Symmetric Product Codes

Henry D. Pfister¹, Santosh Emmadi², and Krishna Narayanan²

¹Department of Electrical and Computer Engineering Duke University

²Department of Electrical and Computer Engineering Texas A&M University

Coding: From Practice to Theory
Simons Institute
UC Berkeley

Prologue

- ▶ Let $\mathcal C$ be an (n,k,d) linear code over $\mathbb F$
 - generator / parity-check matrix: $G \in \mathbb{F}^{k \times n}$ / $H \in \mathbb{F}^{(n-k) \times n}$
 - ▶ product code given by $n \times n$ arrays with rows/columns in C:

$$\mathcal{P} = \left\{ G^{\top} U G \,|\, U \in \mathbb{F}^{k \times k} \right\}$$

• well-known that \mathcal{P} is an (n^2, k^2, d^2) linear code

Prologue

- ▶ Let $\mathcal C$ be an (n,k,d) linear code over $\mathbb F$
 - generator / parity-check matrix: $G \in \mathbb{F}^{k \times n} / H \in \mathbb{F}^{(n-k) \times n}$
 - ▶ product code given by $n \times n$ arrays with rows/columns in C:

$$\mathcal{P} = \left\{ G^{\top} U G \,|\, U \in \mathbb{F}^{k \times k} \right\}$$

- well-known that $\mathcal P$ is an (n^2,k^2,d^2) linear code
- Let U be the symmetric subcode of P:

$$\mathcal{U} = \left\{ X \in \mathcal{P} \,|\, X^{\top} = X \right\}$$

- if $\operatorname{char}(\mathbb{F}) \neq 2$, then $\mathcal{U} = \left\{ 2^{-1}(X^{\top} + X) \, | \, X \in \mathcal{P} \right\}$
- \blacktriangleright puncturing the lower triangle gives $\left(\binom{n+1}{2},\binom{k+1}{2},\binom{d+1}{2}\right)$ code

Prologue (2)

Product Code

Prologue (2)

Symmetric Subcode

Prologue (2)

Punctured Symmetric Subcode

Prologue (3)

- Benefits
 - for moderate k and n, length and dimension reduced by ~ 2
 - ▶ same component code: roughly same rate and half the length

Prologue (3)

- Benefits
 - for moderate k and n, length and dimension reduced by ~ 2
 - same component code: roughly same rate and half the length
- Drawbacks
 - lacktriangle minimum distance also drops by ~ 2 . Can one do better?

Prologue (3)

- Benefits
 - for moderate k and n, length and dimension reduced by ~ 2
 - same component code: roughly same rate and half the length
- Drawbacks
 - minimum distance also drops by ~ 2 . Can one do better?
- Let \mathcal{V} be the anti-symmetric subcode of \mathcal{P} :

$$\mathcal{V} = \left\{ \boldsymbol{X} \in \mathcal{P} \, | \, \boldsymbol{X}^\top = -\boldsymbol{X}, \, \operatorname{diag}(\boldsymbol{X}) = \boldsymbol{0} \right\}$$

- if $\operatorname{char}(\mathbb{F}) \neq 2$, then $\mathcal{V} = \left\{ 2^{-1}(X^{\top} X) \mid X \in \mathcal{P} \right\}$
- Justesen suggested puncturing the lower triangle to get an

$$\binom{n}{2}, \binom{k}{2}, D$$
 Half-Product Code \mathcal{H}

Prologue (4)

Product Code

Prologue (4)

Anti-Symmetric Subcode

Prologue (4)

Punctured Anti-Symmetric Subcode

Outline

- Background
- Applications
- ► Half-Product Codes
- ► Symmetric Product Codes

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Received block

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Row decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Row decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Column decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Column decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Decoding successful

- Product Codes
 - introduced by Elias in 1954
 - ► hard-decision "cascade decoding" by Abramson in 1968
 - "GLDPC" introduced by Tanner in 1981
- ► Example: 2-error-correcting codes, bounded distance decoding

Or trapped in a stopping set

Applications

Applications

- recent interest for high speed optical communication
- ▶ focus on 100 Gb/s with 7% redundancy (i.e., $1 \frac{239}{255} \approx 0.07$)
- high-rate generalized product codes with BCH component codes and iterative algebraic hard-decision
- many designs appeared in ITU 975.1 in 2004
- Justesen recognized the potential in 2010

Decoding

- decoding complexity much lower than comparable LDPC codes
- for hard-decision channels, BER performance is comparable

A Note on Decoding

- Syndrome-Based Iterative Algebraic Decoding
 - Initialization
 - compute and store the syndrome for each row and column
 - Iteration
 - run algebraic decoding on each row using syndromes
 - correct errors by updating the column syndromes
 - run algebraic decoding on each column using syndromes
 - correct errors by updating the row syndromes
- ▶ Memory to store syndromes is $2n(n-k) = 2n^2(1-R)$ vs. n^2
- ▶ (1023,993) BCH vs. $n=1023^2$ LDPC: factor 50 less memory
- Well-known trick in industry for many years...

