Sequential Composability for Rational Proofs

Matteo Campanelli Rosario Gennaro

The City College of New York CUNY

The Model

Verifiable Computation against a rational rather than malicious adversary

Adversary is only interested in maximizing a well-defined utility function

Our Results

Starting from the concept of Rational Proofs (AM'12)

- Consider a new model where many computations are outsourced, and define a notion of *sequential composability* to assure that providing the correct result on all computations is the rational strategy.
- Show that the some of the known rational proofs do not satisfy our notion of sequential composability.
- **Present a new rational proof protocol which (for certain functions) is**

Our Results

Starting from the concept of Rational Proofs (AM'12)

- Consider a new model where many computations are outsourced, and define a notion of *sequential composability* to assure that providing the correct result on all computations is the rational strategy.
- Show that the some of the known rational proofs do not satisfy our notion of sequential composability.
- **Present a new rational proof protocol which (for certain functions) is** squentially composable.

Our Results

Starting from the concept of Rational Proofs (AM'12)

- Consider a new model where many computations are outsourced, and define a notion of *sequential composability* to assure that providing the correct result on all computations is the rational strategy.
- Show that the some of the known rational proofs do not satisfy our notion of sequential composability.
- **Present a new rational proof protocol which (for certain functions) is** squentially composable.

An interactive proof between P and V

\blacksquare On input a function f and a value x

 \Box P provides V with a value y

An interactive proof between P and V

 \blacksquare On input a function f and a value x

1 P provides V with a value y

2 V "pays" P with a randomized reward $R(transcript)$

 \blacksquare The reward is maximized (in expectation) when P provides the correct

An interactive proof between P and V

 \blacksquare On input a function f and a value x

- \blacksquare P provides V with a value y
- 2 V "pays" P with a randomized reward $R(transcript)$

 \blacksquare The reward is maximized (in expectation) when P provides the correct value $y = f(x)$

An interactive proof between P and V

- \blacksquare On input a function f and a value x
	- \blacksquare P provides V with a value y
	- 2 V "pays" P with a randomized reward $R(transcript)$
- **The reward is maximized (in expectation) when P provides the correct** value $y = f(x)$

The most attractive feature of RP is their simplicity. AM'12 shows

A one-round proof for PP

A poly-round protocol for the counting hierarchy

The most attractive feature of RP is their simplicity. AM'12 shows

- A one-round proof for PP
- A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time verifier.

The most attractive feature of RP is their simplicity. AM'12 shows

- A one-round proof for PP
- A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time verifier.

The most attractive feature of RP is their simplicity. AM'12 shows

- A one-round proof for PP
- A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time verifier.

Efficient Rational Proofs

If C is the complexity of computing f , for Verifiable Computation we want a $\tilde{O}(C)$ Prover and a $o(C)$ Verifier.

For a $O(\log n)$ Verifier, AM'13 presents a constant-round protocol for uniform constant-depth threshold circuits

-
-

Efficient Rational Proofs

If C is the complexity of computing f, for Verifiable Computation we want a $\tilde{O}(C)$ Prover and a $o(C)$ Verifier.

For a $O(\log n)$ Verifier, AM'13 presents a constant-round protocol for uniform constant-depth threshold circuits

- **Assumes log-search-uniformity for the circuit**
- **Possible to extend to a log-depth circuit if allow polylog-Verifiers** [GHRV'14]

Efficient Rational Proofs

If C is the complexity of computing f, for Verifiable Computation we want a $\tilde{O}(C)$ Prover and a $o(C)$ Verifier.

