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Notation

Transition matrix - P (reversible).

Stationary dist. - π.

Reversibility: π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ Ω.

Laziness P (x, x) ≥ 1/2, ∀x ∈ Ω.
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TV distance

For any 2 dist. µ, ν on Ω, their total-variation distance is:

‖µ− ν‖TV
d
= max

A⊂Ω
µ(A)− ν(A) .

d(t, x)
d
= ‖Ptx − π‖TV, d(t)

d
= max

x∈Ω
d(t, x).

The ε-mixing-time (0 < ε < 1) is:

tmix(ε)
d
= min {t : d(t) ≤ ε}

tmix
d
= tmix(1/4).
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Cutoff - definition

Def: a sequence of MCs (X
(n)
t ) exhibits cutoff if

t
(n)
mix(ε)− t(n)

mix(1− ε) = o(t
(n)
mix), ∀ 0 < ε < 1/4. (1)

(wn) is called a cutoff window for (X
(n)
t ) if: wn = o

(
t
(n)
mix

)
, and

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn, ∀n ≥ 1,∀ε ∈ (0, 1/4).
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Cutoff

Figure : cutoff
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Background

Cutoff was first identified for random transpositions Diaconis & Shashahani 81 and
RW on the hypercube by Aldous 83.

Many chains are believed to exhibit cutoff. Verifying the occurrence of cutoff
rigorously is usually hard.

The name cutoff was coined by Aldous and Diaconis in their seminal 86 paper.

Aldous & Diaconis 86 - “the most interesting open problem”: Find verifiable
conditions for cutoff.
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Spectral gap & relaxation-time

Let λ2 be the largest non-trivial e.v. of P .

Definition: gap = 1− λ2 - the spectral gap.

Def: trel := gap−1 - the relaxation-time.
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The product condition (Prod. cond.)

In a 2004 Aim workshop I proposed that The product condition (Prod. Cond.) -
gap(n)t

(n)
mix →∞ (equivalently, t(n)

rel = o(t
(n)
mix))

should imply cutoff for ”nice” reversible chains.

(It is a necessary condition for cutoff)

It is not always sufficient - examples due to Aldous and Pak.

Problem: Find families of MCs s.t. Prod. Cond. =⇒ cutoff.
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Aldous’ example
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before Ty “determines”  Ty.
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1/12 - each

n

Figure : Fixed bias to the right conditioned on a non-lazy step.

Different laziness probabilities along the 2 paths.
t
(n)
rel = O(1).
dn(t) ∼ Px[Ty > t] =⇒ ε ≤ dn(130n) ≤ dn(128n) ≤ 1− ε, for some ε..
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Aldous’ example

dn ( t)

132n126n

Figure : Fixed bias to the right conditioned on a non-lazy step.
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Hitting and Mixing

Def: The hitting time of a set A ⊂ Ω = TA := min{t : Xt ∈ A}.

Hitting times of “worst” sets are related to mixing - mid 80’s (Aldous).

Refined independently by Oliviera (2011) and Peres-Sousi (2011) (case α = 1/2
due to Griffiths-Kang-Oliviera-Patel 2012): for any irreducible reversible lazy MC
and 0 < α ≤ 1/2:

tH(α) = Θα(tmix), where tH(α) := max
x,A:π(A)≥α

Ex[TA]. (2)

We relate d(t) and maxx,A:π(A)≥α Px[TA > t] and refine (2) by also allowing
1/2 < α ≤ 1− exp[−Ctmix/trel] and improving Θα to Θ.

Remark: (2) may fail for α > 1/2.
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counter-example

Kn

Kn

Figure : n is the index of the chain
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Hitting and Cutoff

Concentration of hitting times of “worst” sets is related to cutoff in birth and death
(BD) chains.

Diaconis & Saloff-Coste (06) (separation cutoff) and Ding-Lubetzky-Peres (10) (TV
cutoff):

A seq. of BD chains exhibits cutoff iff the Prod. Cond. holds.

We extend their results to weighted nearest-neighbor RWs on trees.
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Cutoff for trees

Theorem

Let (V, P, π) be a lazy Markov chain on a tree T = (V,E) with |V | ≥ 3. Then

tmix(ε)− tmix(1− ε) ≤ C
√
| log ε|treltmix, for any 0 < ε ≤ 1/4.

In particular, the Prod. Cond. implies cutoff with a cutoff window wn =

√
t
(n)
rel t

(n)
mix and

cε = C
√
| log ε|.

Ding Lubetzky Peres (10) - For BD chains tmix(ε)− tmix(1− ε) ≤ O(ε−1√treltmix)

and in some cases wn = Ω

(√
t
(n)
rel t

(n)
mix

)
.
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To mix - escape and then relax

Definition: hitα := hitα(1/4), where

hitα,x(ε) := min{t : Px[TA > t] ≤ ε : for all A ⊂ Ω s.t. π(A) ≥ α},

hitα(ε) := max
x∈Ω

hitα,x(ε)

Easy direction: to mix, the chain must first escape from small sets = “first stage of
mixing”.

