Characterization of cutoff for reversible Markov chains Yuval Peres

Joint work with Riddhi Basu and Jonathan Hermon

3 December 2014

K ロ ト K 何 ト

 \rightarrow 3 \rightarrow 3 \rightarrow

- Transition matrix P (reversible).
- Stationary dist. π .
- Reversibility: $\pi(x)P(x, y) = \pi(y)P(y, x), \forall x, y \in \Omega$.
- Laziness $P(x, x) \geq 1/2, \forall x \in \Omega$.

イロン イ団 メイミン イモン 一毛

TV distance

 \bullet

• For any 2 dist. μ , ν on Ω , their **total-variation distance** is:

$$
\|\mu - \nu\|_{\text{TV}} \stackrel{d}{=} \max_{A \subset \Omega} \mu(A) - \nu(A) .
$$

$$
d(t,x) \stackrel{d}{=} ||\mathbf{P}_x^t - \pi||_{\text{TV}}, \quad d(t) \stackrel{d}{=} \max_{x \in \Omega} d(t,x).
$$

画

メロメメ 倒 メメ ミメメ ミメー

TV distance

 \bullet

 \bullet

• For any 2 dist. μ , ν on Ω , their **total-variation distance** is:

$$
\|\mu - \nu\|_{\text{TV}} \stackrel{d}{=} \max_{A \subset \Omega} \mu(A) - \nu(A) .
$$

$$
d(t,x) \stackrel{d}{=} ||\mathbf{P}_x^t - \pi||_{\text{TV}}, \quad d(t) \stackrel{d}{=} \max_{x \in \Omega} d(t,x).
$$

• The ϵ -**mixing-time** $(0 < \epsilon < 1)$ is:

$$
t_{\text{mix}}(\epsilon) \stackrel{d}{=} \min \left\{ t : d(t) \le \epsilon \right\}
$$

$$
t_{\text{mix}} \stackrel{d}{=} t_{\text{mix}}(1/4).
$$

画

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Def: a sequence of MCs $(X_t^{(n)})$ exhibits *cutoff* if

$$
t_{\rm mix}^{(n)}(\epsilon) - t_{\rm mix}^{(n)}(1 - \epsilon) = o(t_{\rm mix}^{(n)}), \,\forall \, 0 < \epsilon < 1/4. \tag{1}
$$

重

メロメメ 倒 メメ ミメメ ミメー

Def: a sequence of MCs $(X_t^{(n)})$ exhibits *cutoff* if

$$
t_{\rm mix}^{(n)}(\epsilon) - t_{\rm mix}^{(n)}(1 - \epsilon) = o(t_{\rm mix}^{(n)}), \ \forall \, 0 < \epsilon < 1/4. \tag{1}
$$

 (w_n) is called a \bm{cutoff} window for $(X^{(n)}_t)$ if: $w_n=o\left(t^{(n)}_{\text{mix}}\right)$, and

$$
t_{\text{mix}}^{(n)}(\epsilon) - t_{\text{mix}}^{(n)}(1 - \epsilon) \le c_{\epsilon} w_n, \forall n \ge 1, \forall \epsilon \in (0, 1/4).
$$

イロメ イ母メ イヨメ イヨメーヨ

Cutoff

メロメメ 御きメモ メモ メモ メーモ

Cutoff was first identified for random transpositions Diaconis & Shashahani 81 and RW on the hypercube by Aldous 83.

E

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

- Cutoff was first identified for random transpositions Diaconis & Shashahani 81 and RW on the hypercube by Aldous 83.
- Many chains are believed to exhibit cutoff. Verifying the occurrence of cutoff rigorously is usually hard.

∢ロト (御) ∢き) ∢き)

- Cutoff was first identified for random transpositions Diaconis & Shashahani 81 and RW on the hypercube by Aldous 83.
- Many chains are believed to exhibit cutoff. Verifying the occurrence of cutoff rigorously is usually hard.
- The name cutoff was coined by Aldous and Diaconis in their seminal 86 paper.
- Aldous & Diaconis 86 "the most interesting open problem": Find verifiable conditions for cutoff.

イロト イ母 トイラ トイラ トー

- Cutoff was first identified for random transpositions Diaconis & Shashahani 81 and RW on the hypercube by Aldous 83.
- Many chains are believed to exhibit cutoff. Verifying the occurrence of cutoff rigorously is usually hard.
- The name cutoff was coined by Aldous and Diaconis in their seminal 86 paper.
- Aldous & Diaconis 86 "the most interesting open problem": Find verifiable conditions for cutoff.

イロト イ母 トイラ トイラ トー

Spectral gap & relaxation-time

- Let λ_2 be the largest non-trivial e.v. of P.
- Definition: $\text{gap} = 1 \lambda_2$ the **spectral gap**.
- Def: $t_{rel} := \text{gap}^{-1}$ the *relaxation-time*.

The product condition (Prod. cond.)