For a $O(\log n)$ Verifier, AM'13 presents a constant-round protocol for uniform constant-depth threshold circuits

- **Assumes log-search-uniformity for the circuit**
- **Possible to extend to a log-depth circuit if allow polylog-Verifiers** [GHRV'14]

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at least k input bits are 1

- P announces the number \tilde{m} of input bits equal to 1;
	- **Let** $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;
-
-

$$
BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2\tilde{p}(2 - \tilde{p})
$$

$$
BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2(1 - \tilde{p}^{2})
$$

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \qquad \qquad (1)
$$

- \blacksquare P announces the number \tilde{m} of input bits equal to 1;
	- Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$
-

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \qquad \qquad (1)
$$

- P announces the number \tilde{m} of input bits equal to 1;
	- Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- \blacksquare V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;

 V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$

$$
BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^2 - (1 - \tilde{p})^2 + 1 = 2\tilde{p}(2 - \tilde{p})
$$

$$
BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^2 - (1 - \tilde{p})^2 + 1 = 2(1 - \tilde{p}^2)
$$

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \qquad \qquad (1)
$$

- P announces the number \tilde{m} of input bits equal to 1;
	- Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- \blacksquare V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$

 \blacksquare V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$
BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2\tilde{p}(2 - \tilde{p})
$$

$$
BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2(1 - \tilde{p}^{2})
$$

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \qquad \qquad (1)
$$

- P announces the number \tilde{m} of input bits equal to 1;
	- Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- \blacksquare V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$
- \blacksquare V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$
BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2\tilde{p}(2 - \tilde{p})
$$

$$
BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2(1 - \tilde{p}^{2})
$$

Proof: Let m be the true number of input bits equal to 1, and $p = m/n$ the corresponding probability, then the expected reward for P is

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \qquad \qquad (1)
$$

which is easily seen to be maximized for $p = \tilde{p}$ i.e. when the Prover

- P announces the number \tilde{m} of input bits equal to 1;
	- Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- \blacksquare V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$
- \blacksquare V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$
BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2\tilde{p}(2 - \tilde{p})
$$

$$
BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2(1 - \tilde{p}^{2})
$$

Proof: Let m be the true number of input bits equal to 1, and $p = m/n$ the corresponding probability, then the expected reward for P is

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}
$$

which is easily seen to be maximized for $p = \tilde{p}$ i.e. when the Prover announces the correct result.

- P announces the number \tilde{m} of input bits equal to 1;
	- Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- \blacksquare V sets the output to 1 if $\tilde{m} \geq k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$
- \blacksquare V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$
BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2\tilde{p}(2 - \tilde{p})
$$

$$
BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^{2} - (1 - \tilde{p})^{2} + 1 = 2(1 - \tilde{p}^{2})
$$

Proof: Let m be the true number of input bits equal to 1, and $p = m/n$ the corresponding probability, then the expected reward for P is

$$
pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}
$$

which is easily seen to be maximized for $p = \tilde{p}$ i.e. when the Prover announces the correct result.

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

- Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- We want $R-C \geq \tilde{R}-\tilde{C}$
	-
-

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

- Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- We want $R-C \geq \tilde{R}-\tilde{C}$

■ sufficient that $R - \tilde{R} > C$

- Consider the reward gap [AM'13, GHRV'14] $\Delta = min_{\tilde{D}}[R \tilde{R}]$
-

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

- Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- We want $R C > \tilde{R} \tilde{C}$
	- sufficient that $R \tilde{R} > C$
- Gonsider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

- Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- We want $R C > \tilde{R} \tilde{C}$
	- sufficient that $R \tilde{R} > C$
- Consider the *reward gap* [AM'13,GHRV'14] $\Delta = min_{\tilde{D}}[R \tilde{R}]$

■ Scale the reward by a factor C/Δ .

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .

• We want
$$
R - C \geq \tilde{R} - \tilde{C}
$$

■ sufficient that $R - \tilde{R} > C$

- Gonsider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{D}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

If $\Delta = 1/poly$, budget remains polynomial

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .

• We want
$$
R - C \geq \tilde{R} - \tilde{C}
$$

■ sufficient that $R - \tilde{R} > C$

- Gonsider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{D}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

If $\Delta = 1/poly$, budget remains polynomial

In the previous protocol $0 \leq R \leq 2, C = n$ and $\Delta = n^{-2}$, which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .

• We want
$$
R - C \geq \tilde{R} - \tilde{C}
$$

■ sufficient that $R - \tilde{R} > C$

- Gonsider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{D}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

If $\Delta = 1/poly$, budget remains polynomial

In the previous protocol $0 \leq R \leq 2, C = n$ and $\Delta = n^{-2}$, which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit $R - C$. Is this profit always maximized?

Gonsider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .

• We want
$$
R - C \geq \tilde{R} - \tilde{C}
$$

■ sufficient that $R - \tilde{R} > C$

- Gonsider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{D}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

If $\Delta = 1/poly$, budget remains polynomial

In the previous protocol $0\leq R\leq 2,$ $C=n$ and $\Delta=n^{-2},$ which means we need to scale the reward by a factor of $n^3.$

If a bad prover answers at random (a $O(1)$ -cost strategy), how much does it earn?

$$
\tilde{R} = E_{m,b}[BSR(\frac{m}{n}, b)]
$$

= $\frac{1}{n+1} \sum_{m=0}^{n} E_b[BSR(\frac{m}{n}, b)]$
= $\frac{1}{n+1} \sum_{m=0}^{n} (2(2p \cdot \frac{m}{n} - \frac{m^2}{n^2} - p + 1))$
= $2 - \frac{2n+1}{3n} > 1$

Note that the honest prover earns always less than 2.

If a bad prover answers at random (a $O(1)$ -cost strategy), how much does it earn?

$$
\tilde{R} = E_{m,b}[BSR(\frac{m}{n}, b)]
$$

= $\frac{1}{n+1} \sum_{m=0}^{n} E_b[BSR(\frac{m}{n}, b)]$
= $\frac{1}{n+1} \sum_{m=0}^{n} (2(2p \cdot \frac{m}{n} - \frac{m^2}{n^2} - p + 1))$
= $2 - \frac{2n+1}{3n} > 1$

Note that the honest prover earns always less than 2.

If a bad prover answers at random (a $O(1)$ -cost strategy), how much does it earn?

$$
\tilde{R} = E_{m,b}[BSR(\frac{m}{n}, b)]
$$

= $\frac{1}{n+1} \sum_{m=0}^{n} E_b[BSR(\frac{m}{n}, b)]$
= $\frac{1}{n+1} \sum_{m=0}^{n} (2(2p \cdot \frac{m}{n} - \frac{m^2}{n^2} - p + 1))$
= $2 - \frac{2n+1}{3n} > 1$

Note that the honest prover earns always less than 2.

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays $O(n)$ and earns ≤ 2 . The random prover pays $O(1)$ and earns > 1 .

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays $O(n)$ and earns ≤ 2 . The random prover pays $O(1)$ and earns > 1 .

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.
Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays $O(n)$ and earns ≤ 2 . The random prover pays $O(1)$ and earns > 1 .

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays $O(n)$ and earns ≤ 2 . The random prover pays $O(1)$ and earns > 1 .

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.

[Introduction](#page-1-0) [Rational Proofs](#page-5-0) **[Sequential Composability](#page-31-0)** [Conclusion](#page-76-0)

COOCO COOCO COMPODOOOOOO COMPOSADI COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING

Sequential Composability - First Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P .

A rational proof (P, V) for a function f is sequentially composable if for every prover \tilde{P} , and every sequence of inputs x, x_1, \ldots, x_k such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

Actually that's not possible if we ask for every input: a prover may be

[Introduction](#page-1-0) [Rational Proofs](#page-5-0) **[Sequential Composability](#page-31-0)** [Conclusion](#page-76-0)

COOCO COOCO COMPODOOOOOO COMPOSADI COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING

Sequential Composability - First Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P .

A rational proof (P, V) for a function f is sequentially composable if for every prover $\tilde{P},$ and every sequence of inputs x, x_1, \ldots, x_k such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

Actually that's not possible if we ask for every input: a prover may be answering correctly without doing any work.