Loosely speaking - we show that in the 2nd “stage of mixing”, the chain mixes at
the fastest possible rate (governed by its relaxation-time).
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Hitting times when X0 ∼ π

Fact: Let A ⊂ Ω be such that π(A) ≥ 1/2. Then (under reversibility)

Pπ[TA > 2strel] ≤
e−s

2
, for all s ≥ 0.

By a coupling argument,

Px[TA > t+ 2strel] ≤ d(t) + Pπ[TA > 2strel].
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Hitting of worst sets

For any reversible irreducible finite lazy chain and any 0 < ε ≤ 1/4,

hit1/2(3ε)− trel| log(2ε)| ≤ tmix(2ε) ≤ hit1/2(ε) + trel| log(4ε)|

Terms involving trel are negligible under the Prod. Cond..

A similar two sided inequality holds for tmix(1− 2ε).
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Main abstract result

Definition: A sequence has hitα-cutoff if

hit(n)
α (ε)− hit(n)

α (1− ε) = o(hit(n)
α ) for all 0 < ε < 1/4.

Main abstract result:

Theorem

Let (Ωn, Pn, πn) be a seq. of finite reversible lazy MCs. Then TFAE:

The seq. exhibits cutoff.

The seq. exhibits a hitα-cutoff for some α ∈ (0, 1/2) .

The seq. exhibits a hitα-cutoff for some α ∈ [1/2, 1) and the Prod. Cond. holds.

The equivalence of cutoff to hit1/2-cutoff under the Prod. Cond. follows from the
ineq. from the prev. slide together with the fact that hit

(n)

1/2 = Θ(t
(n)
mix).

For general α we show under the Prod. Cond. (using the tail decay of TA/trel when
X0 ∼ π):

hitα-cutoff for some α ∈ (0, 1) =⇒ hitβ-cutoff for all β ∈ (0, 1).
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Tools

Def: For f ∈ RΩ, t ≥ 0, define P tf ∈ RΩ by
P tf(x) := Ex[f(Xt)] =

∑
y

P t(x, y)f(y).

For f ∈ RΩ define Eπ[f ] :=
∑
x∈Ω

π(x)f(x) and ‖f‖22 := Eπ[f2].

For g ∈ RΩ denote Varπg := ‖g − Eπ[g]‖22.

The following is well-known and follows from elementary linear-algebra.

Lemma (Contraction Lemma)

Let (Ω, P, π) be a finite rev. irr. lazy MC. Let A ⊂ Ω. Let t ≥ 0. Then

VarπP
t1A ≤ e−2t/trel . (3)
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Maximal Inequality

The main ingredient in our approach is Starr’s maximal-inequality (66) (refines Stein’s
max-inequality (61))

Theorem (Maximal inequality)

Let (Ω, P, π) be a lazy irreducible reversible Markov chain. Let f ∈ RΩ. Define the
corresponding maximal function f∗ ∈ RΩ as

f∗(x) := sup
0≤k<∞

|P k(f)(x)| = sup
0≤k<∞

|Ex[f(Xk)]|.

Then for 1 < p <∞,
‖f∗‖p ≤ q‖f‖p 1/p+ 1/q = 1 (4)
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Combining the Max-in. with the Contraction Lemma

Goal: want for every A ⊂ Ω to have G = Gs(A) ⊂ Ω s.t. TG ≤ t serves as a certificate
of “being ε-mixed w.r.t. A” and to control its π measure from below.

Let σs := e−s/trel ≥
√

VarπP s1A (contraction lemma).

Consider
G = Gs(A) :=

{
g : ∀s̃ ≥ s, |Ps̃g(A)− π(A)| ≤ 4σs

}
.

Want precision 4σs = ε =⇒ s := trel × log(4/ε).

Claim

π(G) ≥ 1/2. (5)

Proof: Set fs := P s(1A − π(A)). Then

Gc ⊂ {f∗s > 4‖fs‖2} .

Apply Starr’s inequality.
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Main idea

Claim:
tmix(2ε) ≤ hit1/2(ε) + trel × log(4/ε).

Proof: Recall

G := Gs(A,m) :=
{
g : ∀s̃ ≥ s, |Ps̃g(A)− π(A)| ≤ ε

}
, s := trel × log(4/ε)

Set t := hit1/2(ε). By prev. claim π(G) ≥ 1/2 =⇒ Px[TG > t] ≤ ε (by def. of t).

For any x,A:

|Pt+sx (A)− π(A)| ≤ Px[TG > t] + max
g∈G,s̃≥s

|Ps̃g(A)− π(A)| ≤ 2ε.
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Trees

Let: T := (V,E) be a finite tree.

(V, P, π) a lazy MC corresponding to some (lazy) weighted nearest-neighbor walk
on T (i.e. P (x, y) > 0 iff {x, y} ∈ E or y = x).

Fact: (Kolmogorov’s cycle condition) every MC on a tree is reversible.
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Trees

Can the tree structure be used to determine the identity of the “worst” sets?

