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Apphcatlon ol non-locality to
precision measuurementsp

Non-locality has applications
to a number of pure information-theoretic
tasks.

Can we find applications to physical tasks,
such as

clock synchronization and

direction alignment?

quantum reference frames:
Aharonov-Kauftherr PRD 1984,
Grisin-Popescu PRL 1998,

Peres-Scudo, 2001, ...
Bartlett-Rudolph-Spekkens RMP 2007




Gyroscopes

Classical gyroscope = physical system whose angular momentum indicates a
direction in space

large angular momentum

—> more stable gyroscope

Quantum gyroscope = quantum system whose angular momentum indicates a
direction in space
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e.g. a spin-j particle K5 g¢ ]

—> more precise gyroscope




Spin | degrees of freedom
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where Ji, Jy, J. are the angular momentum operators
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(Quantifying the error

To find out the direction, one has to perform a measurement,
mathematically described by a POVM P (dn)

whose outcome gives an estimate Il of the unknown direction.

The error is quantified by the worst-case square distance
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What was known: = 1/2

Gisin-Popescu PRL 1998: f / is better than f f

GC et al PRL 2004, Bagan et al PRA 2004, Hayashi PLA 2006
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entangling )N particles reduces the error by N (instead of N )




T'he two-party scenario

Rudolph 1999 arXiv
Alice measures her spins along the z-axis, Bob tries to find out the direction.

N EPR pairs

T '«\«.’—*/. .

Scaling up Gisin-Popescu result?




...not much

Deterministic strategies:

* O@/N) error with Rudolph’s protocol
* O@/N) error with the optimal protocol

Probabilistic strategies:

e O(1/N®) error with Rudolph’s protocol + postselection




USING
ENTANGLED GYROSCOPES
OF

LARGER ANGULAR
MOMENTUM
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one EPR pair
of spin-j particles
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V2j + 1

optimal state for alignment



The error
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S ByXSQu1115tic strategies.

classical gyroscope

with angular momentum j,
disturbed by a random force
of fixed intensity;

error due to precession.

4 spin |
gyroscope




Full Cartesian frames?

A,
Classic: ﬁoﬂl

Alice anu Bob have a pair of classical gyroscopes
pointing in random, anti-correlated directions,

up to an error O(1/))




TWO EPR PAIRS
WITH

THE ASSISTANCE
OF
LOGICAL ENTANGLEMENT




T'he teleportation trick

EPR pair of
Spin-j Zyroscopes

— :
EPR pair of

t | spin-j gyroscopes CL)%‘ -
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Log(2j+1) logical Ope€ration
EPRpairs
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Log(2j+1) logical
PR pairs




MORE EPR PAIRS



Error for the full Cartesian frame

o log j
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Again, classical explanation:




Probabilistic strategies

Suppose that Bob uses a probabilistic filter,
with two outcomes “yes” and “no”




T'he yes case

The filter implements the transformation
2]

2l
9 2j + 1 |Sk,g>
k=0

m(k+1) = optimal state for transmitting

2(74+1) T a Cartesian frame (GC, D’Ariano,
I/ Perinotti, Sacchi PRL 2004,

Bagan et al PRA 2004,

Hayashi PLA 2006)
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Probabilistic super-activation

In the classical model, Alice and Bob cannot align their axes with an

error smaller than () ( 1 / 9 )

“Probabilistic super-activation” . .what is the probability of seeing it?
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The no case
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In the unfavorable instance, the error is <d2> ~

Of course, no gain on average
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BUT 1) almost same average performance
2) the quadratic improvement is heralded




MORE
EPR PAIRS



Deterministic super-activation

2N EPR pairs —>» Heisenberg scaling with probability
Do L= () 561)N (brute force repetition)

In fact, the optimal strategy can do much better:
for 4 pairs the Heisenberg scaling is achieved deterministically
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(Quasi-Heisenberg scaling

for 3 KPR pairs

4 EPR pairs are the minimum to achieve the Heisenberg scaling
deterministically.

Still, if Alice and Bob have only 3 pairs,
they can still beat the classical scaling.
The optimal strategy yields:
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A CAUTIONARY TALE
ABOUT
THE
QUANTUM CRAMER-RAO

BOUND

IN

NON-ASYMPTOTIC
SCENARIOS




Cramer-Rao bound

State parametrization |S, g) = (e_w"i ) ]) S;)

Quantum Fisher Information matrix Fg =

Quantum CramerRao bound Vg > F{, 1 —

achievable in the asymptotic regime of large number of copies




Caveat

A naive application of the CRB
would promise Heisenberg scaling of the error:

ng0<. — <d2>%0(%>

J




Asymptotic achievability of CRB

To achieve the CRB, the number of copies must be large.
But how large?

Hopefully not large compared to j° ...

Covariance matrix for the optimal measurement:

3
1/oPt _ I 0 ( { S -—2})
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CRB achieved whenever m > 1 , uniformly in




CONCLUSIONS



Conclusions

Super-activation of quantum gyroscopes:
1 EPR pair —> no scaling with the size

2 EPR pairs —> Heisenberg scaling with non-vanishing prob.
3 EPR pairs —5 quasi-Heisenberg
>4 EPR pairs —» Heisenberg with certainty

The moral:

* not having a pre-defined direction helps

* two spin-j particles are more useful than a single spin-(2j) particle

* logical qubits help

* ...be careful using the quantum CRB in non-asymptotic scenarios!







