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1 Basic definitions

Logarithms are in base 2.

Entropy: H(X) =), Pr[X = z|log(1/Pr[X = z]).

For 0 < p <1 we shorthand H(p) = plog(1/p) + (1 —p)log(1/(1 — p)).
Conditional entropy: H(X|Y) =Y Pr[Y =y|H(X|Y =y)=H(X,Y) - H(Y).
Chain rule: H(Xy,...,X,,) = H(X1) + H(Xo| X)) + ... + H(X,| X1, ..., Xpo1).
Independence: If Xi,..., X, are independent then H(X,...,X,) = > H(X;).
Basic inequalities:

e H(X)>0.
e HX|Y)<H(X)and H(X|Y,Z) < HX|Y).

e If X is supported on a universe of size n then H(X) < logn, with equality if X is
uniform.

2 Shearer’s lemma

Shearer’s lemma is a generalization of the basic inequality H(X7,...,X,) <> H(X;). For
S C [n] we shorthand Xg = (X, :i € 5).

Lemma 2.1 (Shearer). Let X, ..., X, be random variables. Let Sy,...,Sm C [n] be subsets
such that each i € [n] belongs to at least k sets. Then

j=1

Proof. By the chain rule

H(Xl, Ce ,Xn) = H(Xl) + H(XQ’Xl) + ...+ H(Xn‘Xl, . ,.I'n_l).



If Sj = {il,. .. ;is]-} with i1 < ... < Z'Sj then
H(Xs,) = H(X;,) + H(X3, | X)) + .+ H(X, | Xy, X, )

< H(X | X1, Xa 1)+ HX | X, Xy 1) + -

19 ¢

The lemma follows since each term H(X;|X,..., X, 1) appears k times in the LHS and at
least k times in the RHS. m

The following is an equivalent version, which is sometimes more convenient.

Lemma 2.2 (Shearer; distribution). Let X, ..., X, be random variables. Let S C [n] be a
random variable, such that Pr(X; € S] > p for alli € [n]. Then

poH(X, .., X)) < Eg[H(Xs)).

3 Number of graph homomorphisms

Example 3.1. Let P C R3 be a set of points whose projection on each of the XYY Z, X7
planes have at most n points. How many points can P have? We can have |P| = n®/? if P
is a grid of size \/n X \/n X \/n. We will show that this is tight by applying Shearer’s lemma.
Let (XY, Z) be a uniform point in P. Then H(X,Y,Z) = log|P|. On the other hand, by
Shearer’s lemma applied to the sets {{1,2},{1,3},{2,3}},

2H(X,Y,Z) < H(X,Y) + H(X,Z) + H(Y, Z) < 3logn.
Hence log |P| < H(X,Y,Z) < 2logn.

This is an instance of a more general phenomena. Let G,T be undirected graphs. A
homomorphism of 7' to G is o : V(T') — V(G) such that (u,v) € E(T) = (o(u),o(v)) €
E(G). Let Hom(T, G) be the family of all homomorphisms from 7" to G. Our goal will be
to bound |Hom(T', G)|.

A fractional independent set of T is a mapping ¢ : V(T) — [0, 1] such that for each
edge (u,v) € E(T), ¥(u) + ¢¥(v) < 1. The fractional independent set number of T is
the maximum size (eg > 1 (v)) of a fractional independent set, denoted o*(7T). It is given
by a linear program, whose dual is the following. A fractional cover of T is a mapping
¢+ E(T) — [0,1] such that for each vertex v € V/(T), 32, ,yepr) ¢(u,v) = 1. The fractional
cover number of T is the minimum size (eg > ¢(e)) of a fractional cover of T'. Tt is equal to
a*(T) by linear programming duality.

Theorem 3.2 (Alon [2], Freidgut-Kahn [6]). [Hom(T,G)| < (2|E(G))*" ™.