Easier question: what set of π measure ≥ 1/2 is the “hardest” to hit in a birth &
death chain with state space [n] := {1, 2, . . . , n} ?

Answer: take a state m with π([m]) ≥ 1/2 and π([m− 1]) < 1/2. Then the set
worst set would be either [m] or [n] \ [m− 1].
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Trees

How to generalize this to trees?
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Central vertex

o
C3

C2

C1

C4

∏(Ci)≤1/2
for all i

Figure : A vertex o ∈ V is called a central-vertex if each connected component of T \ {o} has
stationary probability at most 1/2.
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Trees

There is always a central-vertex (and at most 2). We fix one, denote it by o and
call it the root.

It follows from our analysis that for trees the Prod. Cond. holds iff To is
concentrated (from worst leaf).

A counterintuitive result =⇒ ∃ such unweighed trees (Peres-Sousi (13)).
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Trees

o

Let A be s.t. ∏(A)≥1/2. 
Partition V to B and D=V\B
s.t. B is connected, o is in B 
and ∏(A’)≥1/4, where
 A’:=(D U {o})    A.

Po[TA>s]≤Po[TA’>s]
≤P∏B[TA’>s]≤2P∏[TA’>s],
where ∏B is ∏ 
conditioned on B.

Take s:=Ctrel|log(ε)|. 
=>Po[TA>s]≤ ε.

=> hit1/2(a+ε)≤ min{t:Px[To>t]≤a, for all x} + s.
trivially: min{t:Px[To>t]≤a, for all x} ≤ hit1/2(a)

Figure : Hitting the worst set is roughly like hitting o.
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Trees

Cutoff would follow if we show that To is concentrated (under the Prod. Cond.).

More precisely, we need to show that Ex[To] = Ω(tmix) =⇒ Tyβ(x) is concentrated
if X0 = x.
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Trees

o=vk

x=v0
v1

v2
v3

vk-1

Figure : Let v0 = x,v1, . . . , vk = o be the vertices along the path from x to o.
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Trees

Proof of Concentration: Varx[To] ≤ Ctreltmix:

It suffices to show that Varx[To] ≤ 4trelEx[To].

If X0 = x then To is the sum of crossing times of the edges along the path
between x: τi := Tvi − Tvi−1

d
= Tvi underX0 = vi−1

τ1, . . . , τk are independent =⇒ it suffices to bound the sum of their 2nd moments
Varx[To] =

∑
Varx[τi] =

∑
Varvi−1 [Tvi ] ≤

∑
Evi−1 [T 2

vi ].

Denote the subtree rooted at v (the set of vertices whose path to o goes through
v) by Wv. For A ⊂ Ω let πA be π conditioned on A.

Kac formula implies that for any A, there exists a dist. µ on the external vertex
boundary of A s.t. Eµ[T 2

A] ≤ 2Eµ[TA]EπAc [TA] =⇒
By the tree structure Evi−1 [T 2

vi ] ≤ 2Evi−1 [Tvi ]EπWvi−1
[Tvi ].

Not hard to show EπWvi−1
[Tvi ] ≤ 2trel (generally π(Ac)EπAc [TA] ≤ trel) so∑

Evi−1 [T 2
vi ] ≤

∑
4trelEvi−1 [Tvi ] = 4trelEx[To].
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Beyond trees

The tree assumption can be relaxed. In particular, we can treat jumps to vertices
of bounded distance on a tree (i.e. the length of the path from u to v in the tree
(which is now just an auxiliary structure) is > r =⇒ P (u, v) = 0) under some mild
necessary assumption.

Previously the BD assumption could not be relaxed mainly due to it being
exploited via a representation of hitting times result for BD chains.

In particular, if P (u, v) ≥ δ > 0 for all u, v s.t. dT (u, v) ≤ r (and otherwise
P (u, v) = 0), then

cutoff⇐⇒ the Prod. Cond. holds.
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Last remark:

Previously “good expansion of small sets can improve mixing”.

Now know - considering expansion only of small sets and trel suffices to bound
tmix!

tmix(ε) ≤ hit1−ε/4(3ε/4) +
3trel

2
log (4/ε) .

From which it follows that

tmix ≤ 5 max
x,A:π(A)≥1−ε/4

Ex[TA] +
3trel

2
log (4/ε) .

For any x and A with π(A) ≥ 1− ε/4 we can bound Ex[TA] using the expansion
profile of sets only of π measure at most ε/4 (by an integral of the form used to
bound the mixing time via the expansion profile).

In practice, we can take ε = exp[−ctmix/trel] to determine tmix up to a constant.
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Open problems

What can be said about the geometry of the “worst” sets in some interesting
particular cases (say, transitivity or monotonicity)?

When can the worst sets be described as {|f2| ≤ C} (Pf2 = λ2f2)? (would imply
several new cutoff results if true in certain cases)

When can one relate escaping time from balls of π-measure ε to escaping time
from sets of π-measure ε100/100?

When can monotonicity w.r.t. a partial order (preserved by the chain) be used to
describe the “worst” sets and their hitting time distributions?
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