Sequential Composability for Rational Proofs

Matteo Campanelli Rosario Gennaro

The City College of New York CUNY Introduction ●○

The Model

Rational Proofs

Sequential Composability

Verifiable Computation against a *rational* rather than *malicious*

adversary

Adversary is only interested in maximizing a well-defined *utility function*

Our Results

Starting from the concept of *Rational Proofs* (AM'12)

- Consider a new model where many computations are outsourced, and define a notion of *sequential composability* to assure that providing the correct result on *all* computations is the rational strategy.
- Show that the some of the known rational proofs do not satisfy our notion of sequential composability.
- Present a new rational proof protocol which (for certain functions) is squentially composable.

Our Results

Starting from the concept of Rational Proofs (AM'12)

- Consider a new model where many computations are outsourced, and define a notion of *sequential composability* to assure that providing the correct result on *all* computations is the rational strategy.
- Show that the some of the known rational proofs do not satisfy our notion of sequential composability.
- Present a new rational proof protocol which (for certain functions) is squentially composable.

Our Results

Starting from the concept of *Rational Proofs* (AM'12)

- Consider a new model where many computations are outsourced, and define a notion of *sequential composability* to assure that providing the correct result on *all* computations is the rational strategy.
- Show that the some of the known rational proofs do not satisfy our notion of sequential composability.
- Present a new rational proof protocol which (for certain functions) is squentially composable.

An interactive proof between ${\boldsymbol{P}}$ and ${\boldsymbol{V}}$

\blacksquare On input a function f and a value x

P provides V with a value y

2 V "pays" P with a randomized reward R(transcript)

The reward is maximized (in expectation) when P provides the correct value $y=f(\boldsymbol{x})$

An interactive proof between \boldsymbol{P} and \boldsymbol{V}

On input a function f and a value x
P provides V with a value y
V "pays" P with a randomized reward R(transcript)
The reward is maximized (in expectation) when P provides the correct value y = f(x)

An interactive proof between \boldsymbol{P} and \boldsymbol{V}

 \blacksquare On input a function f and a value x

- **1** P provides V with a value y
- **2** V "pays" P with a randomized reward R(transcript)

 \blacksquare The reward is maximized (in expectation) when P provides the correct value y=f(x)

An interactive proof between \boldsymbol{P} and \boldsymbol{V}

- \blacksquare On input a function f and a value x
 - **1** P provides V with a value y
 - **2** V "pays" P with a randomized reward R(transcript)
- \blacksquare The reward is maximized (in expectation) when P provides the correct value y=f(x)

The most attractive feature of RP is their simplicity. AM'12 shows

A one-round proof for **PP**

A poly-round protocol for the counting hierarchy

The most attractive feature of RP is their simplicity. AM'12 shows

- A one-round proof for **PP**
- A poly-round protocol for the counting hierarchy

The most attractive feature of RP is their simplicity. AM'12 shows

- A one-round proof for **PP**
- A poly-round protocol for the counting hierarchy

The most attractive feature of RP is their simplicity. AM'12 shows

- A one-round proof for **PP**
- A poly-round protocol for the counting hierarchy

Rational Proofs 00●00 Sequential Composability

Efficient Rational Proofs

If C is the complexity of computing f, for Verifiable Computation we want a $\tilde{O}(C)$ Prover and a o(C) Verifier.

For a $O(\log n)$ Verifier, AM'13 presents a constant-round protocol for uniform constant-depth threshold circuits

- Assumes log-search-uniformity for the circuit
- Possible to extend to a log-depth circuit if allow polylog-Verifiers [GHRV'14]

Rational Proofs 00●00 Sequential Composability

Efficient Rational Proofs

If C is the complexity of computing f, for Verifiable Computation we want a $\tilde{O}(C)$ Prover and a o(C) Verifier.

For a $O(\log n)$ Verifier, AM'13 presents a constant-round protocol for uniform constant-depth threshold circuits

- Assumes log-search-uniformity for the circuit
- Possible to extend to a log-depth circuit if allow polylog-Verifiers [GHRV'14]

Rational Proofs 00●00 Sequential Composability

Efficient Rational Proofs

If C is the complexity of computing f, for Verifiable Computation we want a $\tilde{O}(C)$ Prover and a o(C) Verifier.

