
Sequential Composability for Rational Proofs

Matteo Campanelli Rosario Gennaro

The City College of New York

CUNY

Introduction Rational Proofs Sequential Composability Conclusion

The Model

Veri�able Computation against a rational rather than malicious
adversary

Adversary is only interested in maximizing a well-de�ned utility
function

Introduction Rational Proofs Sequential Composability Conclusion

Our Results

Starting from the concept of Rational Proofs (AM'12)

Consider a new model where many computations are outsourced, and
de�ne a notion of sequential composability to assure that providing
the correct result on all computations is the rational strategy.

Show that the some of the known rational proofs do not satisfy our
notion of sequential composability.

Present a new rational proof protocol which (for certain functions) is
squentially composable.

Introduction Rational Proofs Sequential Composability Conclusion

Our Results

Starting from the concept of Rational Proofs (AM'12)

Consider a new model where many computations are outsourced, and
de�ne a notion of sequential composability to assure that providing
the correct result on all computations is the rational strategy.

Show that the some of the known rational proofs do not satisfy our
notion of sequential composability.

Present a new rational proof protocol which (for certain functions) is
squentially composable.

Introduction Rational Proofs Sequential Composability Conclusion

Our Results

Starting from the concept of Rational Proofs (AM'12)

Consider a new model where many computations are outsourced, and
de�ne a notion of sequential composability to assure that providing
the correct result on all computations is the rational strategy.

Show that the some of the known rational proofs do not satisfy our
notion of sequential composability.

Present a new rational proof protocol which (for certain functions) is
squentially composable.

Introduction Rational Proofs Sequential Composability Conclusion

Rational Proofs

An interactive proof between P and V

On input a function f and a value x

1 P provides V with a value y
2 V "pays" P with a randomized reward R(transcript)

The reward is maximized (in expectation) when P provides the correct
value y = f(x)

Introduction Rational Proofs Sequential Composability Conclusion

Rational Proofs

An interactive proof between P and V

On input a function f and a value x

1 P provides V with a value y
2 V "pays" P with a randomized reward R(transcript)

The reward is maximized (in expectation) when P provides the correct
value y = f(x)

Introduction Rational Proofs Sequential Composability Conclusion

Rational Proofs

An interactive proof between P and V

On input a function f and a value x

1 P provides V with a value y
2 V "pays" P with a randomized reward R(transcript)

The reward is maximized (in expectation) when P provides the correct
value y = f(x)

Introduction Rational Proofs Sequential Composability Conclusion

Rational Proofs

An interactive proof between P and V

On input a function f and a value x

1 P provides V with a value y
2 V "pays" P with a randomized reward R(transcript)

The reward is maximized (in expectation) when P provides the correct
value y = f(x)

Introduction Rational Proofs Sequential Composability Conclusion

Simplicity

The most attractive feature of RP is their simplicity. AM'12 shows

A one-round proof for PP

A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time veri�er.

Introduction Rational Proofs Sequential Composability Conclusion

Simplicity

The most attractive feature of RP is their simplicity. AM'12 shows

A one-round proof for PP

A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time veri�er.

Introduction Rational Proofs Sequential Composability Conclusion

Simplicity

The most attractive feature of RP is their simplicity. AM'12 shows

A one-round proof for PP

A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time veri�er.

Introduction Rational Proofs Sequential Composability Conclusion

Simplicity

The most attractive feature of RP is their simplicity. AM'12 shows

A one-round proof for PP

A poly-round protocol for the counting hierarchy

The above assumes an all-powerful prover and a poly-time veri�er.

Introduction Rational Proofs Sequential Composability Conclusion

E�cient Rational Proofs

If C is the complexity of computing f , for Veri�able Computation we
want a Õ(C) Prover and a o(C) Veri�er.

For a O(log n) Veri�er, AM'13 presents a constant-round protocol for
uniform constant-depth threshold circuits

Assumes log-search-uniformity for the circuit

Possible to extend to a log-depth circuit if allow polylog-Veri�ers
[GHRV'14]

Introduction Rational Proofs Sequential Composability Conclusion

E�cient Rational Proofs

If C is the complexity of computing f , for Veri�able Computation we
want a Õ(C) Prover and a o(C) Veri�er.

