	may	play	more	often	
than	others.	
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 Derive	a	continuous	time	deterministic	system	with	
heterogeneous	beliefs	using	stochastic	approximation:	
here	we	track	the	beliefs	of	each	individual	agent.	

	
 Argue	that	if	the	system	is	sufficiently	“well	mixed”			it	
converges	to	homogeneous	(identical)	beliefs.	
	

 And	from	there	to	an	attractor	of	the	lower‐dimensional	
homogeneous‐belief	system.	

	
 So	convergence,	local	stability	etc.	on	the	smaller	space	
implies	same	on	the	larger	one.		In	particular	if	a	cycle	is	
a	global	attractor	for	the	homogeneous	system	the	cycle	
is	also	an	attractor	with	heterogeneous	agents.	
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 Well	mixed:	the		interaction	probabilities		faced	by	
different	agents	"not	too	different."		

	
	 Formally,	let	
	
 ijp 	:	per‐period	probability	the	pair	(i,	j)	plays		( 0iip = .)				

 ij
ij

ikk

p
q

p
=

å
:	conditional	probability	i	plays	j.		

 1
1

max | | /2
M

i j M ik jk
k

q q£ £ £
=

D = -å 	:		

(minimized	by	uniform	random	matching,	disjoint		
network	has	 1D = 	)	
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 K:	Lipschitz	constant	for	the	smooth		best	response	map.	

	
. 
 Beliefs	and	play	converge	to	homogeneous	limit	when	

1KD < 	.	
	

		Rules	 out	most	 interesting	 network	 structures.	We	 don't	
know	 what	 happens	 on	 more	 general	 networks‐	 maybe	
different	regions	can	play	different	strategies?	Maybe	there	
are	“waves”?	
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Smooth Fictitious Play is Universally Consistent 
 
Say that a learning rule is  consistent along a history  if it 
yields at least the payoff of optimizing against the time-average 
of the history.  
 
Deterministic fictitious play is approximately consistent for 
histories that satisfy the “infrequent switching condition.” 
 
When infrequent switching is not satisfied,  players can do 
worse than they could have guaranteed by randomizing in 
every period, as in the example where players switched every 
period and always mis-coordinated. 
    
This suggests two properties a learning rule might have:   
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1) Safety:  the player’s realized average utility is almost surely 
at least his minmax payoff regardless of the opponents’ play.  
This property failed in the example of frequent switching. 

 
Or the stronger condition of  
 

2)  universal consistency: regardless of opponents’ play, player 
almost surely gets at least as much utility as could have gotten 
if had known the frequency but not the order of observations in 
advance.      (“no regret”)    
 
(Since the utility of a best response to the actual frequency 
distribution must be at least the minmax payoff, universal 
consistency implies safety.) 
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Definition A rule ir  (a map from histories to mixed actions) is 
e-universally consistent (  -UC) if for any opponents rule ir-  

 1
1

lim sup max ( , ) ( ( ))i
i i i i

T T t tt
u d u h

T
-

¥ -- £ås
s r e  

almost surely w.r.t. the distribution over outcomes  induced by 
( , )i ir r- . 
 
(Here i

Td
-  is the empirical distribution of opponent’s play at T.) 

 
Doesn’t require that players detect cycles, just to get as good a 
payoff as if they  knew the average frequencies. (more 
demanding consistency notions check performance on more 
measures, e.g. can also check play in even and odd periods..)
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 Any Bayesian expects to be both safe and consistent.   
(economists typically assume agents are Bayesian) 
 
Universal consistency asks for consistency against all 
alternatives.  (even those with prior probability 0).   
 
This requires randomization (consider matching pennies!)   
 
Smooth ficitious play is universally consistent (Fudenberg- 
Levine JEDC [1995]).  
 
Hart-MasCollel JET [2001] characterize a larger family of no-
regret learning rules. 
 Roughgarden [2009] extends POA analysis to general no-
regret dynamics. 
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Recency	bias:		
	
 Large	 psychology	 literature	 on	 this,	 see	 e.g.	 Erev	 and	
Haruvy	Handbook	oF	Experimental	Economics	vol.	2.			
	

 Benaim	 Hofbauer	 Hopkins	 	 JET	 [2009]	 analyze	 smooth	
fictitious	play	when	agents	have	vanishingly	little	recency	
bias.	 	 (For	 each	 level	 of	 recency	 their	 model	 has	 an	
ergodic	 distribution,	 they	 characterize	 the	 limit	 	 of	 the	
distributions	as	the	receny	effect	vanishes.	)	
	

 Fudenberg‐Levine	 PNAS	 [2014]	 extend	 universal	
consistency	to	recency;	the	result	is	only	interesting	when	
recency	bias	is	small.	
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 Fudenberg‐Peysakhovich	 EC	 [2014]	 document	 (large)	
recency	 bias	 in	 a	 “lemons”	 problem:	 even	 after	 20	
observations	people	reacted	“a	lot”	to	the	next	one.		
	

 Recency	can	be	greatly	diminished	by	providing	 summary	
statistics	of	past	play.		Need	to	better	understand	what	sort	
of	feedback	encourages	and	discourages	recency.	
	

 Relatedly:	many	subjects	make	systematic	computation	
errors,	especially	in	computing	conditional	probabilities;	
this	can	let		non‐Nash	play	persist.		
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 The	prevalence	of	these	mistakes	depends	in	part	on	the	
sort	of	feedback	and	computation	aids	(e.g.	calculators)	
provided.	More	research	needed	here	too.	
 