For a $O(\log n)$ Verifier, AM'13 presents a constant-round protocol for uniform constant-depth threshold circuits

- Assumes log-search-uniformity for the circuit
- Possible to extend to a log-depth circuit if allow polylog-Verifiers [GHRV'14]

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at least k input bits are 1

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- lacksquare V sets the output to 1 if $ilde{m}\geq k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i;$
- lacksquare V pays P Brier's Rule $BSR(ilde{p},b)$ defined as

$$BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^2 - (1 - \tilde{p})^2 + 1 = 2\tilde{p}(2 - \tilde{p})$$
$$BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^2 - (1 - \tilde{p})^2 + 1 = 2(1 - \tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p = m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p= ilde{p}$ i.e. when the Prover announces the correct result.

tr	d	u	ct	l	n

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to ${\bf 1}$ if at least k input bits are ${\bf 1}$

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \ge k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i$;
- lacksquare V pays P Brier's Rule $BSR(ilde{p},b)$ defined as

$$BSR(\tilde{p},1) = 2\tilde{p} - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2\tilde{p}(2-\tilde{p})$$
$$BSR(\tilde{p},0) = 2(1-\tilde{p}) - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2(1-\tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p = m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p= ilde{p}$ i.e. when the Prover announces the correct result.

lnt	rod	u ct	ion
00			

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at least k input bits are 1 $\,$

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \ge k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i$;
- lacksquare V pays P Brier's Rule $BSR(ilde{p},b)$ defined as

$$BSR(\tilde{p},1) = 2\tilde{p} - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2\tilde{p}(2-\tilde{p})$$
$$BSR(\tilde{p},0) = 2(1-\tilde{p}) - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2(1-\tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p = m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p= ilde{p}$ i.e. when the Prover announces the correct result.

lnt	rod	u ct	ion
00			

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at least k input bits are 1 $\,$

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \ge k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i$;

• V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$BSR(\tilde{p}, 1) = 2\tilde{p} - \tilde{p}^2 - (1 - \tilde{p})^2 + 1 = 2\tilde{p}(2 - \tilde{p})$$
$$BSR(\tilde{p}, 0) = 2(1 - \tilde{p}) - \tilde{p}^2 - (1 - \tilde{p})^2 + 1 = 2(1 - \tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p = m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p=\tilde{p}$ i.e. when the Prover announces the correct result.

lnt	rod	u ct	ion
00			

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to ${\bf 1}$ if at least k input bits are ${\bf 1}$

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \ge k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i$;
- V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$BSR(\tilde{p},1) = 2\tilde{p} - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2\tilde{p}(2-\tilde{p})$$
$$BSR(\tilde{p},0) = 2(1-\tilde{p}) - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2(1-\tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p = m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p = \tilde{p}$ i.e. when the Prover announces the correct result.

lnt	rod	u ct	ion
00			

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at least k input bits are 1 $\,$

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \ge k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i$;
- V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$BSR(\tilde{p},1) = 2\tilde{p} - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2\tilde{p}(2-\tilde{p})$$
$$BSR(\tilde{p},0) = 2(1-\tilde{p}) - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2(1-\tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p = m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p = \tilde{p}$ i.e. when the Prover announces the correct result.

lnt	rod	u ct	ion
00			

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at least k input bits are 1 $\,$

- P announces the number \tilde{m} of input bits equal to 1;
 - Let $\tilde{p} = \tilde{m}/n$ i.e. the probability claimed by the Prover that a randomly selected input bit be 1;
- V sets the output to 1 if $\tilde{m} \ge k$, to 0 otherwise;
- V selects a random index $i \in [1..n]$ and looks at input bit $b = x_i$;
- V pays P Brier's Rule $BSR(\tilde{p}, b)$ defined as

$$BSR(\tilde{p},1) = 2\tilde{p} - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2\tilde{p}(2-\tilde{p})$$
$$BSR(\tilde{p},0) = 2(1-\tilde{p}) - \tilde{p}^2 - (1-\tilde{p})^2 + 1 = 2(1-\tilde{p}^2)$$

Proof: Let m be the true number of input bits equal to 1, and p=m/n the corresponding probability, then the expected reward for P is

$$pBSR(\tilde{p},1) + (1-p)BSR(\tilde{p},0) \tag{1}$$

which is easily seen to be maximized for $p=\tilde{p}$ i.e. when the Prover announces the correct result.