- In a 2004 Aim workshop I proposed that *The product condition (Prod. Cond.)* $\text{gap}^{(n)} t_{\text{mix}}^{(n)} \to \infty$ (equivalently, $t_{\text{rel}}^{(n)} = o(t_{\text{mix}}^{(n)}))$ should imply cutoff for "nice" reversible chains.
- (It is a necessary condition for cutoff)

イロメ イ母メ イヨメ イヨメー

The product condition (Prod. cond.)

- In a 2004 Aim workshop I proposed that *The product condition (Prod. Cond.)* $\text{gap}^{(n)} t_{\text{mix}}^{(n)} \to \infty$ (equivalently, $t_{\text{rel}}^{(n)} = o(t_{\text{mix}}^{(n)}))$ should imply cutoff for "nice" reversible chains.
- (It is a necessary condition for cutoff)
- **It is not always sufficient examples due to Aldous and Pak.**
- **■** Problem: Find families of MCs s.t. **Prod. Cond.** ⇒ cutoff.

 $(\Box \rightarrow \Diamond \Box \rightarrow \Diamond \exists \rightarrow \Diamond \exists \rightarrow \Box \exists$

Aldous' example

Figure : Fixed bias to the right conditioned on a non-lazy step.

• Different laziness probabilities along the 2 paths.

$$
\bullet \ t_{\mathrm{rel}}^{(n)} = O(1).
$$

 $\bullet \, d_n(t) \sim \mathrm{P}_x[T_u > t] \Longrightarrow \epsilon \leq d_n(130n) \leq d_n(128n) \leq 1 = \epsilon$ $\bullet \, d_n(t) \sim \mathrm{P}_x[T_u > t] \Longrightarrow \epsilon \leq d_n(130n) \leq d_n(128n) \leq 1 = \epsilon$ $\bullet \, d_n(t) \sim \mathrm{P}_x[T_u > t] \Longrightarrow \epsilon \leq d_n(130n) \leq d_n(128n) \leq 1 = \epsilon$ $\bullet \, d_n(t) \sim \mathrm{P}_x[T_u > t] \Longrightarrow \epsilon \leq d_n(130n) \leq d_n(128n) \leq 1 = \epsilon$ $\bullet \, d_n(t) \sim \mathrm{P}_x[T_u > t] \Longrightarrow \epsilon \leq d_n(130n) \leq d_n(128n) \leq 1 = \epsilon$ [, f](#page-13-0)[or](#page-14-0) [s](#page-15-0)[om](#page-0-0)e ϵ [..](#page-0-0).≡ Ω

Joint work with Riddhi Basu and Jonathan Hermon [Characterization of cutoff for reversible Markov chains](#page-0-0) 9/ 34

Aldous' example

Hitting and Mixing

• Def: The **hitting time** of a set $A \subset \Omega = T_A := \min\{t : X_t \in A\}.$

E

イロメ イ母メ イヨメ イヨメー

- Def: The **hitting time** of a set $A \subset \Omega = T_A := \min\{t : X_t \in A\}.$
- Hitting times of "worst" sets are related to mixing mid 80's (Aldous).
- **•** Refined independently by Oliviera (2011) and Peres-Sousi (2011) (case $\alpha = 1/2$ due to Griffiths-Kang-Oliviera-Patel 2012): for any irreducible reversible lazy MC and $0 < \alpha \leq 1/2$:

$$
t_{\rm H}(\alpha) = \Theta_{\alpha}(t_{\rm mix}),
$$
 where $t_{\rm H}(\alpha) := \max_{x, A: \pi(A) \ge \alpha} \mathbb{E}_x[T_A].$ (2)

- Def: The **hitting time** of a set $A \subset \Omega = T_A := \min\{t : X_t \in A\}.$
- Hitting times of "worst" sets are related to mixing mid 80's (Aldous).
- **•** Refined independently by Oliviera (2011) and Peres-Sousi (2011) (case $\alpha = 1/2$ due to Griffiths-Kang-Oliviera-Patel 2012): for any irreducible reversible lazy MC and $0 < \alpha \leq 1/2$:

$$
t_{\mathrm{H}}(\alpha) = \Theta_{\alpha}(t_{\mathrm{mix}}), \text{ where } t_{\mathrm{H}}(\alpha) := \max_{x, A: \pi(A) \ge \alpha} \mathbb{E}_x[T_A].
$$
 (2)

- We relate $d(t)$ and $\max_{x,A:\pi(A)>\alpha} P_x[T_A > t]$ and refine [\(2\)](#page-16-0) by also allowing $1/2 < \alpha \leq 1 - \exp[-Ct_{\rm mix}/t_{\rm rel}]$ and improving Θ_{α} to Θ .
- Remark: [\(2\)](#page-16-0) may fail for $\alpha > 1/2$.

KO KARA KE KA EK GERAK

counter-example

Figure : n is the index of the chain

重

メロメメ 倒 メメ ミメメ ミメー

Concentration of hitting times of "worst" sets is related to cutoff in birth and death (**BD**) chains.

Þ

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

- Concentration of hitting times of "worst" sets is related to cutoff in birth and death (**BD**) chains.
- Diaconis & Saloff-Coste (06) (separation cutoff) and Ding-Lubetzky-Peres (10) (TV cutoff):

A seq. of BD chains exhibits cutoff iff the Prod. Cond. holds.