Symmetric Product Codes

- What are they?
 - subclass of generalized product codes that use symmetry to reduce the block length while using the same component code
 - one example, dubbed half-product codes (HPCs) in 2011 by Justesen, based on work by Tanner in 1981
 - the minimum distance is also larger than expected
- Match the length and rate between product and HPC
 - $\,\blacktriangleright\,$ PC is (n_0^2,k_0^2) and HPC is $\approx (n_1^2/2,k_1^2/2)$
 - $n_1 \approx \sqrt{2}n_0$, $k_1 \approx \sqrt{2}k_0$, and $n_1 k_1 \approx \sqrt{2}(n_0 k_0)$
 - ▶ HPC component code has n and t larger by factor $\sqrt{2}!$

Minimum Distance (1)

- Support Sets and Generalized Hamming Weights
 - ▶ let $supp(x) \triangleq \{i \in [n] \mid [x]_i \neq 0\}$ denote the support set of x
 - ▶ the 2nd generalized Hamming weight [HKY92] is

$$d_2 = \min_{\substack{x_1, x_2 \in \mathcal{C} \setminus \{0\} \\ x_1 \neq x_2}} |\operatorname{supp}(x_1) \cup \operatorname{supp}(x_2)|$$

$$\geq \lceil 3d_{\min}/2 \rceil$$

- measures minimal total support of two codewords
- ▶ Bound: if d_2 smaller than $\lceil 3d_{\min}/2 \rceil$, then sum violates d_{\min}

Minimum Distance (2)

lackbox Let ${\mathcal V}$ be the anti-symmetric subcode of ${\mathcal P}$

Minimum Distance (2)

- lackbox Let ${\mathcal V}$ be the anti-symmetric subcode of ${\mathcal P}$
- ▶ For $x_1, x_2 \in \mathcal{C} \setminus \{0\}$, we will show $X = x_1^\top x_2 \notin \mathcal{V}$
 - First, note $X \in \mathcal{P}$ because $HX = (Hx_1^T)x_2 = 0$
 - ▶ But, $\operatorname{diag}(X) = 0$ for $X \in \mathcal{V}$ and, thus, $[x_1]_i [x_2]_i = 0$ for all i
 - ▶ implies $supp(x_1) \cap supp(x_2) = \emptyset$
 - ▶ and $X_{i,j} = [x_1]_i [x_2]_j \neq 0$ implies $X_{j,i} = [x_1]_j [x_2]_i = 0$
 - $\blacktriangleright \ \ \mathsf{Thus}, \ X^\top \neq -X \ \mathsf{and} \ X \notin \mathcal{V}$

Minimum Distance (2)

- ightharpoonup Let ${\mathcal V}$ be the anti-symmetric subcode of ${\mathcal P}$
- ▶ For $x_1, x_2 \in \mathcal{C} \setminus \{0\}$, we will show $X = x_1^\top x_2 \notin \mathcal{V}$
 - First, note $X \in \mathcal{P}$ because $HX = (Hx_1^T)x_2 = 0$
 - ▶ But, $\operatorname{diag}(X) = 0$ for $X \in \mathcal{V}$ and, thus, $[x_1]_i [x_2]_i = 0$ for all i
 - ▶ implies $supp(x_1) \cap supp(x_2) = \emptyset$
 - ▶ and $X_{i,j} = [x_1]_i [x_2]_j \neq 0$ implies $X_{j,i} = [x_1]_j [x_2]_i = 0$
 - \blacktriangleright Thus, $X^\top \neq -X$ and $X \notin \mathcal{V}$
- ▶ Thus, no $X \in \mathcal{V}$ where n.z. rows are scalar multiples of a c.w.

Minimum Distance (3)

- ▶ No $X \in \mathcal{V}$ where n.z. rows are scalar multiples of a c.w.
 - ▶ n.z. codeword in V must have ≥ 2 distinct non-zero rows
 - ightharpoonup Minimum number of n.z. columns is lower bounded by d_2
 - ▶ Likewise, each column must have at least d non-zero elements
 - ▶ So, minimum distance of V must be $\geq d_2d \geq \lceil 3d/2 \rceil d$
 - Puncturing lower triangle gives H
 - implies $D \ge \lceil 3d/2 \rceil d/2$
 - ▶ Or $D \ge 3d^2/4$ if d even

Minimum Distance (4)

 $lacksymbol{ ilde{\mathcal{H}}}$ is an (N,K,D) code with $N=\binom{n}{2}$, $K=\binom{k}{2}$, and

$$D \geq \begin{cases} \frac{3d^2}{4} & \text{if } d \text{ even} \\ \frac{(3d+1)d}{4} & \text{if } d \bmod 4 = 1 \\ \frac{(3d+1)d+2}{4} & \text{if } d \bmod 4 = 3 \end{cases}$$

- ▶ Also have matching upper bound if *d* is even and there are minimum distance codewords achieving the minimum for *d*₂
- ▶ Basic Idea: Zeros on diagonal prevent standard square pattern codewords. Thus, support in one dimension must contain at least 2 distinct codewords. Thus, there are d_2 non-zero rows (or columns) each with weight at least d and $D \geq d_2 d$.