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- We want $R C \ge \tilde{R} \tilde{C}$
 - sufficient that $R-\bar{R}\geq C$
- Consider the reward gap [AM'13,GHRV'14] Δ = min_P[R − R̃]
 Scale the reward by a factor C/Δ.

In the previous protocol $0\leq R\leq 2,$ C=n and $\Delta=n^{-2}$,which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- \blacksquare We want $R-C \geq \tilde{R} \tilde{C}$

• sufficient that $R - \tilde{R} \ge C$

- Consider the reward gap [AM'13,GHRV'14] $\Delta = min_{ ilde{P}}[R- ilde{R}]$
- Scale the reward by a factor C/Δ .

In the previous protocol $0\leq R\leq 2,\,C=n$ and $\Delta=n^{-2}$,which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- \blacksquare We want $R-C \geq \tilde{R} \tilde{C}$
 - \blacksquare sufficient that $R-\tilde{R}\geq C$
- Consider the *reward gap* [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$ Scale the reward by a factor C/Δ

If $\Delta=1/poly$, budget remains polynomial.

In the previous protocol $0\leq R\leq 2,\,C=n$ and $\Delta=n^{-2}$, which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- $\bullet \ \ {\rm We \ want} \ R-C \geq \tilde{R}-\tilde{C}$
 - \blacksquare sufficient that $R-\tilde{R}\geq C$
- Consider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$

• Scale the reward by a factor C/Δ .

If $\Delta = 1/poly$, budget remains polynomial

In the previous protocol $0\leq R\leq 2,$ C=n and $\Delta=n^{-2}$, which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- $\bullet \ \ {\rm We \ want} \ R-C \geq \tilde{R}-\tilde{C}$
 - \blacksquare sufficient that $R-\tilde{R}\geq C$
- Consider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

If $\Delta = 1/poly$, budget remains polynomial

In the previous protocol $0\leq R\leq 2,$ C=n and $\Delta=n^{-2}$, which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- We want $R C \geq \tilde{R} \tilde{C}$
 - sufficient that $R-\tilde{R}\geq C$
- Consider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

 \blacksquare If $\Delta=1/poly,$ budget remains polynomial

In the previous protocol $0\leq R\leq 2$, C=n and $\Delta=n^{-2}$, which means we need to scale the reward by a factor of $n^3.$

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

- Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .
- $\bullet \ \ {\rm We \ want} \ R-C \geq \tilde{R}-\tilde{C}$
 - sufficient that $R-\tilde{R}\geq C$
- Consider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

 \blacksquare If $\Delta=1/poly,$ budget remains polynomial

In the previous protocol $0 \le R \le 2$, C = n and $\Delta = n^{-2}$, which means we need to scale the reward by a factor of n^3 .

If C is the cost of computing the function then the honest prover earns a profit R - C. Is this profit always maximized?

Consider a lazy prover \tilde{P} which invests very little effort \tilde{C} , and yet it receives a reward \tilde{R} .

• We want
$$R-C \geq \tilde{R} - \tilde{C}$$

• sufficient that $R - \tilde{R} \ge C$

- Consider the reward gap [AM'13,GHRV'14] $\Delta = min_{\tilde{P}}[R \tilde{R}]$
- Scale the reward by a factor C/Δ .

• If $\Delta = 1/poly$, budget remains polynomial

In the previous protocol $0 \le R \le 2$, C = n and $\Delta = n^{-2}$, which means we need to scale the reward by a factor of n^3 .

Intr	dı	ct	io	

Sequential Composability

Example of Lazy Prover

If a bad prover answers at random (a O(1)-cost strategy), how much does it earn?

$$\tilde{R} = E_{m,b}[BSR(\frac{m}{n}, b)]$$

$$= \frac{1}{n+1} \sum_{m=0}^{n} E_b[BSR(\frac{m}{n}, b]]$$

$$= \frac{1}{n+1} \sum_{m=0}^{n} (2(2p \cdot \frac{m}{n} - \frac{m^2}{n^2} - p + 1))$$

$$= 2 - \frac{2n+1}{3n} > 1$$

Note that the honest prover earns always less than 2.