イロト イ母 トイラ トイラトー

- Concentration of hitting times of "worst" sets is related to cutoff in birth and death (**BD**) chains.
- Diaconis & Saloff-Coste (06) (separation cutoff) and Ding-Lubetzky-Peres (10) (TV cutoff):

A seq. of BD chains exhibits cutoff iff the Prod. Cond. holds.

We extend their results to weighted nearest-neighbor RWs on trees.

イロト イ母 トイラ トイラト

Theorem

Let (V, P, π) *be a lazy Markov chain on a tree* $T = (V, E)$ *with* $|V| > 3$ *. Then*

 $t_{\rm mix}(\epsilon)-t_{\rm mix}(1-\epsilon) \leq C\sqrt{|\log\epsilon|}t_{\rm rel}t_{\rm mix}$, for any $0<\epsilon\leq 1/4.$

In particular, the Prod. Cond. implies cutoff with a cutoff window $w_n = \sqrt{t_{\rm rel}^{(n)}t_{\rm mix}^{(n)}}$ and $c_{\epsilon} = C\sqrt{|\log\epsilon|}.$

イロメ イ母メ イヨメ イヨメーヨー

Theorem

Let (V, P, π) *be a lazy Markov chain on a tree* $T = (V, E)$ *with* $|V| > 3$ *. Then*

$$
t_{\mathrm{mix}}(\epsilon)-t_{\mathrm{mix}}(1-\epsilon)\leq C\sqrt{|\log\epsilon|t_{\mathrm{rel}}t_{\mathrm{mix}}},\text{ for any }0<\epsilon\leq 1/4.
$$

In particular, the Prod. Cond. implies cutoff with a cutoff window $w_n = \sqrt{t_{\rm rel}^{(n)}t_{\rm mix}^{(n)}}$ and $c_{\epsilon} = C\sqrt{|\log\epsilon|}.$

Ding Lubetzky Peres (10) - For BD chains $t_{\rm mix}(\epsilon)-t_{\rm mix}(1-\epsilon) \leq O(\epsilon^{-1}\sqrt{t_{\rm rel}t_{\rm mix}})$ and in some cases $w_n = \Omega\left(\sqrt{t_{\rm rel}^{(n)}t_{\rm mix}^{(n)}}\right)$.

KID KA KERKER E 1990

To mix - escape and then relax

• Definition: hit $\alpha := \text{hit}_{\alpha}(1/4)$, where

hit_{$\alpha, x(\epsilon) := \min\{t : \mathrm{P}_x[T_A > t] \leq \epsilon : \text{for all } A \subset \Omega \text{ s.t. } \pi(A) \geq \alpha\},$} $\mathrm{hit}_{\alpha}(\epsilon) := \max_{x \in \Omega} \mathrm{hit}_{\alpha,x}(\epsilon)$

イロン イ団 メイミン イヨン 一番

To mix - escape and then relax

• Definition: hit_{α} := hit_{α}(1/4), where

$$
\mathrm{hit}_{\alpha,x}(\epsilon) := \min\{t : \mathrm{P}_x[T_A > t] \le \epsilon : \text{for all } A \subset \Omega \text{ s.t. } \pi(A) \ge \alpha\},\
$$

$$
\mathrm{hit}_{\alpha}(\epsilon) := \max_{x \in \Omega} \mathrm{hit}_{\alpha,x}(\epsilon)
$$

 \bullet Easy direction: to mix, the chain must first escape from small sets = "first stage of mixing".

画

イロメ イ団メ イモメ イモメー

To mix - escape and then relax

• Definition: hit_{α} := hit_{α}(1/4), where

$$
\mathrm{hit}_{\alpha,x}(\epsilon) := \min\{t : \mathrm{P}_x[T_A > t] \le \epsilon : \text{for all } A \subset \Omega \text{ s.t. } \pi(A) \ge \alpha\},\
$$

$$
\mathrm{hit}_{\alpha}(\epsilon) := \max_{x \in \Omega} \mathrm{hit}_{\alpha,x}(\epsilon)
$$

- \bullet Easy direction: to mix, the chain must first escape from small sets $=$ "first stage of mixing".
- Loosely speaking we show that in the 2nd "stage of mixing", the chain mixes at the fastest possible rate (governed by its relaxation-time).

KONKRAKS KRAU

• Fact: Let $A \subset \Omega$ be such that $\pi(A) \geq 1/2$. Then (under reversibility)

$$
\mathrm{P}_{\pi}[T_A > 2st_{\mathrm{rel}}] \le \frac{e^{-s}}{2}, \text{ for all } s \ge 0.
$$

メロメメ 倒 メメ きょくきょうき

• Fact: Let $A \subset \Omega$ be such that $\pi(A) \geq 1/2$. Then (under reversibility)

$$
\mathrm{P}_{\pi}[T_A>2st_{\mathrm{rel}}]\leq \frac{e^{-s}}{2}, \text{ for all } s\geq 0.
$$

• By a coupling argument,

$$
P_x[T_A > t + 2st_{rel}] \le d(t) + P_{\pi}[T_A > 2st_{rel}].
$$

イロメ イ団 メイヨメ イヨメーヨ

For any reversible irreducible finite lazy chain and any $0 < \epsilon \leq 1/4$,

hit_{1/2}(3 ϵ) − t_{rel}| log(2 ϵ)| ≤ t_{mix}(2 ϵ) ≤ hit_{1/2}(ϵ) + t_{rel}| log(4 ϵ)|

 \bullet Terms involving t_{rel} are negligible under the Prod. Cond..