This implies as a special case the previous example (up to constants). Let G be
a tri-partite graph with parts X,Y,Z. For every point (z,y,z) € P add the edges
(x,y), (y,2),(z,2) to G. Then |E(G)| < 3n. Let T'=A, where a*(A) = 3/2. Then

6| P| < [Hom(a,G)| < (6n)%2
One can also show that the bound is essentially tight for fixed T', as there exist graphs G for
which [Hom(T,G)| > (|E(G)|/|E(T)])* ™). We will not show this here.
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Proof. Let ¢ : T — G be a uniform homomorphism in Hom(7,G). If vy,..., v, are the
vertices of T, then set X; = o(v;). We have H(Xy,...,X,) = log|Hom(T,G)|. Let ¢ be
a fractional cover of T with Y ¢(e) = o*(T). Let S € E(T) be chosen with probability
Pr[S = {u,v}] = é(u,v)/a*(T). Note that S C [n]|, with Pr[i € S] > 1/a*(T). Also,
H(Xs) <log(2|E(G)|) since if S = {u,v} then (X,, X,) is distributed over directed edges
of G. By Shearer’s lemma,

log [Hom(T',G)| = H(Xy,...,X,) <a*(T)-Eg[H(Xs)] < o*(T) - log(2|E(G))|).

4 Number of independent sets

Let G be a d-regular graph on n vertices. How many independent sets can G have? Let
Z(G) denote the family of all independent sets I C V(G).

Theorem 4.1 (Kahn [8]). If G is bi-partite then

n

IZ(G)] < (2! = 1)

This is tight: take G to be the union of n/2d copies of K4,4. The result was extended to
general d-regular graphs by Zhao [11].

Proof. Assume V(G) = [n], and let AU B = [n] be a partition so that E(G) C A x B, where
we assume |A| > |B|. Let I C [n] be a uniform independent set, and set X; = 1,c;. Then
log |Z(G)| = H(X4,...,X,). We shorthand X4 = {X, :7 € A}, X = {X, : inB}. We have

H(X1,...,X,) = H(XA) + H(X5|X4).

For each b € B let N(b) C A be the neighbors of b. Let Q, = [I N N(b) = 0] be the event
that non of the neighbors of b are in I, and let ¢, = Pr[Q,]. We first bound the second term,

H(Xp|Xa) <D H(X|Xa) <Y HX|Xnp) <D H(X|Q).

beB beB beB

Note that H(X,|Qs) = q5 - H(X3|Qp = 1) < @, since Q, = X, = 0 and X, € {0, 1}, hence

H(Xp|Xa) <)

beB

Next we bound H(X4). Note that the sets N(b) cover each element of A exactly d times,
hence by Shearer’s lemma,

H(X,) < é > H(Xyw).



We can bound

H(Xnw) = H(Xnw) Qo) + H(Qy) < (1= gy)log(2? — 1) + H(q).

Combining these estimates, we obtain

H(Xy, .. Xn) <) ap+ é > (H(g) + (1 — ) log(2* - 1))

nl | 20
= — lo O
2d g ZE Qb + Q@ g2 1

beB

Differentiation gives that H(z) + x log 23—: is maximized at xy = QdE—f_l, hence
d

24 —1

H(Xy,...,X,) < % (log( — 1) + H(xo) + zolog ) = 2n—dlog(2d+1 —1).

5 Weighted version, and applications

The following is a combinatorial version of Shearer’s lemma. A hypergraph H = (V| F) is
simply a family of subsets F C 2V.

Lemma 5.1 (Shearer; hypergraphs). Let H be a hypergraph. Let Sy, ...,S,, CV be subsets
of vertices, such that each v € V' belongs to at least k subsets. Define the projected hypergraph
H; with V(H;) = S; and E(H;) ={eNS;:e€ E}. Then

H)|* <[] I1EH)

Proof. Let |V(H)| =n, X1,..., X, € {0,1} be the indicator of a uniform edge e € E. Then
H(Xq,...,X,) =log|E(H)]| and H(Xvu,)) < log|E(H;)|, since Xy (g, is a random variable
supported on E(H;). ]

Freidgut proved a weighted version of Shearer’s lemma. Let w; : E(H;) — R be some
nonnegative weight function. For e € F let ¢;, = eN S; € E(H,;).

Theorem 5.2 (Weighted Shearer lemma, Freidgut [5]). Under the same conditions,

k
m

e€E(H) i=1 =1 e;€E(H,;)

Corollary 5.3. For any n X n matrices A, B,C,
Tr(ABC)? < Tr(AAY) - Te(BB') - Tr(CCY).



Proof. We need to prove:

(> Ai,ij,kcm) <>,y B Y

Clearly, we may assume all entries of A, B, C' are nonnegative.