Intr	dı	ct	io	

Sequential Composability

Example of Lazy Prover

If a bad prover answers at random (a O(1)-cost strategy), how much does it earn?

$$\begin{split} \tilde{R} &= E_{m,b}[BSR(\frac{m}{n}, b)] \\ &= \frac{1}{n+1} \sum_{m=0}^{n} E_b[BSR(\frac{m}{n}, b] \\ &= \frac{1}{n+1} \sum_{m=0}^{n} (2(2p \cdot \frac{m}{n} - \frac{m^2}{n^2} - p + 1)) \\ &= 2 - \frac{2n+1}{3n} > 1 \end{split}$$

Note that the honest prover earns always less than 2.

Intr	dı	ct	io	

Sequential Composability

Example of Lazy Prover

If a bad prover answers at random (a O(1)-cost strategy), how much does it earn?

$$\begin{split} \tilde{R} &= E_{m,b}[BSR(\frac{m}{n},b)] \\ &= \frac{1}{n+1} \sum_{m=0}^{n} E_{b}[BSR(\frac{m}{n},b] \\ &= \frac{1}{n+1} \sum_{m=0}^{n} (2(2p \cdot \frac{m}{n} - \frac{m^{2}}{n^{2}} - p + 1) \\ &= 2 - \frac{2n+1}{3n} > 1 \end{split}$$

Note that the honest prover earns always less than 2.

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays O(n) and earns ≤ 2 . The random prover pays O(1) and earns > 1.

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.

Rational Proofs

Sequential Composability

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays O(n) and earns $\leq 2.$ The random prover pays O(1) and earns >1.

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays O(n) and earns $\leq 2.$ The random prover pays O(1) and earns >1.

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.

Many Outsourced Problems

What if there is a large number of computations to be outsourced and provers compete against each other to solve them (e.g. volunteer computations).

The honest prover pays O(n) and earns $\leq 2.$ The random prover pays O(1) and earns >1.

In the time that it takes the honest prover to solve one problem, the random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it allows the prover to solve more problems and collect more rewards.

Rational Proofs

Sequential Composability

Conclusion 0

Sequential Composability – First Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P.

A rational proof (P, V) for a function f is sequentially composable if for every prover \tilde{P} , and every sequence of inputs x, x_1, \ldots, x_k such that $C(x) \ge \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \ge \sum_i \tilde{R}(x_i)$

Actually that's not possible if we ask for *every input*: a prover may be answering correctly without doing any work.

Rational Proofs 00000 Sequential Composability

Conclusion 0

Sequential Composability – First Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P.

A rational proof (P, V) for a function f is sequentially composable if for every prover \tilde{P} , and every sequence of inputs x, x_1, \ldots, x_k such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

Actually that's not possible if we ask for *every input*: a prover may be answering correctly without doing any work.

Rational Proofs 00000 Sequential Composability

Conclusion 0

Sequential Composability – First Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P.

A rational proof (P, V) for a function f is sequentially composable if for every prover \tilde{P} , and every sequence of inputs x, x_1, \ldots, x_k such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

Actually that's not possible if we ask for *every input*: a prover may be answering correctly without doing any work.

Rational Proofs

Sequential Composability

Conclusion 0

Sequential Composability – Second Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P.

A rational proof (P, V) for a function f is sequentially composable for an input distribution \mathcal{D} if for every prover \tilde{P} , and every sequence of inputs $x, x_1, \ldots, x_k \in \mathcal{D}$ such that $C(x) \ge \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \ge \sum_i \tilde{R}(x_i)$

Rational Proofs 00000 Sequential Composability

Conclusion 0

Sequential Composability – Second Attempt

We want that the reward of the honest prover P must always be larger than the total reward of any prover \tilde{P} that invests less computation cost than P.