[Introduction](#page-1-0) [Rational Proofs](#page-5-0) **[Sequential Composability](#page-31-0)** [Conclusion](#page-76-0)

COOCO COOCO COMPODOOOOOO COMPOSADI COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING COMPOSADING

Sequential Composability - First Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P .

A rational proof (P, V) for a function f is sequentially composable if for every prover $\tilde{P},$ and every sequence of inputs x, x_1, \ldots, x_k such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

Actually that's not possible if we ask for every input: a prover may be answering correctly without doing any work.

[Introduction](#page-1-0) [Rational Proofs](#page-5-0) **[Sequential Composability](#page-31-0)** [Conclusion](#page-76-0)

COOCO COOCO COOCOOCOOCOOCOOCOOCO COMPOSABILITY

Sequential Composability - Second Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P .

A rational proof (P, V) for a function f is sequentially composable for an input distribution D if for every prover \tilde{P} , and every sequence of inputs x, x_1, \ldots, x_k $\in \mathcal{D}$ such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

[Introduction](#page-1-0) [Rational Proofs](#page-5-0) **[Sequential Composability](#page-31-0)** [Conclusion](#page-76-0)

COOCO COOCO COOCOOCOOCOOCOOCOOCO COMPOSABILITY

Sequential Composability - Second Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P .

A rational proof (P, V) for a function f is sequentially composable for an input distribution D if for every prover \tilde{P} , and every sequence of inputs x, x_1, \ldots, x_k $\in \mathcal{D}$ such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

If $R(x) = R$ and $C(x) \leq C$ for the honest prover P, it is sufficient that

$$
\frac{\tilde{R}}{R} \leq \frac{\tilde{C}}{C}
$$

$$
\blacksquare \sum_{i} \tilde{R}(x_i) \leq \frac{R}{C} \sum_{i=1} \tilde{C}(x_i) \leq R
$$

If the reward is either R or 0 then let \tilde{p} be the probability that \tilde{P} receives the full reward R . Then it is sufficient that

$$
\tilde{p}\leq \frac{\tilde{C}}{C}
$$

If $R(x) = R$ and $C(x) \leq C$ for the honest prover P, it is sufficient that

$$
\frac{\tilde{R}}{R} \leq \frac{\tilde{C}}{C}
$$

$$
\blacksquare \sum_{i} \tilde{R}(x_i) \leq \frac{R}{C} \sum_{i=1} \tilde{C}(x_i) \leq R
$$

If the reward is either R or 0 then let \tilde{p} be the probability that \tilde{P} receives the full reward R . Then it is sufficient that

$$
\tilde{p}\leq \frac{\tilde{C}}{C}
$$

Immediate from above since $\tilde{R} = \tilde{p} \cdot R$.

If $R(x) = R$ and $C(x) \leq C$ for the honest prover P, it is sufficient that

$$
\frac{\tilde{R}}{R} \leq \frac{\tilde{C}}{C}
$$

$$
\blacksquare \sum_{i} \tilde{R}(x_i) \leq \frac{R}{C} \sum_{i=1} \tilde{C}(x_i) \leq R
$$

If the reward is either R or 0 then let \tilde{p} be the probability that \tilde{P} receives the full reward R . Then it is sufficient that

$$
\tilde{p}\leq \frac{\tilde{C}}{C}
$$

I Immediate from above since $\tilde{R} = \tilde{p} \cdot R$.

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x .
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore
-

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x .
- \blacksquare The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- In a cost model in which the prover pays 1 to compute and write

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x .
- \blacksquare The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- \blacksquare In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

$$
\frac{\tilde{C}}{C} = \frac{1}{2} + \frac{\tilde{s}}{S}
$$

This protocol appears in [AM'13] as a "stand-alone" RP.