For a O(log n) Veri�er, AM'13 presents a constant-round protocol for
uniform constant-depth threshold circuits

Assumes log-search-uniformity for the circuit

Possible to extend to a log-depth circuit if allow polylog-Veri�ers
[GHRV'14]

Introduction Rational Proofs Sequential Composability Conclusion

E�cient Rational Proofs

If C is the complexity of computing f , for Veri�able Computation we
want a Õ(C) Prover and a o(C) Veri�er.

For a O(log n) Veri�er, AM'13 presents a constant-round protocol for
uniform constant-depth threshold circuits

Assumes log-search-uniformity for the circuit

Possible to extend to a log-depth circuit if allow polylog-Veri�ers
[GHRV'14]

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

The AM'13 threshold protocol

Consider a single threshold gate with n inputs, which evaluates to 1 if at
least k input bits are 1

P announces the number m̃ of input bits equal to 1;
Let p̃ = m̃/n i.e. the probability claimed by the Prover that a

randomly selected input bit be 1;

V sets the output to 1 if m̃ ≥ k, to 0 otherwise;

V selects a random index i ∈ [1..n] and looks at input bit b = xi;

V pays P Brier's Rule BSR(p̃, b) de�ned as

BSR(p̃, 1) = 2p̃− p̃2 − (1− p̃)2 + 1 = 2p̃(2− p̃)

BSR(p̃, 0) = 2(1− p̃)− p̃2 − (1− p̃)2 + 1 = 2(1− p̃2)

Proof: Let m be the true number of input bits equal to 1, and p = m/n
the corresponding probability, then the expected reward for P is

pBSR(p̃, 1) + (1− p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover
announces the correct result.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Reward vs. Pro�t

If C is the cost of computing the function then the honest prover
earns a pro�t R− C. Is this pro�t always maximized?

Consider a lazy prover P̃ which invests very little e�ort C̃, and yet it
receives a reward R̃.

We want R− C ≥ R̃− C̃

su�cient that R− R̃ ≥ C

Consider the reward gap [AM'13,GHRV'14] ∆ = minP̃ [R− R̃]

Scale the reward by a factor C/∆.

If ∆ = 1/poly, budget remains polynomial

In the previous protocol 0 ≤ R ≤ 2, C = n and ∆ = n−2, which means we
need to scale the reward by a factor of n3.

Introduction Rational Proofs Sequential Composability Conclusion

Example of Lazy Prover

If a bad prover answers at random (a O(1)-cost strategy), how much
does it earn?

R̃ = Em,b[BSR(
m

n
, b)]

=
1

n + 1

n∑
m=0

Eb[BSR(
m

n
, b]

=
1

n + 1

n∑
m=0

(2(2p · m
n
− m2

n2
− p + 1))

= 2− 2n + 1

3n
> 1

Note that the honest prover earns always less than 2.

Introduction Rational Proofs Sequential Composability Conclusion

Example of Lazy Prover

If a bad prover answers at random (a O(1)-cost strategy), how much
does it earn?

R̃ = Em,b[BSR(
m

n
, b)]

=
1

n + 1

n∑
m=0

Eb[BSR(
m

n
, b]

=
1

n + 1

n∑
m=0

(2(2p · m
n
− m2

n2
− p + 1))

= 2− 2n + 1

3n
> 1

Note that the honest prover earns always less than 2.

Introduction Rational Proofs Sequential Composability Conclusion

Example of Lazy Prover

If a bad prover answers at random (a O(1)-cost strategy), how much
does it earn?

R̃ = Em,b[BSR(
m

n
, b)]

=
1

n + 1

n∑
m=0

Eb[BSR(
m

n
, b]

=
1

n + 1

n∑
m=0

(2(2p · m
n
− m2

n2
− p + 1))

= 2− 2n + 1

3n
> 1

Note that the honest prover earns always less than 2.

Introduction Rational Proofs Sequential Composability Conclusion

Many Outsourced Problems

What if there is a large number of computations to be outsourced
and provers compete against each other to solve them (e.g. volunteer
computations).

The honest prover pays O(n) and earns ≤ 2. The random prover pays
O(1) and earns > 1.

In the time that it takes the honest prover to solve one problem, the
random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it
allows the prover to solve more problems and collect more rewards.