Let H be a complete tri-partite hypergraph with 3 parts I,J, K of size n each. Let
Hy, Hy, H3 be the projected graphs to I U J,J U K, I U K, respectively. Each vertex of H
belongs to two of the projected graphs. Define weights (on 2-edges) by

w( ) Au,w( /{3) = Bj7k,wk7i = Ck,i-

Then
Z w1(€1)w2 62 w3 63 ZAzg kckz
€E(H) 0,5,k
and (for example)
Z wi ( 61 ZA
e€E(H))

6 Read-k functions

Let z € {0,1}" be uniform bits. Let fi,..., fm : {0,1}" — {0,1} be boolean functions,
where each f; depends only on variables in some set S; C [n]. Assume furthermore that
Pr[f; = 1] = p. If the sets S, ...,.S,, are pairwise disjoint then f;(x) are independent, and
in particular

Prfi(a) = .. = fula) = 1] = p™

Shearer’s lemma allows us to extend this to the case where there is limited intersections.

Definition 6.1 (read-k functions). The functions fi,..., fm are said to be read-k if each x;
participates in at most k functions. That is, |{j : i € S;}| <k for alli € [n].

Lemma 6.2. If fi,..., f, are read-k with Pr[f; = 1] = p then

Pr(fi(z) = ... = fu(z) =1] < p™/.
Proof. Let ¢ = Pr[fi(x) = ... = fu(z) = 1]. We may assume wlog that each z; is contained
in eractly k sets. Let A= {x € {0,1}": fi(z) = ... = fu(z) =1} and A; = {z € {0,1}5 :

fi(z) = 1}. We have |A| = ¢2" and |A;| = p2/%l. Let (Xi,...,X,) € A be uniformly
distributed. By Shearer’s lemma,

ke H(Xy,.... X)) <Y H(Xa).



The lemma follows since H(Xy,...,X,) = log|A| = logqg + n and H(X4,) < log|A;| =
logp + |S;|. Hence

k(logg +n) < m-logp+Z|S,-| =m -logp + kn.

O

For example, if G = G(n,1/2) is a random graph on n vertices, and F, is some event
which depends only on the edges touching a vertex v, then

Privo E,] < [ [ Pr(E,]"/?.

The power 1/2 is tight. For example, choose a maximal matching M on {1,...,n} (n even)
and let E, be the event "the unique edge in M which touches v appears in G”.

We prove here an analog of the Chernoff bound for read-k functions. Recall that if
Yi,..., Y, €{0,1} are independent, with Pr[Y; = 1] = p, then Chernoff bound tell us that

Pr[Yi+ ...+ Y, > (p+e)m] < exp(—2e°m).

Theorem 6.3 (Gavinsky-Lovett-Saks-Srinivasan [7]). If fi,..., fm are read-k with Pr[f; =
1] = p then
Pr[fi(x) + ...+ fm(z) > (p+&)m] < exp(—2e2m/k).

The proof uses the Kullback-Leibler divergence between distributions.

Definition 6.4. Let p,p' be two distributions on the same domain. The KL-divergence
between them is defined as

Dygr(p || 1) ZM IOg

p(z)
()’
If X, X" are random variables distributed like u, 1’ then Dgp(X || X') = Dxi(p || #).
Fact 6.5.
(i) Dxr(X || X') = 0.
(ii) For any function ¢, Dk (6(X) || (X)) < Dgrn(X || X).
(111) If X is supported on a set A, and U is uniform on A, then Dk, (X || U) = H[U]—-H[X].

() Let U be uniform over a set A. Let A" C A with |A'| = p|A|. Let X be any random
variable of A with Pr[X € A'| =q. Then

Dx(X || U) > Dxw(q || p),

where Dxi,(q || p) = qlogg + (1 —g¢q)log %Z'



Lemma 6.6 (Shearer lemma for KL divergence). Let X1,...,X,, be random variables. Let
Uy, ..., U, be independent random variables, where U; is uniform over a set containing the
support of X;. Let Sy,...,Sn C [n] be such that each i € [n] belongs to at most k sets. Then

k- Dxn(X1, .. X || U Un) 2> Din(Xs, || Us,).