A rational proof (P, V) for a function f is sequentially composable for an input distribution \mathcal{D} if for every prover \tilde{P} , and every sequence of inputs $x, x_1, \ldots, x_k \in \mathcal{D}$ such that $C(x) \geq \sum_{i=1}^k \tilde{C}(x_i)$ we have that $R(x) \geq \sum_i \tilde{R}(x_i)$

Introduction	Rational Proofs	Sequential Composability	Conclusion
00	00000	0000000000	O
Two sufficient co	onditions		

If R(x) = R and $C(x) \leq C$ for the honest prover P, it is sufficient that

$$\frac{\tilde{R}}{R} \le \frac{\tilde{C}}{C}$$

•
$$\sum_{i} \tilde{R}(x_i) \leq \frac{R}{C} \sum_{i=1} \tilde{C}(x_i) \leq R$$

If the reward is either R or 0 then let \tilde{p} be the probability that \tilde{P} receives the full reward R. Then it is sufficient that

$$\tilde{p} \leq \frac{\tilde{C}}{C}$$

Immediate from above since $ilde{R} = ilde{p} \cdot R$.

Introduction	Rational Proofs	Sequential Composability	Conclusion
00	00000	0000€000000	O
Two sufficient co	onditions		

If R(x) = R and $C(x) \leq C$ for the honest prover P, it is sufficient that

$$\frac{\tilde{R}}{R} \le \frac{\tilde{C}}{C}$$

$$\sum_{i} \tilde{R}(x_i) \le \frac{R}{C} \sum_{i=1} \tilde{C}(x_i) \le R$$

If the reward is either R or 0 then let \tilde{p} be the probability that \tilde{P} receives the full reward R. Then it is sufficient that

$$\tilde{p} \leq \frac{\tilde{C}}{C}$$

Immediate from above since $\tilde{R} = \tilde{p} \cdot R$.

Introduction	Rational Proofs	Sequential Composability	Conclusion
00	00000	0000€000000	O
Two sufficient co	onditions		

If R(x) = R and $C(x) \leq C$ for the honest prover P, it is sufficient that

$$\frac{\tilde{R}}{R} \le \frac{\tilde{C}}{C}$$

•
$$\sum_{i} \tilde{R}(x_i) \leq \frac{R}{C} \sum_{i=1} \tilde{C}(x_i) \leq R$$

If the reward is either R or 0 then let \tilde{p} be the probability that \tilde{P} receives the full reward R. Then it is sufficient that

$$\tilde{p} \leq \frac{\tilde{C}}{C}$$

Immediate from above since $\tilde{R} = \tilde{p} \cdot R$.

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x.
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- \blacksquare In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x.
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x.
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

$$\frac{\tilde{C}}{C} = \frac{1}{2} + \frac{\tilde{s}}{S}$$

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x.
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- \blacksquare In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

$$\frac{\tilde{C}}{C} = \frac{1}{2} + \frac{\tilde{s}}{S}$$

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x.
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- \blacksquare In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

$$\frac{\tilde{C}}{C} = \frac{1}{2} + \frac{\tilde{s}}{S}$$

This protocol appears in [AM'13] as a "stand-alone" RP.

- Let C be a circuit computing f of size S. On input x, The Prover writes down the values of all the wires of C when evaluated at x.
- The verifier chooses one gate at random and verifies that it has been computed correctly. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct gates written down by \tilde{P} . Therefore $\tilde{p} = \tilde{m}/S$.
- \blacksquare In a cost model in which the prover pays 1 to compute and write down a gate then $\tilde{p} \leq \tilde{C}/C$ as desired.

$$\frac{\tilde{C}}{C} = \frac{1}{2} + \frac{\tilde{s}}{S}$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess f(x) only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess f(x) only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays R, otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess f(x) only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays *R*, otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess f(x) only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays *R*, otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess f(x) only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays *R*, otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}$$

Following [BCEJKL08] (which considered this problem though with different definitions)