- **Example 1** Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x .
- \blacksquare The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

For example, a prover that pays separately \$1 to compute the value of a single gate and \$1 to write that value down. For dishonest provers that write the whole string down

$$
\frac{\tilde{C}}{C} = \frac{1}{2} + \frac{\tilde{s}}{S}
$$

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

- **Example 1** Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x .
- \blacksquare The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

Notice that in other cost models sequential composition may not follow. For example, a prover that pays separately \$1 to compute the value of a single gate and \$1 to write that value down. For dishonest provers that write the whole string down

$$
\frac{\tilde{C}}{C}=\frac{1}{2}+\frac{\tilde{s}}{S}
$$

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

- **Example 1** Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x .
- \blacksquare The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

Notice that in other cost models sequential composition may not follow. For example, a prover that pays separately \$1 to compute the value of a single gate and \$1 to write that value down. For dishonest provers that write the whole string down

$$
\frac{\tilde{C}}{C}=\frac{1}{2}+\frac{\tilde{s}}{S}
$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess $f(x)$ only with negligible probability.
- **Batch computations in set of k, i.e. pay the prover after he solves k** computations.
- \blacksquare The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R , otherwise she pays
-

$$
\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \leq \frac{\tilde{C}}{C}
$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- \blacksquare Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess $f(x)$ only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- \blacksquare The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by P. Therefore

$$
\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \leq \frac{\tilde{C}}{C}
$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- \blacksquare Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess $f(x)$ only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.

 \blacksquare The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R , otherwise she pays 0.

Example 1 Let \tilde{m} be the number of correct results returned by P. Therefore

$$
\tilde{p}=\frac{\tilde{m}}{k}=\frac{\tilde{m}c}{kc}\leq \frac{\tilde{C}}{C}
$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- \blacksquare Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess $f(x)$ only with negligible probability.
- **Batch computations in set of k**, i.e. pay the prover after he solves k computations.
- \blacksquare The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$
\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}
$$

This requires k to be large enough to keep the Verifier efficient (so the cost

Following [BCEJKL08] (which considered this problem though with different definitions)

- \blacksquare Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess $f(x)$ only with negligible probability.
- **Batch computations in set of k**, i.e. pay the prover after he solves k computations.
- \blacksquare The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$
\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}
$$

This requires k to be large enough to keep the Verifier efficient (so the cost of computing f once is amortized over k executions)

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess $f(x)$ only with negligible probability.
- **Batch computations in set of k**, i.e. pay the prover after he solves k computations.
- \blacksquare The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R , otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$
\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}
$$

This requires k to be large enough to keep the Verifier efficient (so the cost of computing f once is amortized over k executions)

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (say 2).

- Starting from the output gate G , the Prover sends the values out, in_0, in_1
- **The verifier checks that** $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in_0 and in_1 are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it
-

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (say 2).

- Starting from the output gate G , the Prover sends the values out, in_0, in_1
- **The verifier checks that** $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in_0 and in_1 are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R .
- called on the subcircuit that has output in_b .

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (sav 2).

- Starting from the output gate G , the Prover sends the values out, in_0, in_1
- **The verifier checks that** $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in_0 and in_1 are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R .
- \blacksquare The verifier chooses a random bit b and the protocol is recursively called on the subcircuit that has output in_b .

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (sav 2).

- Starting from the output gate G , the Prover sends the values out, in_0, in_1
- **The verifier checks that** $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in_0 and in_1 are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R .
- \blacksquare The verifier chooses a random bit b and the protocol is recursively called on the subcircuit that has output in_b .