Proof. We may assume wlog that each i € [n] belongs to exactly k sets. Hence by Shearer’s
lemma, k- H(Xq,...,X,) <> H(Xg,). Now apply fact (iii).

k:~DKL(X1,...,XnHUl,...,U):kH(Ul,...,U)—k:H(Xl,...,Xn)
=k HU) - kH(X,,...,X,)

S™ DX, || Us) = S H(Us) — H(Xs) = kS HU) = S H(Xs).
Proof of Theorem 6.3. Let

A={xe{0,1}": fi(z)+ ...+ fu(x) > (p+e)m}.
Let X € A be uniformly distributed, and let U € {0,1}" be uniform. We have

and

08 P{fy(x) + .. + fu(x) > (p-+ hm] = log 1| = HIX] ~ H[U] = Dy (X | U).

Let Xg,, Us, be the restrictions of X, U to S;, respectively. Then by Shearer’s lemma for KL
divergence,

Let A; = {0,1}% and let A, = {x € A; : fi(x) = 1}. Then |A%] = p|A;|, and Us, is uniform
on A;. Let ¢; = Pr[X; € A;]. Hence by fact (iv),

By convexity of the KL divergence function, we have

Dy (X || U) ZDKL g || p) > kDKL(q | p),

where ¢ = (q1+ . ..+ gm)/m. By assumption, any X satisfies f;(X) = 1 for at least (p+¢)m
indices ¢ € [m], hence

G+ G = DO PHXG € A = Y Blixea] = YEAX)] =E[Y fi(X)] = (p+2m

Hence ¢ > p + ¢, and we conclude that
log Pr(fi(z) + ...+ fn(2) > (p+e)m] < =Dk (X || U) < —(m/k) - DxrL(p +¢ || p).

The bound
Prfi(z) + ...+ fn(z) = (p+ €)m] < exp(—2°m/k)
follows from 2~ Prr(P+ellP) < exp(—2¢2). O



7 Moore bound in irregular graphs

Let G be a d-regular graph on n vertices with girth g. We assume here throughout that
g = 2r + 1 is odd, although the results can be extended to even girth. Moore’s bound gives
a lower bound on n:

r—1
n>1+dy (d—1).
=0

The proof is simple: fix a vertex v € V(G). Let n;(v) be the number of vertices of distance
1 from v, for ¢ = 0,...,r. The number of non backtracking paths of length ¢ > 1 from v
is n;(v) = d(d — 1)"!, and they all must lead to distinct vertices by the girth assumption.
Hence, n > ng(v) + ... + n,(v).

Alon, Hoory and Linial extended this bound to the case where the average degree is d.

Theorem 7.1 (Alon-Hoory-Linial [3]). Let G be a graph on n wvertices with average degree
d and girth g =2r + 1. Then

r—1
n>1+dy (d—1).
=0

We present an information theoretic proof due to Ajesh Babu and Radhakrishnan [1]. In
the proof, we may assume that the minimum degree is 2, as removing vertices of degree 1
can only increase the average degree, and does not change the girth.

Proof. Let d, = deg(v). Let 7 be a distribution on vertices given by m(v) = s&.. We will

, 2(El"
prove: E,..[n;(v)] > d(d — 1)""!, and the theorem follows. To prove that, let v ~ 7 and
sample a uniform non backtracking path of length ¢ from v, which we denote v = vy, v1, ..., v;.

That is, v; is a uniform neighbor of v, and for j > 1, v;4; is a uniform neighbor of v; other
than v;_;. We make two observations: each vertex v; is distributed according to 7; and each
edge (vj,v;4+1) is a uniform directed edge in G. Now,

log E[n;(v)] > E[log n;(v)]
Z H[Ul7'-~7vi|v]
= Hlvi|v] + H{vo|v, v1] + ... + Hlvg|v, v1, ..., v24]

i—1

=E |logd, + > log(d,, — 1)

=E [log {d,(d, — 1)"""}]
— % Zvjdv log {dv(dv — 1)i_1}
> é -dlog {d(d — 1)1} =log {d(d — 1)},

where the last inequality follows from the convexity of the function zlog(z(z — 1)!) for
T > 2. ]



8 Brégman theorem: bounding the permanent

Let A be an n x n matrix with 0,1 entries. The permanent of A is Zwesn A; x#)- Minc
conjectured, and Brégman proved, the following theorem.

Theorem 8.1 (Brégman’s theorem [4]). Let dy,...,d, be the row sums of A. Then

per(A) < [J(d:H"*.

It is tight, eg if d; = ... = d,, = d and A consists of n/d blocks of size d x d of all ones.
We present an entropy based proof due to Radhakrishnan [9].

