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Graph diffusions

low

f = i OszkS
k=0

A — adjacency matrix

D — degree matrix

P — column stochastic operator
s — the “seed” (a sparse vector)
f — the diffusion result

a, — the path weights

Graph diffusions help:
1. Attribute prediction

high P=AD" 2. Community detection
1 3. “Ranking”
_ , 4. Find small conductance sets
Px=> —X
J—i J
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Practical graph diffusions

PageRank
ov x=(1-8Y 8Ps
k=0

(I-AP)x=(1-0)s

Heat kernel
_ ot - pk
h=e 25:k1P S
k=0

. —1

high P =AD h = e "exp{tP}s
1

Px=> —X

j—i
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Practical graph diffusions
PageRank
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Uniformly localized

solutions in flickr
(I-BP)x=(1-p5)s
plot(x) nnz(x) ~ 800k
0.1 - - - - 10°
0.08} :8
0.06} * 10”
|
0.04} x
107
0.02} ‘ g
N (N
0 > 4 6 8 10 107 P » 6
1o 10 10 10 10

NONZEros
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Our mission

Understand how localization can help
make diffusions robust to graph
constructions and label mistakes

(and make everything faster too!)
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Two types of localization

Localized vectors are not sparse, but they

X ~ X"
can be approximated by sparse vectors. ~
Uniform (Strong) \ Entry-wise (Weak) \
* —1 *
X =Xy < ID™ (x —x%)|[, <e
Good global approximation Good approximation for
using only a local region. cuts and communities.
“Hard” to prove. “Easy” to prove.

Qeed” a graph property./ “Fast” algorithms /
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We have three main results

1. A new interpretation for the PageRank
diffusion in relationship with a mincut
problem.

2. A new understanding of the scalable,

localized PageRank “push” method as a
regularized diffusion

3. Insights on how this regularization and
graph density helps to robustify
diffusions.
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Undirected
graphs only

Entry-wise
localization
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The PageRank problem &
the Laplacian on undirected graphs

The PageRank random surfer
1. With probability beta, follow a random-walk step
2. With probability (1-beta), jump randomly ~ dist. s.

Goal find the stationary dist. x

(1= BAD™ )x = (1 - B)s; ZW

2. [aD+L]z=as where 5=1/(1+a) andx Dz.
Combinatorial Laplacian L =D - A
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The s-t min-cut problem

Unweighted incidence matrix
Diagonal capacity matrix

minimize  ||Bx||;; = ZUEE Cijlxi — x;
subjectto xs=1,x;=0,x > 0.

10

1 5 In the unweighted case,
solve via max-flow.
; O

Q— C In the weighted case,
7 solve via network simplex
4 or industrial LP.
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The localized cut graph

Connect s to vertices
in S with weight « - degree
Connect t to vertices
in S with weight « - degree

Related to a construction
used in “Flowlmprove”
Andersen & Lang (2007); and
Orecchia & Zhu (2014)

"0 adi 0
= ads A Oéds
0 adl O _
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The localized cut graph
3a

Connect s to vertices
in S with weight « - degree
Connect t to vertices
2q  in S with weight o - degree

e _IS 0]
Bo=|0 B O
0 -5 e

Solve the s-t min-cut
minimize  ||BsX||g,) -

subjectto xs=1,x=0
X > 0.
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The localized cut graph

3a Connect s to vertices
in S with weight « - degree
Connect t to vertices
2q  in S with weight o - degree

e _IS 0]
Bo=|0 B O
0 -5 e

Solve the “electrical flow’
s-t min-cut
minimize ]]Bsx\]c(a),z

subjectto xs=1,x=0
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s-t min-cut - PageRank /01

The PageRank vector z that solves  square and expand

the objective into
a Laplacian, then
apply constraints.

(aD+L)z=as

with s = dg/vol(S) is a renormalized
solution of the electrical cut computation: .

minimize  |[BsX|[g (o) 2
subjectto xs=1,x; =0.

Specifically, if x is the solution, then

’
X = |vol(S)z
0

- - David Gleich - Purdue Simons




PageRank - s-t min-cut

That equivalence works if s Is degree-weighted.

What if s is the uniform vector? M) 20
A(s) =
0 as’ 0

0 aod-s)T 0

iiiii




Insight 1

PageRank implicitly approximates the
solution of these s-t mincut problems
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Ingight I

Thig holde for a variety of diftugion
methodg for gemi-guperviged learning.

®
(a) Zhou [4] (b) Andersen-Lang [13] (c) Joachims [5] (d) ZGL [3]
Seeds have Seeds have Labeled nodes have edges to source/
weight 1. weight d sink. ZGL pins them
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The Push Algorithm for PageRank

e =0.0316228

Proposed (in closest form) in Andersen,
Chung, Lang (also by McSherry, Jeh &
Widom, Berkhin) for fast approx.
PageRank

Derived to show improved runtime for
balanced solvers

1.  Used for empirical studies
of “communities”

2.  Local Cheeger inequality.

3. Used for “fast Page-Rank
approximation”

4. Works on massive graphs
O(1 second) for 4 billion
edge graph on a laptop. Produce an g-accurate entrywise 1

5. ltyields weakly /ocalized localized PageRank vector in work ¢(1—_3)
PageRank approximations!

