

Problem: How to "pull apart" gubits that are almost in tensor product...?

qubits: X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z

Motivation:

Goal: Establish substantial entanglement (with structure and control) between two untrusted devices - by giving them black-box tests.

Proofidea: Start with orbitrary shared state, arbitrary strategy. 1 Find subsequence of sequential games so

 $4, 5$, PL_{win} game $5.1 \approx 10$
regardless of games $1 + 5 = 1$ 2) Find near-EPR parrs, move them into tensor product, glue together history dependence,
replace with perfect EPR pairs, Bjg picture: Gperational, approximate) EPR pairs in Independence tensor product unstructured

This gives lots of extanglement, in a very nice form but inefficiently: $N = \text{poly}(n)$, $\frac{1}{2}$

pen question:

· Make the test more efficient: Can we determine a tensor-product structure even starting with a constant noise rate?

(State-independent)
Separation of overlapping qubit operators

Given: Pauli operators

 σ_x^1 , σ_z^2 , ..., σ_x^2 , σ_z^2 almost commuting:
 $||G_{\alpha}^{i},G_{\beta}^{i}|| < E$ Goal: Find nearby operators (possibly on an extended space) so $\left[\tilde{\sigma}_{\alpha}^{i}, \tilde{\sigma}_{\beta}^{i}\right] = 0$, ie., operators for qubits in tensor product.

$$
\underbrace{Claim: \bigoplus (n \in) \text{ movement is sufficient 2 necessary}}_{\text{Nexby}}.
$$

Remark: Related work (more sophisticated)

\nLin 195: almost-commuting Hermitian pairs close to commuting Hermitians

\nif
$$
||[A,B]|| \leq \epsilon
$$
, $\exists A' = A$, $B' = B$

\nHermitian, $[A', B'] = 0$

\nHastings 10: $\delta = \tilde{O}(\epsilon^{1/5})$. dimension-independent!

Hastings $10: d = \bigcup (E^7)$ dimension-independent! - false for almost-commuting unitary pairs - false for almost-commuting Hermitian triples (no dimension-independent bound) - but Paulis have much more structure Hermitian & unitary \Rightarrow e-values ± 1

Upper bound: O(nE) is enough.

Proof : 2 qubits

· n qubits -SWAPO, to fix qubits 2 to n -SWAP , 2 to fix gubits 3 to n -SWAP0", 3 for qubits 4 to n $\tilde{\sigma}_{\alpha}^{2}$ = SWAP_{0,1} σ_{α}^{2} SWAP_{0,1} τ_{α}

$$
\hat{\sigma}_{2}^{s} = SWAP_{0,1} \sigma_{2}^{s} SUAR_{0,1} \angle f_{1}^{survilinear} \rightarrow \sigma_{3}
$$

\n $\Rightarrow \sigma_{n}^{n} moves n\epsilon total$

Wrong! Fact: In
$$
(C^2)^{\otimes n}
$$
, for random unitary U,
\n $||[\sigma_{\alpha}^1, U \sigma_{\beta}^1 U^1]|| \approx 2$ (maximal)
\n**Moral:** Qubit overlap is not monogamos.

$$
\int_{\mathcal{Z}} \int_{\mathcal{Z}} \mathcal{L} \cdot \mathcal{L} = -\frac{1}{n} \mathcal{L} \mathcal{L} \sum_{i \le n/2} X_i
$$

Possible theorem statements

Must we bse a factor of n?

Does fixing one gubit help/hurt the others?

Example:
$$
\vec{\rho}^* = EPR pair |00\rangle + |11\rangle \in C^2 \otimes C^2
$$

 $O = 102$ finally (arbitrarily close to) pure Moral: Adding noise to some gubits can purify others. Proof: $|\psi\rangle = |\circ \circlearrowleft + |\circlearrowright \rangle$ \bigcirc = first qubit (4) -100 , 111 , -111 , egenvalues $\begin{pmatrix} \frac{1}{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{pmatrix}$ $\rightarrow \frac{1}{2}$: $|00\rangle + |11\rangle$ $\frac{1}{2}$: 100) -111) $= \frac{1}{2} (10) \otimes 10 \times 0$ in some basis 2) (Generalized) Zeno effect: Any state Slowly ratating Any other Analogous to Zeno: (pure) reassrements \Box More problems: · Extend analysis to more states · Cannect to operational assumptions, eg., parallel CHSH games with constant noise