Introduction Rational Proofs Sequential Composability Conclusion

Many Outsourced Problems

What if there is a large number of computations to be outsourced
and provers compete against each other to solve them (e.g. volunteer
computations).

The honest prover pays O(n) and earns ≤ 2. The random prover pays
O(1) and earns > 1.

In the time that it takes the honest prover to solve one problem, the
random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it
allows the prover to solve more problems and collect more rewards.

Introduction Rational Proofs Sequential Composability Conclusion

Many Outsourced Problems

What if there is a large number of computations to be outsourced
and provers compete against each other to solve them (e.g. volunteer
computations).

The honest prover pays O(n) and earns ≤ 2. The random prover pays
O(1) and earns > 1.

In the time that it takes the honest prover to solve one problem, the
random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it
allows the prover to solve more problems and collect more rewards.

Introduction Rational Proofs Sequential Composability Conclusion

Many Outsourced Problems

What if there is a large number of computations to be outsourced
and provers compete against each other to solve them (e.g. volunteer
computations).

The honest prover pays O(n) and earns ≤ 2. The random prover pays
O(1) and earns > 1.

In the time that it takes the honest prover to solve one problem, the
random prover can solve many and collect more money.

In this scenario, a fast incorrect answer is the rational strategy since it
allows the prover to solve more problems and collect more rewards.

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability � First Attempt

We want that the reward of the honest prover P must always be
larger than the total reward of any prover P̃ that invests less
computation cost than P .

A rational proof (P, V) for a function f is sequentially composable if for
every prover P̃ , and every sequence of inputs x, x1, . . . , xk such that
C(x) ≥

∑k
i=1 C̃(xi) we have that R(x) ≥

∑
i R̃(xi)

Actually that's not possible if we ask for every input: a prover may be
answering correctly without doing any work.

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability � First Attempt

We want that the reward of the honest prover P must always be
larger than the total reward of any prover P̃ that invests less
computation cost than P .

A rational proof (P, V) for a function f is sequentially composable if for
every prover P̃ , and every sequence of inputs x, x1, . . . , xk such that
C(x) ≥

∑k
i=1 C̃(xi) we have that R(x) ≥

∑
i R̃(xi)

Actually that's not possible if we ask for every input: a prover may be
answering correctly without doing any work.

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability � First Attempt

We want that the reward of the honest prover P must always be
larger than the total reward of any prover P̃ that invests less
computation cost than P .

A rational proof (P, V) for a function f is sequentially composable if for
every prover P̃ , and every sequence of inputs x, x1, . . . , xk such that
C(x) ≥

∑k
i=1 C̃(xi) we have that R(x) ≥

∑
i R̃(xi)

Actually that's not possible if we ask for every input: a prover may be
answering correctly without doing any work.

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability � Second Attempt

We want that the reward of the honest prover P must always be
larger than the total reward of any prover P̃ that invests less
computation cost than P .

A rational proof (P, V) for a function f is sequentially composable for an
input distribution D if for every prover P̃ , and every sequence of inputs
x, x1, . . . , xk ∈ D such that C(x) ≥

∑k
i=1 C̃(xi) we have that

R(x) ≥
∑

i R̃(xi)

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability � Second Attempt

We want that the reward of the honest prover P must always be
larger than the total reward of any prover P̃ that invests less
computation cost than P .

A rational proof (P, V) for a function f is sequentially composable for an
input distribution D if for every prover P̃ , and every sequence of inputs
x, x1, . . . , xk ∈ D such that C(x) ≥

∑k
i=1 C̃(xi) we have that

R(x) ≥
∑

i R̃(xi)

Introduction Rational Proofs Sequential Composability Conclusion

Two su�cient conditions

If R(x) = R and C(x) ≤ C for the honest prover P , it is su�cient that

R̃

R
≤ C̃

C

∑
i R̃(xi) ≤ R

C

∑
i=1 C̃(xi) ≤ R

If the reward is either R or 0 then let p̃ be the probability that P̃
receives the full reward R. Then it is su�cient that

p̃ ≤ C̃

C

Immediate from above since R̃ = p̃ ·R.