Newman’s netscience
379 vertices, 1828 nnz
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Gauss-Seidel and
Gauss-Southwell

Methods to solve Ax=Db

Update X(k+1) = X(k) + pjej such that [Ax(k+1)]j = [b]j

In words “Relax” or “free” the jth coordinate of your solution vector in
order to satisfy the jth equation of your linear system.

Gauss-Seidel repeatedly cycle throughj=1ton

Gauss-Southwell use the value of | that has the highest magnitude residual

k) = p — Ax®
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PageRank Pull and Push for
Gauss-Southwell/Seidel

e

o o
w/ access to in-links & degs.  w/ access to out-I. gf&@‘@ m(\\‘\
0(\‘@30_) \Bg\g\(\
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Almost “the push” method

1. xMW =0,rM = (1 - Be;, k =1

2. while any r; > ed; (d; is the degree of node j)
The 3. x¥™1 =x® + (5 —edjp)e;
Push g N
edip I =]
Method . f .
4. V=84 B —edip)/d i~
5 P i otherwise
D. K<+ K+ 1

Only push “some” of the residual — If we want tolerance “eps” then
push to tolerance “eps” and no further
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The push method revisited

Let X be the output from the push method
with0 < 8 <1, v=dg/vol(S),
p=1, and 7 > 0.

Set a = 157, k = 7vol(S)/8, and let z¢ solve:

L 2
minimize  3(|Bsz|/g) 2 + #(|DZ|

subjectto zg=1,2z=0,z>0 " Regularization
for sparsity

Need for
normalization

1

where z = [ZOG} - Proof Write out KKT conditions
Show that the push method

Then X = Dz5/VvoI(S). solves them. Slackness was “tricky”
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Insight 2

The PageRank push method
implicitly solves a 1-norm regularized
2-norm cut approximation.
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Ingight 2
We get 3-digite of accuracy on P and
[O-digite of accuraey on O’




Insight 2”

These regularized diffusions (via
oush) should be more robust in data
applications (and faster)!

minimize

2
%HBSZHC(a)Q + r|| Dz]|,

subjectto zs=1,z=0,z>0

)
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Semi-supervised & Gleich & Mahoney,
diffusion-based learning e

Given a graph, and a few labeled nodes,
predict the labels on the rest of the graph.

Algorithm

1. Run a diffusion for
each label (possibly
with neg. info from
other classes)

2. Assign new labels
based on the value of
each diffusion
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Vanilla SSL algorithms have a problem

(a) The adJ acency
structure of our sample
with the three
unbalanced classes
indicated.

Class 1
Class 2
Class 3

Class 1

Class 1
Class 2
Class 3

L

Class 2 Class 3

Class 1

Class 2 Class 3

J
-y

ME—

(b) Zhou (3 labels)  (c¢) Andersen-Lang (3 labels) (I

Class 1
Class 2

Class 3
N e W et GNP W
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Class 2 Class 3

(e) Zhou (15 labels) (f) Andersen-Lang (15 labels

Class 1
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This problem is worse on real data
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Insight 1’
Class 1
Class 2 Diffusions are all
Class 3

Unifying theory and practice
approximations to cuts.

ﬁ /\ In spectral theory
VNRYREY s We “sweep” over cuts

Class 1 Class 2 Class 3 from approximate
(c) Andersen-Lang (3 labels) €lgenvectors!
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Without these insights, we’d
draw the wrong conclusion.

error rate

Off the shelf SSL procedure

Rank-rounded SSL
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Gleich & Mahoney,
In prep.

One more step ...

Given a graph, and a few labeled nodes,
predict the labels on the rest of the graph.

Algorithm

1. Run a diffusion for
each label (possibly
with neg. info from
other classes)

2. Assign new labels
based on the value of
each diffusion
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Gleich & Mahoney,
In prep.

One more step ...

data oints
Given a-graph, and a few labeled erelee
predict the labels on the rest of the gragh. gata

[“ BJ B] ] Algorithm O. Create a graph

from the data
\ 1. Run a diffusion for

each label (possibly
with neg. info from
other classes)

2. Assign new labels
based on the value of
each diffusion
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Semi-supervised
Learning on Graphs

2.5

O

o=1.25

|di — djl5
2072

A,',j =exXxp | —

Zhou et al. NIPS (2003)



Does regularization help with
sparse or dense graphs?

We introduce a few labeling mistakes

o Method Average training labels per class
2 5 7 10

0.8 RK2 0.34% 0.22% 0.25% -0.02%
Sparse 0.8  RK3 0.5% 0.39% 1.1% 1.1%

1.25 RK2 0.34% 041% 0.24% 0.22%
1.25 RK3 0.4% 0.39% 0.36% 0.42%

25 RK2 0% 0% 0% 0%
2.5 RK3 0% 0% 0% 0%

Dense

(¢) Median improvement to error rate with regularization
for digit prediction; various o and 20% label mistakes
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How do sparsity, density,

and regularization of a

diffusion play into the results
. in a controlled setting”




Avoidable

How do we take a

AE

1

RN
=
D
IS
Q
S O

I®)
o &



Avoidable N W
errors S -
SN N A

‘\\\ \l

No regularization E :E 1 Ae & no regularization

Unavoidable,
errors

Regularization Ae &regulanzatlon
) | e 174

(‘ \wv
0" \\ 5,

\"A\

\\‘:‘




Summary of robust diffusions

1. Use rank-based rounding

2. Use denser graphs if there are errors (if you
can afford it).

We are trying to get some theory to quantify this effect
This makes computation expensive!
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