Minimum Distance (5)

- \blacktriangleright Example: If $\mathcal C$ is an (8,4,4) extended Hamming code
 - then d = 4, $d_2 = \lceil 3d/2 \rceil = 6$, and $D \ge 12$
 - ▶ there exists $x_1, x_2 \in \mathcal{C}$ such that $|\operatorname{supp}(x_1) \cup \operatorname{supp}(x_2)| = 6$ and $w(x_1) = w(x_2) = 4$
- ► Half-product code is a (28, 6, 12) binary linear code
 - ▶ no (28,6) binary linear code with larger d_{\min} exists

Iterative Decoding Analysis (1)

- Peeling Decoder for Generalized Product Codes
 - received symbols corrected sequentially without mistakes
 - for the BEC and, if a genie prevents miscorrection, the BSC

Iterative Decoding Analysis (1)

- Peeling Decoder for Generalized Product Codes
 - received symbols corrected sequentially without mistakes
 - for the BEC and, if a genie prevents miscorrection, the BSC
- Based on "error graph":
 - vertices are code constraints
 - edges connect code constraints containing same symbol
 - ▶ initial observations remove fraction 1-p edges
 - decoder peels any code constraint with t or fewer errors/edges
 - always reaches stopping set after finite number of iterations

Iterative Decoding Analysis (2)

- Asymptotic Results for Half-Product Codes
 - ► *t*-error-correcting components w/bounded distance decoding
 - ightharpoonup complete graph, edges removed i.i.d. prob. 1-p
- Assume $n \to \infty$ with fixed t and $p_n = \frac{\lambda}{n}$
 - decoding threshold λ^* via k-core problem in graph theory
 - observed in 2007 by Justesen and Høholdt
 - thresholds for t = 2, 3, 4 are $\lambda^* = 3.35, 5.14, 6.81$
 - information about finite length via $\lambda^* = \lim_{n \to \infty} n p_n^*$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
 - can't match both rate and block length due to numerology
 - \blacktriangleright we match the rate and let the block lengths differ by <15%

Simulation Results (1)

- "Fair comparison" between product and half-product codes
 - can't match both rate and block length due to numerology
 - \blacktriangleright we match the rate and let the block lengths differ by <15%
- ▶ First Example
 - product code from (170, 154, 5) shortened binary BCH code
 - $(N', K', D') = (28900, 23716, 25), \text{ rate } \approx 0.82, s_{\min} = 9$
 - ▶ half-product code from (255, 231, 7) binary BCH code
 - ightharpoonup (N,K,D) = (32385,26565,40), rate pprox 0.82, $s_{\min} = 10$

Simulation Results (1)

- "Fair comparison" between product and half-product codes
 - can't match both rate and block length due to numerology
 - \blacktriangleright we match the rate and let the block lengths differ by <15%
- ▶ First Example
 - ightharpoonup product code from (170, 154, 5) shortened binary BCH code

$$(N', K', D') = (28900, 23716, 25), \text{ rate } \approx 0.82, s_{\min} = 9$$

- ▶ half-product code from (255, 231, 7) binary BCH code
 - ightharpoonup (N,K,D) = (32385,26565,40), rate pprox 0.82, $s_{\min} = 10$
- Iterative decoding assuming genie to prevent miscorrection
 - ▶ connection to *k*-core problem allows "threshold" estimates
 - For the product code, $p^* \approx 3.35/170 = 0.0197$
 - For the half-product code, $p^* \approx 5.14/255 = 0.0201$

Simulation Results (2)

- ▶ DE predicts better HPC threshold because 5.14/3.35 > 3/2
- Stopping set analysis predicts better HPC error floor

Simulation Results (3)

- ▶ product code from (383, 356, 7) shortened binary BCH code
 - ightharpoonup (146689, 126736, 49) code, rate pprox 0.86, $s_{\min} = 16$
- ▶ half-product code from (511, 475, 9) binary BCH code
 - ightharpoonup (130305, 112575, 65) code, rate ≈ 0.86 , $s_{\min} = 15$
- \blacktriangleright DE predicts worse HPC threshold because 6.81/5.14 < 4/3

Conclusions

- Half-product codes
 - Length and dimension reduced by half with same component
 - ▶ Normalized minimum distance improved by 3/2
 - For same blocklength and rate, one can increase t by $\sqrt{2}$
 - ▶ Changing t = 2 to t = 3 generally improves performance
 - More comprehensive simulations are needed
- Symmetric product codes (see ITA 2015 paper)
 - ▶ Natural extension to *m*-dimensional product codes
 - ightharpoonup Length and dimension reduced roughly by m factorial
 - Minimum distance improves

Conclusions

- Half-product codes
 - Length and dimension reduced by half with same component
 - ▶ Normalized minimum distance improved by 3/2
 - For same blocklength and rate, one can increase t by $\sqrt{2}$
 - ▶ Changing t = 2 to t = 3 generally improves performance
 - More comprehensive simulations are needed
- Symmetric product codes (see ITA 2015 paper)
 - ▶ Natural extension to *m*-dimensional product codes
 - ightharpoonup Length and dimension reduced roughly by m factorial
 - Minimum distance improves
 - ▶ By how much is an open problem...