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

- **the probability of** \tilde{P} **to obtain** R when giving an incorrect result is $1 - 2^{-d}$
- \overline{P} can always compute one sub-circuit correctly and hope that's selected.
- At each level \tilde{P} survives with probability $1/2$ so it is detected only

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

- **the probability of** \tilde{P} **to obtain** R when giving an incorrect result is $1 - 2^{-d}$
- \overline{P} can always compute one sub-circuit correctly and hope that's selected.
- At each level \tilde{P} survives with probability $1/2$ so it is detected only with probability $2^{-d}.$

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

- **the probability of** \tilde{P} **to obtain** R when giving an incorrect result is $1 - 2^{-d}$
- \overline{P} can always compute one sub-circuit correctly and hope that's selected.
- At each level \tilde{P} survives with probability $1/2$ so it is detected only with probability 2^{-d} .

Sequential Composability Analysis

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p}=1-2^{-\tilde{d}},$ where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coefficient

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p}=1-2^{-\tilde{d}},$ where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coefficient

Things can improve somewhat by iterating the protocol r times and reducing the probability of error to $(1-2^{-d})^r.$ Note that the complexity of the Verifier will be $O(rd)$.

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p}=1-2^{-\tilde{d}},$ where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

 \blacksquare Example: the circuit that computes one FFT coefficient

Things can improve somewhat by iterating the protocol r times and reducing the probability of error to $(1-2^{-d})^r.$ Note that the complexity of the Verifier will be $O(rd)$.

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p}=1-2^{-\tilde{d}},$ where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

 \blacksquare Example: the circuit that computes one FFT coefficient

Things can improve somewhat by iterating the protocol r times and reducing the probability of error to $(1-2^{-d})^r.$ Note that the complexity of the Verifier will be $O(rd)$.

Consider the circuit that given the point representation of a degree $n-1$ polynomial outputs the value of the polynomial at an additional point.

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit (log *n* levels, with a total of $O(n)$ gates)

Consider the circuit that given the point representation of a degree $n-1$ polynomial outputs the value of the polynomial at an additional point.

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit ($\log n$ levels, with a total of $O(n)$ gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \le 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

Consider the circuit that given the point representation of a degree $n-1$ polynomial outputs the value of the polynomial at an additional point.

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit ($\log n$ levels, with a total of $O(n)$ gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \le 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit ($\log n$ levels, with a total of $O(n)$ gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \le 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

 $\frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to

-
-

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit ($\log n$ levels, with a total of $O(n)$ gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \le 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

If $\tilde{C} \geq \frac{n}{2}$ $\frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

-
-

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit ($\log n$ levels, with a total of $O(n)$ gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \le 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

If $\tilde{C} \geq \frac{n}{2}$ $\frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

 \blacksquare We can use the "check by re-execution" strategy every $O(\log n)$ executions;

The Verifier's complexity is $O(n^c \log^2 n + n \log n) = o(n \log^2 n)$.

- An FFT circuit ($\log n$ levels of $n/2$ gates each) to go from point to coefficient representation
- An evaluation circuit ($\log n$ levels, with a total of $O(n)$ gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \le 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

If $\tilde{C} \geq \frac{n}{2}$ $\frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

- \blacksquare We can use the "check by re-execution" strategy every $O(\log n)$ executions;
- The Verifier's complexity is $O(n^c \log^2 n + n \log n) = o(n \log^2 n)$.

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- **3** Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that always answering correcly is the rational strategy.
- **3** Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that always answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

-
- -

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that always answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

-
-
-

Summary

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that always answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

Open Problems

- **1** A rational proof for any poly-time computable function (even stand-alone).
- 2 A better sequentially composable protocol that works for any bounded-depth circuit.
- **3** Other examples of "interesting" problems that have circuits that can

Summary

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that always answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

Open Problems

- **1** A rational proof for any poly-time computable function (even stand-alone).
- 2 A better sequentially composable protocol that works for any bounded-depth circuit.
- **3** Other examples of "interesting" problems that have circuits that can be used with our protocol.

Summary

- 1 We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that always answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

Open Problems

- **1** A rational proof for any poly-time computable function (even stand-alone).
- 2 A better sequentially composable protocol that works for any bounded-depth circuit.
- 3 Other examples of "interesting" problems that have circuits that can be used with our protocol.