Introduction Rational Proofs Sequential Composability Conclusion

Two su�cient conditions

If R(x) = R and C(x) ≤ C for the honest prover P , it is su�cient that

R̃

R
≤ C̃

C

∑
i R̃(xi) ≤ R

C

∑
i=1 C̃(xi) ≤ R

If the reward is either R or 0 then let p̃ be the probability that P̃
receives the full reward R. Then it is su�cient that

p̃ ≤ C̃

C

Immediate from above since R̃ = p̃ ·R.

Introduction Rational Proofs Sequential Composability Conclusion

Two su�cient conditions

If R(x) = R and C(x) ≤ C for the honest prover P , it is su�cient that

R̃

R
≤ C̃

C

∑
i R̃(xi) ≤ R

C

∑
i=1 C̃(xi) ≤ R

If the reward is either R or 0 then let p̃ be the probability that P̃
receives the full reward R. Then it is su�cient that

p̃ ≤ C̃

C

Immediate from above since R̃ = p̃ ·R.

Introduction Rational Proofs Sequential Composability Conclusion

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

Let C be a circuit computing f of size S. On input x, The Prover
writes down the values of all the wires of C when evaluated at x.

The veri�er chooses one gate at random and veri�es that it has been
computed correctly. If the result is correct, she pays R, otherwise she
pays 0.

Let m̃ be the number of correct gates written down by P̃ . Therefore
p̃ = m̃/S.

In a cost model in which the prover pays 1 to compute and write
down a gate then p̃ ≤ C̃/C as desired.

Notice that in other cost models sequential composition may not follow.
For example, a prover that pays separately $1 to compute the value of a
single gate and $1 to write that value down. For dishonest provers that
write the whole string down

C̃

C
=

1

2
+

s̃

S

Introduction Rational Proofs Sequential Composability Conclusion

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

Let C be a circuit computing f of size S. On input x, The Prover
writes down the values of all the wires of C when evaluated at x.

The veri�er chooses one gate at random and veri�es that it has been
computed correctly. If the result is correct, she pays R, otherwise she
pays 0.

Let m̃ be the number of correct gates written down by P̃ . Therefore
p̃ = m̃/S.

In a cost model in which the prover pays 1 to compute and write
down a gate then p̃ ≤ C̃/C as desired.

Notice that in other cost models sequential composition may not follow.
For example, a prover that pays separately $1 to compute the value of a
single gate and $1 to write that value down. For dishonest provers that
write the whole string down

C̃

C
=

1

2
+

s̃

S

Introduction Rational Proofs Sequential Composability Conclusion

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

Let C be a circuit computing f of size S. On input x, The Prover
writes down the values of all the wires of C when evaluated at x.

The veri�er chooses one gate at random and veri�es that it has been
computed correctly. If the result is correct, she pays R, otherwise she
pays 0.

Let m̃ be the number of correct gates written down by P̃ . Therefore
p̃ = m̃/S.

In a cost model in which the prover pays 1 to compute and write
down a gate then p̃ ≤ C̃/C as desired.

Notice that in other cost models sequential composition may not follow.
For example, a prover that pays separately $1 to compute the value of a
single gate and $1 to write that value down. For dishonest provers that
write the whole string down

C̃

C
=

1

2
+

s̃

S

Introduction Rational Proofs Sequential Composability Conclusion

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

Let C be a circuit computing f of size S. On input x, The Prover
writes down the values of all the wires of C when evaluated at x.

The veri�er chooses one gate at random and veri�es that it has been
computed correctly. If the result is correct, she pays R, otherwise she
pays 0.

Let m̃ be the number of correct gates written down by P̃ . Therefore
p̃ = m̃/S.

In a cost model in which the prover pays 1 to compute and write
down a gate then p̃ ≤ C̃/C as desired.

Notice that in other cost models sequential composition may not follow.
For example, a prover that pays separately $1 to compute the value of a
single gate and $1 to write that value down. For dishonest provers that
write the whole string down

C̃

C
=

1

2
+

s̃

S

Introduction Rational Proofs Sequential Composability Conclusion

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

Let C be a circuit computing f of size S. On input x, The Prover
writes down the values of all the wires of C when evaluated at x.

The veri�er chooses one gate at random and veri�es that it has been
computed correctly. If the result is correct, she pays R, otherwise she
pays 0.

Let m̃ be the number of correct gates written down by P̃ . Therefore
p̃ = m̃/S.