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

For any reversible irreducible finite lazy chain and any $0 < \epsilon \leq 1/4$,

hit_{1/2}(3 ϵ) − t_{rel}| log(2 ϵ)| ≤ t_{mix}(2 ϵ) ≤ hit_{1/2}(ϵ) + t_{rel}| log(4 ϵ)|

 \bullet Terms involving t_{rel} are negligible under the Prod. Cond..

KO KARA KE KA EK GERAK

For any reversible irreducible finite lazy chain and any $0 < \epsilon \leq 1/4$,

hit_{1/2}(3 ϵ) − t_{rel}| log(2 ϵ)| ≤ t_{mix}(2 ϵ) ≤ hit_{1/2}(ϵ) + t_{rel}| log(4 ϵ)|

- \bullet Terms involving t_{rel} are negligible under the Prod. Cond..
- A similar two sided inequality holds for $t_{\text{mix}}(1 2\epsilon)$.

KO K (O K E K E K E K O K K K K K K K K K K

Main abstract result

Definition: A sequence has hit_{α} -cutoff if

 $\mathrm{hit}^{(n)}_\alpha(\epsilon) - \mathrm{hit}^{(n)}_\alpha(1-\epsilon) = o(\mathrm{hit}^{(n)}_\alpha)$ for all $0 < \epsilon < 1/4.$

Main abstract result

Definition: A sequence has hit_{α} -cutoff if

$$
\mathrm{hit}_{\alpha}^{(n)}(\epsilon)-\mathrm{hit}_{\alpha}^{(n)}(1-\epsilon)=o(\mathrm{hit}_{\alpha}^{(n)})\text{ for all }0<\epsilon<1/4.
$$

Main abstract result:

Theorem

Let (Ω_n, P_n, π_n) be a seq. of finite reversible lazy MCs. Then TFAE:

- *The seq. exhibits cutoff.*
- *The seq. exhibits a* hit_α-cutoff for some $\alpha \in (0, 1/2)$.
- *The seq. exhibits a* hit_{α}-cutoff for some $\alpha \in [1/2, 1)$ *and the Prod. Cond. holds.*

 $(0 \times 40 \times 40)$

Main abstract result

Definition: A sequence has hit_{α} -cutoff if

$$
\mathrm{hit}_{\alpha}^{(n)}(\epsilon)-\mathrm{hit}_{\alpha}^{(n)}(1-\epsilon)=o(\mathrm{hit}_{\alpha}^{(n)})\text{ for all }0<\epsilon<1/4.
$$

Main abstract result:

Theorem

Let (Ω_n, P_n, π_n) be a seq. of finite reversible lazy MCs. Then TFAE:

- *The seq. exhibits cutoff.*
- *The seq. exhibits a* hit_α-cutoff for some $\alpha \in (0, 1/2)$.
- **•** The seq. exhibits a hit_{α}-cutoff for some $\alpha \in [1/2, 1)$ and the Prod. Cond. holds.

The equivalence of cutoff to $\frac{hit_{1/2}}{}$ -cutoff under the Prod. Cond. follows from the ineq. from the prev. slide together with the fact that $\mathrm{hit}_{1/2}^{(n)} = \Theta(t_{\mathrm{mix}}^{(n)}).$

(ロ) (個) (目) (目) (目)
Main abstract result

Definition: A sequence has hit_{α} -cutoff if

$$
\mathrm{hit}_{\alpha}^{(n)}(\epsilon)-\mathrm{hit}_{\alpha}^{(n)}(1-\epsilon)=o(\mathrm{hit}_{\alpha}^{(n)})\text{ for all }0<\epsilon<1/4.
$$

Main abstract result:

Theorem

Let (Ω_n, P_n, π_n) be a seq. of finite reversible lazy MCs. Then TFAE:

- *The seq. exhibits cutoff.*
- The seq. exhibits a hit_α-cutoff for some $\alpha \in (0, 1/2)$.
- **•** The seq. exhibits a hit_{α}-cutoff for some $\alpha \in [1/2, 1)$ and the Prod. Cond. holds.