 It	 would	 be	 nice	 to	 be able to say something about the 
implications of non-trivial recency for learning in games. But 
hard	to	develop	formal	results	when	there	is	lots	of	receny	
bias	 as	 the	 system	 doesn’t	 settle	 down;	 may	 need	 to	 use	
simulations.	(and	economists	need	to	work	out	how	to	make	
better	use	of	simulations)	
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That’s	all	for	now		
	
	
	
Tomorrow:	Learning	in	Extensive‐Form	Games	
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Reinforcement	Learning	(REL)	
	
Two	steps	to	defing	a	REL	process:	
	
	 a)	what	is	reinforced?	Actions,	strategies,	rules?			
	
	 b)	how?	
	
Typically	 in	 REL	 	 the	way	 1	 updates	 depends	 only	 on	 his	
realized	 payoff;	 	 he	 doesn’t	 think	 about	 “regret”,	which	 is	
the	 payoff	 he	 would	 have	 received	 if	 he	 had	 played	
differently.	
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Simple(st?)	version	:		
Cumulative	Proportional	Reinforcement	(CPR)	
	
 Normalize	all	utilities	positive,	and	give	initial	weights	
to	each	action	k.		
	

 Update	the	score	of	the	action	that	was	played	by	its	
realized	payoff.	
	

 Do	not	update	other	scores.	
		
 Probability	of	action	k		is		weight	on	k		divided	by	sum	of		
weights.	
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 Response	 to	 “my	 opponent	 played	 R”	 can	 depend	 on	
player’s	own	action.	
	

 Rational	 players	 who	 know	 the	 structure	 of	 the	 game	
shouldn’t	condition	on	own	action.	
	

 Some	 lab	 subjects	 seem	 to	 do	 so‐	 but	 the	 extent	 to	
which	 this	 happens	 is	 controversial.	 (Hard	 to	 estimate	
individual‐specific	learning	models	and	fitting	aggregate	
play	 with	 a	 model	 of	 a	 single	 agent	 leads	 to	
heterogeneity	bias	(Wilcox	Ema	[2006]).	
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 REL	 agents	 don't	 respond	 at	 all	 to	 “hypothetical	
reinforcement”‐	what	they	could	have	gotten	by	playing	
something	else‐	and	it	seems	that	they	do.		
	

 Subjects	 play	 differently	 if	 told	 the	 play	 of	 others	 and	
not	just	own	payoffs‐	goes	against	standard	REL	models.	
	

 Camerer‐Ho		Ema	[1999]	nests	REL	and	fictitious	play	
as	special	cases	by	adding	a	parameter;	best	fit	(for	a	
“representative	agent”)		is	“in	the	middle.”	
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 FO	and	REL	also	fit	the	data	reasonably	well	in	cases	
where	an	agent	using	it	would	do	a	reasonably	good	job	
of		optimizing,	and	these	are	cases	where	play	is	not	
changing	very	quickly	over	the	course	of	the	
experiment.			
	

 But	in	games	where	play	has	a	strong	trend	(like	
“beauty	contest	game”	:	guess	2/3	the	average)	none	of	
the	models	CH		consider	do	well‐	because		people	do	
eventually	notice	the	time	trend.			
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Extra:  Dirichlet Priors and Multinomial Sampling 
 Taken from DeGroot [1970] Optimal Statistical Decisions. 
 
1)  The Multinomial Distribution:   Consider a sequence of n i.i.d. trials, 
where each period one of k outcomes occurs, with  zp  denoting the 
probability of outcome z. Denote the outcome of the n trials by the vector k ,  
where z  is the number of the outcomes of type z.  Then the distribution of 
the outcome is 
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2)  The Dirichlet Distribution: Let G denote the gamma function.  A 
random vector p has the Dirichlet distribution with parameter vector a  if its 
density is given by 
 

  1 1 11
1

1

( ... )
( )

( ) ( )
kak
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k

f p p paa a
a a

- -G + +
= ⋅⋅ ⋅
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1
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k
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z

p
=

=å .   

 
(the  gamma function generalizes the factorial to the reals. Its role  here is 
just as the “integrating constant”:  for f  to be a density it has to integrate to 
1.)
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Fact:  If p has the Dirichlet distribution, then 
1

( ) /
k

z z w
w

p f p dp
=

= åò a a . 

 
So weights    correspond to relative probability of each outcome.  
 
Two densities with the same expected values correspond to different ways 
the agent will update beliefs.  
 
Fact:   The Dirichlet distributions are a conjugate family for multinomial 
Sampling: if data is  k  and prior is prior is Dirichlet with parameter   then  
posterior is Dirichlet with parameter a k+ .   
 
To see why consider posterior over p: 
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If player i’s date-t beliefs about  player -i’s mixed strategy have a Dirichlet 
distribution, player  i’s  assessment of the probability that -i  plays is-   in 
period t is 

  
1

( ) ( ) [ ] /
i

k
i i i i i i i
t t z w

w

s s d
-

- - - - -

S
=

= = åòg s m s s a a ,  

This is the expected value of the component of is-  corresponding to is- .    
 
So  after observing sample k , player i’s assessment  of  probability that the 
next observation is strategy z  is  

1 1

'

' ( )

z z z
k k

w w w
w w

a a k

a a k
= =

+
=

+å å
,  which is the formula for fictitious play. 