In a cost model in which the prover pays 1 to compute and write
down a gate then p̃ ≤ C̃/C as desired.

Notice that in other cost models sequential composition may not follow.
For example, a prover that pays separately $1 to compute the value of a
single gate and $1 to write that value down. For dishonest provers that
write the whole string down

C̃

C
=

1

2
+

s̃

S

Introduction Rational Proofs Sequential Composability Conclusion

A solution in the PCP model

This protocol appears in [AM'13] as a "stand-alone" RP.

Let C be a circuit computing f of size S. On input x, The Prover
writes down the values of all the wires of C when evaluated at x.

The veri�er chooses one gate at random and veri�es that it has been
computed correctly. If the result is correct, she pays R, otherwise she
pays 0.

Let m̃ be the number of correct gates written down by P̃ . Therefore
p̃ = m̃/S.

In a cost model in which the prover pays 1 to compute and write
down a gate then p̃ ≤ C̃/C as desired.

Notice that in other cost models sequential composition may not follow.
For example, a prover that pays separately $1 to compute the value of a
single gate and $1 to write that value down. For dishonest provers that
write the whole string down

C̃

C
=

1

2
+

s̃

S

Introduction Rational Proofs Sequential Composability Conclusion

A solution for large number of problems

Following [BCEJKL08] (which considered this problem though with
di�erent de�nitions)

Let c be the cost incurred to compute f by the honest prover. Assume
that for a randomly chosen input x ∈ D a prover P̃ that invests less
than c cost, can guess f(x) only with negligible probability.

Batch computations in set of k, i.e. pay the prover after he solves k
computations.

The veri�er chooses one computation at random and checks by
re-executing it. If the result is correct, she pays R, otherwise she pays
0.

Let m̃ be the number of correct results returned by P̃ . Therefore

p̃ =
m̃

k
=

m̃c

kc
≤ C̃

C

This requires k to be large enough to keep the Veri�er e�cient (so the cost
of computing f once is amortized over k executions)

Introduction Rational Proofs Sequential Composability Conclusion

A solution for large number of problems

Following [BCEJKL08] (which considered this problem though with
di�erent de�nitions)

Let c be the cost incurred to compute f by the honest prover. Assume
that for a randomly chosen input x ∈ D a prover P̃ that invests less
than c cost, can guess f(x) only with negligible probability.

Batch computations in set of k, i.e. pay the prover after he solves k
computations.

The veri�er chooses one computation at random and checks by
re-executing it. If the result is correct, she pays R, otherwise she pays
0.

Let m̃ be the number of correct results returned by P̃ . Therefore

p̃ =
m̃

k
=

m̃c

kc
≤ C̃

C

This requires k to be large enough to keep the Veri�er e�cient (so the cost
of computing f once is amortized over k executions)

Introduction Rational Proofs Sequential Composability Conclusion

A solution for large number of problems

Following [BCEJKL08] (which considered this problem though with
di�erent de�nitions)

Let c be the cost incurred to compute f by the honest prover. Assume
that for a randomly chosen input x ∈ D a prover P̃ that invests less
than c cost, can guess f(x) only with negligible probability.

Batch computations in set of k, i.e. pay the prover after he solves k
computations.

The veri�er chooses one computation at random and checks by
re-executing it. If the result is correct, she pays R, otherwise she pays
0.

Let m̃ be the number of correct results returned by P̃ . Therefore

p̃ =
m̃

k
=

m̃c

kc
≤ C̃

C

This requires k to be large enough to keep the Veri�er e�cient (so the cost
of computing f once is amortized over k executions)

Introduction Rational Proofs Sequential Composability Conclusion

A solution for large number of problems

Following [BCEJKL08] (which considered this problem though with
di�erent de�nitions)

Let c be the cost incurred to compute f by the honest prover. Assume
that for a randomly chosen input x ∈ D a prover P̃ that invests less
than c cost, can guess f(x) only with negligible probability.

Batch computations in set of k, i.e. pay the prover after he solves k
computations.

The veri�er chooses one computation at random and checks by
re-executing it. If the result is correct, she pays R, otherwise she pays
0.