Proof. Let P ={m € S, : A; z4y = 1Vi € [n]}. Then |P| = per(A4). Let 7 € P be uniformly
chosen, and consider the random variable (7(1),...,7(n)). We have

log|P| = H(n(1),...,m(n))
=H(r(1))+ H(x(2)|x(1)) + ...+ H(x(n)|x(1),...,7(n —1)).
Consider the i-th term in the sum. Let D; = {j : A, ; = 1} with |D;| = d;, and consider some
fixing of 7(1) = 1, ...,7(i—1) = 2;_1. Then 7 (i) can take any value in D; \ {x1,..., 2,1},
and hence H(7(i)|m(1) = x1,...,7(i — 1) = x;_1) < log|D; \ {z1,...,2;_1}|. It is not clear
how to evaluate this directly. The trick is to enumerate the rows in a random order.
For o € S,, and consider the random variable w(c(1)),...,m(c(n)). We have

H(r) = H(x(o(1))) + H(n(a(2))[x(0(1))) + ...+ H(m(o(n))[x(c(1)),. .., 7(e(n - 1)))

Averaging over uniformly chosen o € S,,, we get
H(m) =E, Y H(x(o(i))|r(o(1)),...,m(o(i —1))).
i=1

(note: we think of o as a fixed permutation, and not a random variable. Equivalently, we
can condition also on ¢ in the entropy calculations). Letting k,; = o~'(), we can reorder
the terms as

H(m) = ZEUH@r(i)Iﬂ(a(l)), oy m(o(ks; — 1))
S ZEW,U 1Og |Dz \ {W(U(l))a cee 77T(U(ka,i - 1))}|
- ZEM log |7 Y (D) \ {o(1),...,0(kss — 1)}|.

Fix 7, and consider the i-th term. For all # € P we have (i) € D;, and hence i € 7~ 1(D;).
Consider the ordering of #~'(D;) induced by . The set 7=1(D;) N {o(1),...,0(ks; — 1)}
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is the set of all elements of 7—!(D;) which appear before i; moreover, as ¢ is uniform, the
ordering of 7=!(D;) by ¢ is uniform, and hence

Prllm (D) \ {o(1), - 0lhns = D} = J] = — Vi =1,....du

We thus conclude

9 Spencer theorem

Let A be an n X n matrix with 0,1 entries. If x € {—1,1}" is chosen uniformly, then whp
|(Az);| < O(y/n); however the largest entry can be of the order of v/nlogn. While this is
true for most x, Spencer proved that there exist = for which |(Az);] < O(y/n) for all i € [n].

Theorem 9.1 (Spencer [10]). For any n x n matriz A with 0,1 entries, there exists © €
{=1,1}" such that ||Az||e < O(y/n).

The main idea is to find a partial coloring: a partial solution x € {—1,0,1}" such that
| Az || < O(y/n), and such that a constant fraction of the coordinates of z are in {—1,1}.
Then, we recurse upon the uncolored (set to zero) variables. The error terms form a geometric
sequence (almost), and hence sum to O(y/n). Here we will just describe this partial coloring
lemma.

Lemma 9.2 (partial coloring lemma). For any n xn matriz A with 0,1 entries, there exists
x € {—1,0,1}" such that

1. |Az]le < O(VR).
2. At least n/4 (say) of the coordinates of x are in {—1,1}.

Proof. Let C > 1 be a constant to be determined later. We will find «/,2" € {—1,1}"
such that [[Ax’ — Ax"||.c < Cy/n, and such that 2/, 2” disagree on n/4 of the coordinates.
Then setting x = (' — 2”)/2 gives the required solution. To this end, let X € {—1,1}"
be uniformly chosen, and consider the random variables Y;(X) = [(AX);/C/n] for i € [n].
Standard estimates show that Pr[Y; > ¢] < exp(—Q(C?t?)), and in particular if we choose C
a large enough constant, we get H(Y;) < 1/4. Hence

H(Y:,...,Y, <ZH ) <n/4.

In particular, there must be some values y1,...,y, such that Pr[Y} = y1,...,Y, = y,| >
274 Let S = {x € {—1,1}": Yi(x) = y; Vi € [n]}. Then |S| > 2%"/4 and for any 2/, 2" € S
we have ||Az’ — Az" || < Cy/n. To conclude the lemma, observe that any subset of {0,1}"
of size 2°"/4 must contain two points which disagree on at least n/4 coordinates. O
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