The equivalence of cutoff to $\frac{hit_{1/2}}{}$ -cutoff under the Prod. Cond. follows from the ineq. from the prev. slide together with the fact that $\mathrm{hit}_{1/2}^{(n)} = \Theta(t_{\mathrm{mix}}^{(n)}).$

For general α we show under the Prod. Cond. (using the tail decay of T_A/t_{rel} when $X_0 \sim \pi$):

hit_α-cuto[ff f](#page-35-0)o[r](#page-37-0) some $\alpha \in (0,1) \Longrightarrow \mathrm{hit}_{\beta}$ $\alpha \in (0,1) \Longrightarrow \mathrm{hit}_{\beta}$ -cutoff for a[l](#page-33-0)l $\beta \in (0,1)$ [.](#page-0-0)

• Def: For
$$
f \in \mathbb{R}^{\Omega}
$$
, $t \ge 0$, define $P^t f \in \mathbb{R}^{\Omega}$ by
\n
$$
P^t f(x) := \mathbb{E}_x[f(X_t)] = \sum_y P^t(x, y) f(y).
$$

 QQ

メロトメ 御 トメ 君 トメ 君 トー 君

• Def: For
$$
f \in \mathbb{R}^{\Omega}
$$
, $t \ge 0$, define $P^t f \in \mathbb{R}^{\Omega}$ by
\n
$$
P^t f(x) := \mathbb{E}_x[f(X_t)] = \sum_y P^t(x, y) f(y).
$$

• For
$$
f \in \mathbb{R}^{\Omega}
$$
 define $\mathbb{E}_{\pi}[f] := \sum_{x \in \Omega} \pi(x) f(x)$ and $||f||_2^2 := \mathbb{E}_{\pi}[f^2]$.

 QQ

メロトメ 御きメモ メモ トリモー

• Def: For
$$
f \in \mathbb{R}^{\Omega}
$$
, $t \ge 0$, define $P^t f \in \mathbb{R}^{\Omega}$ by
\n
$$
P^t f(x) := \mathbb{E}_x[f(X_t)] = \sum_y P^t(x, y) f(y).
$$

• For
$$
f \in \mathbb{R}^{\Omega}
$$
 define $\mathbb{E}_{\pi}[f] := \sum_{x \in \Omega} \pi(x) f(x)$ and $||f||_2^2 := \mathbb{E}_{\pi}[f^2]$.

• For
$$
g \in \mathbb{R}^{\Omega}
$$
 denote $\text{Var}_{\pi}g := ||g - \mathbb{E}_{\pi}[g]||_2^2$.

メロトメ 御きメモ メモ トリモー

• Def: For
$$
f \in \mathbb{R}^{\Omega}
$$
, $t \ge 0$, define $P^t f \in \mathbb{R}^{\Omega}$ by
\n
$$
P^t f(x) := \mathbb{E}_x[f(X_t)] = \sum_y P^t(x, y) f(y).
$$

• For
$$
f \in \mathbb{R}^{\Omega}
$$
 define $\mathbb{E}_{\pi}[f] := \sum_{x \in \Omega} \pi(x) f(x)$ and $||f||_2^2 := \mathbb{E}_{\pi}[f^2]$.

• For
$$
g \in \mathbb{R}^{\Omega}
$$
 denote $\text{Var}_{\pi}g := ||g - \mathbb{E}_{\pi}[g]||_2^2$.

The following is well-known and follows from elementary linear-algebra.

Lemma (Contraction Lemma)

Let (Ω, P, π) *be a finite rev. irr. lazy MC. Let* $A \subset \Omega$ *. Let* $t > 0$ *. Then*

$$
\text{Var}_{\pi} P^t 1_A \le e^{-2t/t_{\text{rel}}}.\tag{3}
$$

イロメ イ団メ イモメ イモメー

画

The main ingredient in our approach is Starr's maximal-inequality (66) (refines Stein's max-inequality (61))

Theorem (Maximal inequality)

Let (Ω,P,π) be a lazy irreducible reversible Markov chain. Let $f\in\mathbb{R}^{\Omega}$. Define the *corresponding maximal function* f [∗] ∈ R Ω *as*

$$
f^*(x) := \sup_{0 \le k < \infty} |P^k(f)(x)| = \sup_{0 \le k < \infty} |E_x[f(X_k)]|.
$$

Then for $1 < p < \infty$ *,*

$$
||f^*||_p \le q||f||_p \qquad 1/p + 1/q = 1 \tag{4}
$$

イロト イ母ト イヨト イヨト

Goal: want for every $A \subset \Omega$ to have $G = G_s(A) \subset \Omega$ s.t. $T_G \leq t$ serves as a certificate of "being ϵ -mixed w.r.t. A" and to control its π measure from below.

イロメ イ団メ イモメ イモメー

Goal: want for every $A \subset \Omega$ to have $G = G_s(A) \subset \Omega$ s.t. $T_G \leq t$ serves as a certificate of "being ϵ -mixed w.r.t. A" and to control its π measure from below.

• Let
$$
\sigma_s := e^{-s/t_{\text{rel}}} \ge \sqrt{\text{Var}_{\pi} P^s 1_A}
$$
 (contraction lemma).

• Consider

$$
G = G_s(A) := \left\{ g : \forall \tilde{s} \ge s, |P_g^{\tilde{s}}(A) - \pi(A)| \le 4\sigma_s \right\}.
$$

画

Goal: want for every $A \subset \Omega$ to have $G = G_s(A) \subset \Omega$ s.t. $T_G \leq t$ serves as a certificate of "being ϵ -mixed w.r.t. A" and to control its π measure from below.