Let m̃ be the number of correct results returned by P̃ . Therefore

p̃ =
m̃

k
=

m̃c

kc
≤ C̃

C

This requires k to be large enough to keep the Veri�er e�cient (so the cost
of computing f once is amortized over k executions)

Introduction Rational Proofs Sequential Composability Conclusion

A solution for large number of problems

Following [BCEJKL08] (which considered this problem though with
di�erent de�nitions)

Let c be the cost incurred to compute f by the honest prover. Assume
that for a randomly chosen input x ∈ D a prover P̃ that invests less
than c cost, can guess f(x) only with negligible probability.

Batch computations in set of k, i.e. pay the prover after he solves k
computations.

The veri�er chooses one computation at random and checks by
re-executing it. If the result is correct, she pays R, otherwise she pays
0.

Let m̃ be the number of correct results returned by P̃ . Therefore

p̃ =
m̃

k
=

m̃c

kc
≤ C̃

C

This requires k to be large enough to keep the Veri�er e�cient (so the cost
of computing f once is amortized over k executions)

Introduction Rational Proofs Sequential Composability Conclusion

A solution for large number of problems

Following [BCEJKL08] (which considered this problem though with
di�erent de�nitions)

Let c be the cost incurred to compute f by the honest prover. Assume
that for a randomly chosen input x ∈ D a prover P̃ that invests less
than c cost, can guess f(x) only with negligible probability.

Batch computations in set of k, i.e. pay the prover after he solves k
computations.

The veri�er chooses one computation at random and checks by
re-executing it. If the result is correct, she pays R, otherwise she pays
0.

Let m̃ be the number of correct results returned by P̃ . Therefore

p̃ =
m̃

k
=

m̃c

kc
≤ C̃

C

This requires k to be large enough to keep the Veri�er e�cient (so the cost
of computing f once is amortized over k executions)

Introduction Rational Proofs Sequential Composability Conclusion

A solution for certain bounded depth circuits

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (say
2).

Starting from the output gate G, the Prover sends the values
out, in0, in1

The veri�er checks that G(in0, in1) = out. If the check fails, it pays 0
and stop.

If in0 and in1 are input wires, the Veri�er checks that they are the
correct input values and stops. If the check fails it pays 0, otherwise it
pays R.

The veri�er chooses a random bit b and the protocol is recursively
called on the subcircuit that has output inb.

Introduction Rational Proofs Sequential Composability Conclusion

A solution for certain bounded depth circuits

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (say
2).

Starting from the output gate G, the Prover sends the values
out, in0, in1

The veri�er checks that G(in0, in1) = out. If the check fails, it pays 0
and stop.

If in0 and in1 are input wires, the Veri�er checks that they are the
correct input values and stops. If the check fails it pays 0, otherwise it
pays R.

The veri�er chooses a random bit b and the protocol is recursively
called on the subcircuit that has output inb.

Introduction Rational Proofs Sequential Composability Conclusion

A solution for certain bounded depth circuits

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (say
2).

Starting from the output gate G, the Prover sends the values
out, in0, in1

The veri�er checks that G(in0, in1) = out. If the check fails, it pays 0
and stop.

If in0 and in1 are input wires, the Veri�er checks that they are the
correct input values and stops. If the check fails it pays 0, otherwise it
pays R.

The veri�er chooses a random bit b and the protocol is recursively
called on the subcircuit that has output inb.

Introduction Rational Proofs Sequential Composability Conclusion

A solution for certain bounded depth circuits

Let C be a (uniform) arithmetic circuit of depth d of bounded fan-in (say
2).

Starting from the output gate G, the Prover sends the values
out, in0, in1

The veri�er checks that G(in0, in1) = out. If the check fails, it pays 0
and stop.

If in0 and in1 are input wires, the Veri�er checks that they are the
correct input values and stops. If the check fails it pays 0, otherwise it
pays R.

The veri�er chooses a random bit b and the protocol is recursively
called on the subcircuit that has output inb.

Introduction Rational Proofs Sequential Composability Conclusion

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

the probability of P̃ to obtain R when giving an incorrect result is
1− 2−d

P̃ can always compute one sub-circuit correctly and hope that's
selected.

At each level P̃ survives with probability 1/2 so it is detected only
with probability 2−d.

Introduction Rational Proofs Sequential Composability Conclusion

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

the probability of P̃ to obtain R when giving an incorrect result is
1− 2−d

P̃ can always compute one sub-circuit correctly and hope that's
selected.