- Let c be the cost incurred to compute f by the honest prover. Assume that for a randomly chosen input $x \in D$ a prover \tilde{P} that invests less than c cost, can guess f(x) only with negligible probability.
- Batch computations in set of k, i.e. pay the prover after he solves k computations.
- The verifier chooses one computation at random and checks by re-executing it. If the result is correct, she pays *R*, otherwise she pays 0.
- Let \tilde{m} be the number of correct results returned by \tilde{P} . Therefore

$$\tilde{p} = \frac{\tilde{m}}{k} = \frac{\tilde{m}c}{kc} \le \frac{\tilde{C}}{C}$$

- Starting from the output gate G, the Prover sends the values out, in_0, in_1
- The verifier checks that $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in₀ and in₁ are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R.
- The verifier chooses a random bit b and the protocol is recursively called on the subcircuit that has output in_b.

ln ti 00	oduction		Rational	Proofs		equential Composability	Conclusion O
А	solution	for c	ertain	bounded	depth	circuits	

- Starting from the output gate G, the Prover sends the values out, in_0, in_1
- The verifier checks that $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in₀ and in₁ are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R.
- The verifier chooses a random bit b and the protocol is recursively called on the subcircuit that has output in_b.

- Starting from the output gate G, the Prover sends the values out, in_0, in_1
- The verifier checks that $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in₀ and in₁ are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R.
- The verifier chooses a random bit b and the protocol is recursively called on the subcircuit that has output in_b.

- Starting from the output gate G, the Prover sends the values out, in_0, in_1
- The verifier checks that $G(in_0, in_1) = out$. If the check fails, it pays 0 and stop.
- If in₀ and in₁ are input wires, the Verifier checks that they are the correct input values and stops. If the check fails it pays 0, otherwise it pays R.
- The verifier chooses a random bit *b* and the protocol is recursively called on the subcircuit that has output *in*_b.

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

- \blacksquare the probability of \tilde{P} to obtain R when giving an incorrect result is $1-2^{-d}$
- $\hfill \tilde{P}$ can always compute one sub-circuit correctly and hope that's selected.
- At each level \tilde{P} survives with probability 1/2 so it is detected only with probability 2^{-d} .

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

- \blacksquare the probability of \tilde{P} to obtain R when giving an incorrect result is $1-2^{-d}$
- $\hfill \tilde{P}$ can always compute one sub-circuit correctly and hope that's selected.
- At each level \tilde{P} survives with probability 1/2 so it is detected only with probability 2^{-d} .

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

- \blacksquare the probability of \tilde{P} to obtain R when giving an incorrect result is $1-2^{-d}$
- \tilde{P} can always compute one sub-circuit correctly and hope that's selected.
- At each level \tilde{P} survives with probability 1/2 so it is detected only with probability 2^{-d} .

Sequential Composability Analysis

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a *regular* circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p} = 1 - 2^{-\tilde{d}}$, where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coefficient

lnt	rod	u ct	ion
00			

Sequential Composability

Sequential Composability Analysis

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a *regular* circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p} = 1 - 2^{-\tilde{d}}$, where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coefficient

tr	d	u	ct	l	n

Sequential Composability

Conclusion 0

Sequential Composability Analysis

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a *regular* circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p} = 1 - 2^{-\tilde{d}}$, where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coefficient

lnt	rod	u ct	ion
00			

Sequential Composability

Conclusion 0

Sequential Composability Analysis

Assume again that \tilde{P} can output the right value of a wire only by computing the associated gate.

Consider a *regular* circuit: every subcircuit at a given level has the same "weight" (number of input-output paths entering it). Then for these circuits, the probability of success for \tilde{P} investing \tilde{C} is $\tilde{p} = 1 - 2^{-\tilde{d}}$, where \tilde{d} is the height reached by "filling" in \tilde{C} gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coefficient

I ntroduction	Rational Proofs	Sequential Composability	(
00	00000	000000000●	
A Mixed Strated	T\/		

5)

Consider the circuit that given the point representation of a degree n-1 polynomial outputs the value of the polynomial at an additional point.

Conclusion

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{C}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

. The Venfret's complexity is $O(n^{\epsilon}\log n) = o(n\log n)$.

If $ilde{C} \geq rac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for $ilde{P}$ to earn more than P.

