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Many-body physics

Are physical systems special?

All states

Physically relevant 
states
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Ground States of Local Hamiltonians

Hilbert space of particles H = (Cd)⊗n,

Local terms 0 ≤ Hi ≤ 1,

Interested in lowest eignevectors of H =
P
i Hi.
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1D Hamiltonians

1constant

Ground State

Second eigenstate

poly(n)

Ground State

Second eigenstate

DMRG does well in practice [’92].
QMA-complete for 1D (gap 1

poly(n)
)[’07]

Area law for 1D with unique ground state and constant gap[’07].
Polynomial time algorithm for finding unique ground state with constant gap[’13].

What happens for critical systems (gap→ 0)?
Phase transition: believed "Log correction to area law"

QMA-complete for 1D (gap 1
poly(n)

)
Density of states assumptions→ area laws

not too many states

Ground State
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Result: Algorithm for critical systems

Ground State

poly(n) states below some constant energypoly(n) eigenvalues in constant interval

2poly(logn) time algorithm for finding low energy states,

MPS description with bond dimension 2poly(logn)

Notable features:
More physically plausible: No convex optimization.

Hierarchical structure reminiscent of Renormalization Group.
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Result: Algorithm for degenerate ground space

Degenerate ground space with gap:

Generalization of unique ground state case?
Small perturbation would have 1/poly(n) gap

Area law and algorithm for constant degeneracy [Huang; Chubb, Flammia] .

constant

next eigenstate

poly(n) dimensional ground space

poly(n) degenerate ground space

Polynomial time algorithm for finding the ground space.
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Key tool: Approximate Ground State Projection (AGSP)

It approximately projects onto the ground state:

Ground State

Perpendicular
Space

∆

1

Ground state

of AGSP
Eigenvalues 

Eigenvalues of H

It has small entanglement rank:

D

. . . 

. . . . . . 

. . . 

K

Critical threshold D∆ < 1.
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Steps towards an algorithm
A first pass.

1 Start with unentangled state.
2 Apply AGSP. Randomly pick one Schmidt vector. Repeat.

K

. . . 

. . . . . . 

. . . 
D

Each iteration moves closer→ Area Law.

Algorithm?

Will take O(n) iterations to get close.

Complexity OK at the cut but too complex on sides.

Two directions:

1 Reduce complexity→ original algorithm.
2 Reduce iterations→ new results.
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Original algorithm: bird’s eye view

Viable set: subspace containing left Schmidt vectors of a good approximation to
ground space
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Original algorithm: bird’s eye view

S2

Viable set: subspace containing left Schmidt vectors of a good approximation to
ground space
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Original algorithm: bird’s eye view

iS

Viable set: subspace containing left Schmidt vectors of a good approximation to
ground space
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Original algorithm: bird’s eye view

Sn

Viable set: subspace containing left Schmidt vectors of a good approximation to
ground space
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Reduce iterations

Move more quickly via simultaneous local movement?

Tree Structure:

. . .. . .

. . .
Need: a way to merge two viable sets.
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New Algorithm Ingredients
Merge process
Modified AGSP
Viable set for subspaces

Merge Process

1 Merge: Tensor two neighboring viable sets V = V1 ⊗ V2,
2 Size Reduction:

1 Choose a small random subspace of V ′ ⊂ V ,
2 "Apply AGSP"

write K =
PD
i,j=1 Ai ⊗Bi,j ⊗ Cj , and choose V ′′ = span{Bi,jV ′}.

AGSP

Viable Set
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New Algorithm Ingredients

Merge process

Modified AGSP

Viable set for subspaces

Modified AGSP

inside 

AGSP

Need poly(n) bond dimension

Requires soft truncation

Uses [Molnar, Schuch, Verstraete, Cirac]: e−βH has small bond dimension MPO
approximation.
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New Algorithm Ingredients

Merge process

Modified AGSP

Viable set for subspaces

V a viable set for subspace T

For every element t ∈ T : a vector with left-Schmidt vectors in V that is near t and
projects exactly in the direction t.

Ground Space
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projects exactly in the direction t.

Viable Set

t

Ground Space
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Discussion

Ground State

poly(n) states below some constant energy constant

next eigenstate

poly(n) dimensional ground space

Physics viewpoint: when do density of states conditions occur? Examples when
they don’t? Proofs?
Could this be a skeleton for a practical algorithm? Are there interesting questions
in this regime to answer? What kinds of challenges exist?
What kinds of questions/connections does the tree-like structure of the algorithm
suggest?

. . .. . .
. . .
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