• Let
$$
\sigma_s := e^{-s/t_{\text{rel}}} \ge \sqrt{\text{Var}_{\pi} P^s 1_A}
$$
 (contraction lemma).

• Consider

$$
G = G_s(A) := \left\{ g : \forall \tilde{s} \ge s, |P_g^{\tilde{s}}(A) - \pi(A)| \le 4\sigma_s \right\}.
$$

• **Want precision**
$$
4\sigma_s = \epsilon \Longrightarrow s := t_{rel} \times \log(4/\epsilon)
$$
.

イロト イ押ト イヨト イヨトー

Goal: want for every $A \subset \Omega$ to have $G = G_s(A) \subset \Omega$ s.t. $T_G \leq t$ serves as a certificate of "being ϵ -mixed w.r.t. A" and to control its π measure from below.

• Let
$$
\sigma_s := e^{-s/t_{\rm rel}} \ge \sqrt{\text{Var}_{\pi} P^s 1_A}
$$
 (contraction lemma).

• Consider

$$
G = G_s(A) := \left\{ g : \forall \tilde{s} \ge s, |P_g^{\tilde{s}}(A) - \pi(A)| \le 4\sigma_s \right\}.
$$

• **Want precision**
$$
4\sigma_s = \epsilon \Longrightarrow s := t_{rel} \times \log(4/\epsilon)
$$
.

Claim

 $\pi(G) \ge 1/2.$ (5)

イロメ イ母メ イヨメ イヨメ

Goal: want for every $A \subset \Omega$ to have $G = G_s(A) \subset \Omega$ s.t. $T_G \leq t$ serves as a certificate of "being ϵ -mixed w.r.t. A" and to control its π measure from below.

• Let
$$
\sigma_s := e^{-s/t_{\rm rel}} \ge \sqrt{\text{Var}_{\pi} P^s 1_A}
$$
 (contraction lemma).

• Consider

$$
G = G_s(A) := \left\{ g : \forall \tilde{s} \ge s, |P_g^{\tilde{s}}(A) - \pi(A)| \le 4\sigma_s \right\}.
$$

• **Want precision**
$$
4\sigma_s = \epsilon \Longrightarrow s := t_{rel} \times \log(4/\epsilon)
$$
.

Claim

 $\pi(G) \geq 1/2.$ (5)

Proof: Set $f_s := P^s(1_A - \pi(A))$. Then

$$
G^c \subset \{f_s^* > 4 \|f_s\|_2\}.
$$

Apply Starr's inequality.

Joint work with Riddhi Basu and Jonathan Hermon [Characterization of cutoff for reversible Markov chains](#page-0-0) 21 / 34

 $\begin{array}{l} 1 \ \ \, \text{if} \$

Claim:

$$
t_{\rm mix}(2\epsilon) \leq \mathrm{hit}_{1/2}(\epsilon) + t_{\rm rel} \times \log(4/\epsilon).
$$

Proof: Recall

$$
G := G_s(A,m) := \left\{ g : \forall \tilde{s} \ge s, |P_g^{\tilde{s}}(A) - \pi(A)| \le \epsilon \right\}, \, s := t_{rel} \times \log(4/\epsilon)
$$

• Set $t := \mathrm{hit}_{1/2}(\epsilon)$. By prev. claim $\pi(G) \geq 1/2 \Longrightarrow \mathrm{P}_x[T_G > t] \leq \epsilon$ (by def. of t).

イロン イ団 メイミン イヨン 一番

Claim:

$$
t_{\rm mix}(2\epsilon) \leq \mathrm{hit}_{1/2}(\epsilon) + t_{\rm rel} \times \log(4/\epsilon).
$$

Proof: Recall

$$
G := G_s(A, m) := \left\{ g : \forall \tilde{s} \ge s, |P_g^{\tilde{s}}(A) - \pi(A)| \le \epsilon \right\}, \ s := t_{rel} \times \log(4/\epsilon)
$$

• Set $t := \text{hit}_{1/2}(\epsilon)$. By prev. claim $\pi(G) \geq 1/2 \Longrightarrow P_x[T_G > t] \leq \epsilon$ (by def. of t).

• For any x, A :

$$
|P_x^{t+s}(A) - \pi(A)| \le P_x[T_G > t] + \max_{g \in G, \tilde{s} \ge s} |P_g^{\tilde{s}}(A) - \pi(A)| \le 2\epsilon.
$$

イロン イ団 メイミン イヨン 一番

- Let: $T := (V, E)$ be a finite tree.
- \bullet (V, P, π) a lazy MC corresponding to some (lazy) weighted nearest-neighbor walk on T (i.e. $P(x, y) > 0$ iff $\{x, y\} \in E$ or $y = x$).
- Fact: (Kolmogorov's cycle condition) every MC on a tree is reversible.

Can the tree structure be used to determine the identity of the "worst" sets?

重

メロメメ 倒す メミメメミメー

- Can the tree structure be used to determine the identity of the "worst" sets?
- Easier question: what set of π measure $\geq 1/2$ is the "hardest" to hit in a birth & death chain with state space $[n] := \{1, 2, \ldots, n\}$?