Introduction	Rational Proofs	Sequentia∣ Composability	Conclusion
00	00000	000000000	O
A Mixed Strategy	у		

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

If $ilde{C} \geq rac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for $ilde{P}$ to earn more than P.

Introduction	Rational Proofs	Sequential Composability	Conclusion
00	00000	000000000●	O
A Mixed Str	ategy		

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

• The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

0,

If $\tilde{C} \geq \frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

We can use the "check by re-execution" strategy every $O(\log n)$ executions:

Introduction	Rational Proofs	Sequential Composability	Conclusion
00	00000	000000000●	O
A Mixed Strat	Ασν		

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

• The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

້ອງ

If $\tilde{C} \geq \frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

- We can use the "check by re-execution" strategy every O(log n) executions;
- w The Venlier's complexity is $O(n^2\log^2 n + n\log n) = o(n\log^2 n)$.

Introduction	Rational Proofs	Sequential Composability	Conclusion
00	00000	000000000●	O
A Mixed Strat			

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

• The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

αιςξι

If $\tilde{C} \geq \frac{n}{2} \log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

- We can use the "check by re-execution" strategy every O(log n) executions;
- The Verifier's complexity is $O(n^c \log^2 n + n \log n) = o(n \log^2 n)$.

I ntroduction	Rational Proofs	Sequential Composability
00	00000	000000000●
A Mixed Strategy		

Conclusion

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

• The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

If $\tilde{C} \geq \frac{n}{2}\log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

 We can use the "check by re-execution" strategy every O(log n) executions;

• The Verifier's complexity is $O(n^c \log^2 n + n \log n) = o(n \log^2 n)$.

Intr	du	io	

Sequential Composability

Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n-1 polynomial outputs the value of the polynomial at an additional point.

- An FFT circuit ($\log n$ levels of n/2 gates each) to go from point to coefficient representation
- An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if $\tilde{C} < \frac{n}{2} \log n$ then $\tilde{d} = c \log n$ with $c \leq 1$, and $\frac{\tilde{C}}{C} = O(1)$. Therefore with $O(n^c)$ repetitions, the probability of success can be made smaller than $\frac{\tilde{C}}{C}$.

• The Verifier's complexity is $O(n^c \log n) = o(n \log n)$.

If $\tilde{C} \geq \frac{n}{2} \log n$ then it will take more than $O(\log n)$ executions for \tilde{P} to earn more than P.

- We can use the "check by re-execution" strategy every O(log n) executions;
- The Verifier's complexity is $O(n^c \log^2 n + n \log n) = o(n \log^2 n)$.

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- **2** Goal: to make sure that *always* answering correctly is the rational strategy.
- Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

Open Problems

neve) notional eldet upmos emit-ylog yne rol hoarg i enoiter A 📷 stand-aloe

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

- A rational proof for any poly-time computable function (even stand-alone).
- A better sequentially composable protocol that works for any bounded-depth (cronic) thread and cronic) the sequence of th
 - Other examples of "interesting" problems that have circuits that can be used with our protocol

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

- A rational proof for any poly-time computable function (even stand-alone).
- A better sequentially composable protocol that works for any bounded-depth circuit.
- Other examples of "interesting" problems that have circuits that can be used with our protocol.

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

- A rational proof for any poly-time computable function (even stand-alone).
- 2 A better sequentially composable protocol that works for *any* bounded-depth circuit.
- 3 Other examples of "interesting" problems that have circuits that can be used with our protocol.

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

- A rational proof for any poly-time computable function (even stand-alone).
- 2 A better sequentially composable protocol that works for *any* bounded-depth circuit.
- 3 Other examples of "interesting" problems that have circuits that can be used with our protocol.

Summary

- We defined a notion of sequential composability for rational proofs, motivated by scenarios where many problems are outsourced by the Verifier to the Prover.
- 2 Goal: to make sure that *always* answering correcly is the rational strategy.
- 3 Proved that some RP in the protocols do not satisfy this definition, while others do. Presented a new protocol that achieves it for certain bounded-depth circuits.

- A rational proof for any poly-time computable function (even stand-alone).
- 2 A better sequentially composable protocol that works for *any* bounded-depth circuit.
- 3 Other examples of "interesting" problems that have circuits that can be used with our protocol.