At each level P̃ survives with probability 1/2 so it is detected only
with probability 2−d.

Introduction Rational Proofs Sequential Composability Conclusion

Stand-Alone Analysis

The protocol is a RP in the "stand-alone" sense for log-depth circuits.

the probability of P̃ to obtain R when giving an incorrect result is
1− 2−d

P̃ can always compute one sub-circuit correctly and hope that's
selected.

At each level P̃ survives with probability 1/2 so it is detected only
with probability 2−d.

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability Analysis

Assume again that P̃ can output the right value of a wire only by
computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same
"weight" (number of input-output paths entering it). Then for these

circuits, the probability of success for P̃ investing C̃ is p̃ = 1− 2−d̃, where
d̃ is the height reached by "�lling" in C̃ gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where
at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coe�cient

Things can improve somewhat by iterating the protocol r times and
reducing the probability of error to (1− 2−d)r. Note that the complexity of
the Veri�er will be O(rd).

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability Analysis

Assume again that P̃ can output the right value of a wire only by
computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same
"weight" (number of input-output paths entering it). Then for these

circuits, the probability of success for P̃ investing C̃ is p̃ = 1− 2−d̃, where
d̃ is the height reached by "�lling" in C̃ gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where
at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coe�cient

Things can improve somewhat by iterating the protocol r times and
reducing the probability of error to (1− 2−d)r. Note that the complexity of
the Veri�er will be O(rd).

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability Analysis

Assume again that P̃ can output the right value of a wire only by
computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same
"weight" (number of input-output paths entering it). Then for these

circuits, the probability of success for P̃ investing C̃ is p̃ = 1− 2−d̃, where
d̃ is the height reached by "�lling" in C̃ gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where
at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coe�cient

Things can improve somewhat by iterating the protocol r times and
reducing the probability of error to (1− 2−d)r. Note that the complexity of
the Veri�er will be O(rd).

Introduction Rational Proofs Sequential Composability Conclusion

Sequential Composability Analysis

Assume again that P̃ can output the right value of a wire only by
computing the associated gate.

Consider a regular circuit: every subcircuit at a given level has the same
"weight" (number of input-output paths entering it). Then for these

circuits, the probability of success for P̃ investing C̃ is p̃ = 1− 2−d̃, where
d̃ is the height reached by "�lling" in C̃ gates starting from the input level.

Therefore the protocol is sequentially composable for regular circuits where
at each level the number of gates at least doubles.

Example: the circuit that computes one FFT coe�cient

Things can improve somewhat by iterating the protocol r times and
reducing the probability of error to (1− 2−d)r. Note that the complexity of
the Veri�er will be O(rd).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

A Mixed Strategy

Consider the circuit that given the point representation of a degree n− 1
polynomial outputs the value of the polynomial at an additional point.

An FFT circuit (log n levels of n/2 gates each) to go from point to
coe�cient representation

An evaluation circuit (log n levels, with a total of O(n) gates)

Note that if C̃ < n
2 log n then d̃ = c log n with c ≤ 1, and C̃

C = O(1).
Therefore with O(nc) repetitions, the probability of success can be made

smaller than C̃
C .

The Veri�er's complexity is O(nc log n) = o(n log n).

If C̃ ≥ n
2 log n then it will take more than O(log n) executions for P̃ to

earn more than P .

We can use the "check by re-execution" strategy every O(log n)
executions;

The Veri�er's complexity is O(nc log2 n + n log n) = o(n log2 n).

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

Introduction Rational Proofs Sequential Composability Conclusion

Summary & Open Problems

Summary

1 We de�ned a notion of sequential composability for rational proofs,
motivated by scenarios where many problems are outsourced by the
Veri�er to the Prover.

2 Goal: to make sure that always answering correcly is the rational
strategy.

3 Proved that some RP in the protocols do not satisfy this de�nition,
while others do. Presented a new protocol that achieves it for certain
bounded-depth circuits.

Open Problems

1 A rational proof for any poly-time computable function (even
stand-alone).

2 A better sequentially composable protocol that works for any
bounded-depth circuit.

3 Other examples of "interesting" problems that have circuits that can
be used with our protocol.

	Introduction
	Rational Proofs
	Sequential Composability
	Conclusion