◆ロト→ 伊ト→ ミト→ ミトーミ

- Can the tree structure be used to determine the identity of the "worst" sets?
- Easier question: what set of π measure $> 1/2$ is the "hardest" to hit in a birth & death chain with state space $[n] := \{1, 2, \ldots, n\}$?
- Answer: take a state m with $\pi([m]) \geq 1/2$ and $\pi([m-1]) < 1/2$. Then the set worst set would be either $[m]$ or $[n] \setminus [m-1]$.

KO KARA KE KA EK GERAK

How to generalize this to trees?

重

メロメメ 倒す メミメメミメー

Central vertex

Figure : A vertex $o \in V$ is called a *central-vertex* if each connected component of $T \setminus \{o\}$ has stationary probability at most 1/2.

重

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

 \bullet There is always a central-vertex (and at most 2). We fix one, denote it by o and call it the **root**.

重

メロメメ 倒 メメ ミメメ ミメー

- \bullet There is always a central-vertex (and at most 2). We fix one, denote it by o and call it the **root**.
- It follows from our analysis that for trees the Prod. Cond. holds iff T_o is concentrated (from worst leaf).
- A counterintuitive result =⇒ ∃ such unweighed trees (Peres-Sousi (13)).

画

イロメ イ団メ イモメ イモメー

Figure : Hitting the worst set is roughly like hitting ρ .

 QQ

(ロトス何) スランスランド

- Cutoff would follow if we show that T_o is concentrated (under the Prod. Cond.).
- More precisely, we need to show that $\mathbb{E}_x[T_o] = \Omega(t_{\text{mix}}) \Longrightarrow T_{y_\beta(x)}$ is concentrated if $X_0 = x$.

イロン イ団ン イヨン イヨン 一番

- Cutoff would follow if we show that T_o is concentrated (under the Prod. Cond.).
- More precisely, we need to show that $\mathbb{E}_x[T_o] = \Omega(t_{\text{mix}}) \Longrightarrow T_{y_\beta(x)}$ is concentrated if $X_0 = x$.

イロン イ団ン イヨン イヨン 一番

Figure : Let $v_0 = x, v_1, \ldots, v_k = o$ be the vertices along the path from x to o.

 \equiv

イロメ イ団メ イミメ イミメー

Proof of Concentration: $Var_x[T_o] \leq Ct_{rel}t_{mix}$:

It suffices to show that $Var_x[T_o] \leq 4t_{rel} \mathbb{E}_x[T_o]$.

画

イロメ イ団メ イモメ イモメー

Proof of Concentration: $Var_x[T_o] \leq Ct_{rel}t_{mix}$.

- **It suffices to show that** $Var_x[T_o] \le 4t_{rel}E_x[T_o]$.
- If $X_0 = x$ then T_0 is the sum of crossing times of the edges along the path between $x\colon \tau_i:=T_{v_i}-T_{v_{i-1}}\stackrel{d}{=}T_{v_i}$ under $X_0=v_{i-1}$

Proof of Concentration: $Var_x[T_o] \leq Ct_{rel}t_{mix}$:

- **It suffices to show that** $\text{Var}_x[T_o] \leq 4t_{\text{rel}}\mathbb{E}_x[T_o]$ **.**
- If $X_0 = x$ then T_0 is the sum of crossing times of the edges along the path between $x\colon \tau_i:=T_{v_i}-T_{v_{i-1}}\stackrel{d}{=}T_{v_i}$ under $X_0=v_{i-1}$
- τ_1, \ldots, τ_k are independent \Longrightarrow it suffices to bound the sum of their 2nd moments $Var_x[T_o] = \sum Var_x[\tau_i] = \sum Var_{v_{i-1}}[T_{v_i}] \le \sum \mathbb{E}_{v_{i-1}}[T_{v_i}^2].$

KID KA KERKER E 1990

Proof of Concentration: $Var_x[T_o] \leq Ct_{rel}t_{mix}$:

- **It suffices to show that** $\text{Var}_x[T_o] \leq 4t_{\text{rel}}\mathbb{E}_x[T_o]$ **.**
- If $X_0 = x$ then T_0 is the sum of crossing times of the edges along the path between $x\colon \tau_i:=T_{v_i}-T_{v_{i-1}}\stackrel{d}{=}T_{v_i}$ under $X_0=v_{i-1}$
- τ_1, \ldots, τ_k are independent \Longrightarrow it suffices to bound the sum of their 2nd moments $Var_x[T_o] = \sum Var_x[\tau_i] = \sum Var_{v_{i-1}}[T_{v_i}] \le \sum \mathbb{E}_{v_{i-1}}[T_{v_i}^2].$
- \bullet Denote the subtree rooted at v (the set of vertices whose path to σ goes through v) by W_v . For $A \subset \Omega$ let π_A be π conditioned on A.
- Kac formula implies that for any A, there exists a dist. μ on the external vertex boundary of A s.t. $\mathrm{E}_{\mu}[T_A^2] \leq 2\mathrm{E}_{\mu}[T_A]\mathrm{E}_{\pi_{A^c}}[T_A] \Longrightarrow$
- By the tree structure $\mathop{\rm E{}}_{v_{i-1}}[T_{v_i}^2] \le 2\mathop{\rm E{}}_{v_{i-1}}[T_{v_i}]\mathop{\rm E{}}_{\pi_{W_{v_{i-1}}}}[T_{v_i}].$
- Not hard to show $\mathrm{E}_{\pi_{W_{v_{i-1}}}}[T_{v_i}]\leq 2t_{\mathrm{rel}}$ (generally $\pi(A^c)\mathrm{E}_{\pi_{A^c}}[T_A]\leq t_{\mathrm{rel}}$) so

$$
\sum E_{v_{i-1}}[T_{v_i}^2] \le \sum 4t_{\mathrm{rel}}E_{v_{i-1}}[T_{v_i}] = 4t_{\mathrm{rel}}E_x[T_o]. \quad \Box
$$

KID KA KERKER E 1990

The tree assumption can be relaxed. In particular, we can treat jumps to vertices of bounded distance on a tree (i.e. the length of the path from u to v in the tree (which is now just an auxiliary structure) is \Rightarrow $r \Longrightarrow P(u, v) = 0$) under some mild necessary assumption.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

- The tree assumption can be relaxed. In particular, we can treat jumps to vertices of bounded distance on a tree (i.e. the length of the path from u to v in the tree (which is now just an auxiliary structure) is \Rightarrow $r \Longrightarrow P(u, v) = 0$) under some mild necessary assumption.
- Previously the BD assumption could not be relaxed mainly due to it being exploited via a representation of hitting times result for BD chains.

.

- The tree assumption can be relaxed. In particular, we can treat jumps to vertices of bounded distance on a tree (i.e. the length of the path from u to v in the tree (which is now just an auxiliary structure) is $\gt r \Longrightarrow P(u, v) = 0$ under some mild necessary assumption.
- Previously the BD assumption could not be relaxed mainly due to it being exploited via a representation of hitting times result for BD chains.
- **In particular, if** $P(u, v) > \delta > 0$ for all u, v s.t. $d_T(u, v) \le r$ (and otherwise $P(u, v) = 0$, then

 $cutoff \iff$ the Prod. Cond. holds.

KO KARA KE KA EK GERAK

Last remark:

- **•** Previously "good expansion of small sets can improve mixing".
- \bullet Now know considering expansion only of small sets and t_{rel} suffices to bound $t_{\rm mix}$!

$$
t_{\text{mix}}(\epsilon) \leq \text{hit}_{1-\epsilon/4}(3\epsilon/4) + \frac{3t_{\text{rel}}}{2}\log(4/\epsilon).
$$

From which it follows that

$$
t_{\text{mix}} \leq 5 \max_{x, A: \pi(A) \geq 1-\epsilon/4} \mathbb{E}_x[T_A] + \frac{3t_{\text{rel}}}{2} \log\left(4/\epsilon\right).
$$

• For any x and A with $\pi(A) \geq 1 - \epsilon/4$ we can bound $\mathbb{E}_x[T_A]$ using the expansion profile of sets only of π measure at most $\epsilon/4$ (by an integral of the form used to bound the mixing time via the expansion profile).

.

Last remark:

- **•** Previously "good expansion of small sets can improve mixing".
- \bullet Now know considering expansion only of small sets and t_{rel} suffices to bound $t_{\rm mix}$!

$$
t_{\text{mix}}(\epsilon) \leq \text{hit}_{1-\epsilon/4}(3\epsilon/4) + \frac{3t_{\text{rel}}}{2}\log(4/\epsilon).
$$

From which it follows that

$$
t_{\text{mix}} \leq 5 \max_{x, A: \pi(A) \geq 1-\epsilon/4} \mathbb{E}_x[T_A] + \frac{3t_{\text{rel}}}{2} \log\left(4/\epsilon\right).
$$

- For any x and A with $\pi(A) \geq 1 \epsilon/4$ we can bound $\mathbb{E}_x[T_A]$ using the expansion profile of sets only of π measure at most $\epsilon/4$ (by an integral of the form used to bound the mixing time via the expansion profile).
- In practice, we can take $\epsilon = \exp[-ct_{\text{mix}}/t_{\text{rel}}]$ to determine t_{mix} up to a constant.

KONKAPERKER E

What can be said about the geometry of the "worst" sets in some interesting particular cases (say, transitivity or monotonicity)?

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

- What can be said about the geometry of the "worst" sets in some interesting particular cases (say, transitivity or monotonicity)?
- When can the worst sets be described as $\{|f_2| \le C\}$ ($P f_2 = \lambda_2 f_2$)? (would imply several new cutoff results if true in certain cases)
- When can one relate escaping time from balls of π -measure ϵ to escaping time from sets of π -measure $\epsilon^{100}/100?$
- When can monotonicity w.r.t. a partial order (preserved by the chain) be used to describe the "worst" sets and their hitting time distributions?

 $(\Box \rightarrow \Diamond \Box \rightarrow \Diamond \exists \rightarrow \Diamond \exists \rightarrow \Box \exists$