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Notations and Preliminaries

An undirected graph G=(V,E) n=N| m=|E

Edges’ weights W; vli, jle E

Nodes’ weights 0 VieV

Capacity ofaCut  C(A,B)=>) W

€A, jeB J

Weighted degree d; = Z”[i,j]eE Wi

DegreeVolume d(A)=>"  d;=2C(A A)+ c(A A)

Node Volume q(A): ZieAqi
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The graph expander problem

The graph expander problem:
Expander graphs are used to generate good
error correcting codes, and in cryptography.
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The Cheeger problem

The Cheeger problem, normalized cut:
for effective segmentation of images.

C(S,5) .. C(S,5)

min min — _
1<d® d(S) 5= minid(S),d(S)]

2

Also called Conductance, when the underlying
graph is directed and used to assess the

convergence rate of Markov chain processes.
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A generalization: quantity normalized cut

The g-normalized cut of a graph:
Useful in clustering where g is a
“characteristic” (e.g. texture) of node i

. C(S5,S) . C(S,S)
min =min— —
<t q(S) sV minig(S),q(S)|

2
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Formulations summary

The graph expander problem
_C(S,5)
min
s 9]
The Cheeger problem, Normalized cut,
Conductance | _ ., C(S.5)
a2 d(S)

2

The g-normalized cut of a graph
. C(S,S)
min
a)<*Y) q(S)
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An intuitive clustering criterion

Find a cluster that combines two objectives:
One, Is to have large similarity within the cluster, and
to have small similarity between the cluster its complement.

The combination of the two objectives can be expressed as:

. C(S,9)
min or

scv C(S,9)

We call this problem

min C(S,S) — AC(S,S) or normalized-cut-prime,
ScV or NC'.

min C1(S, §) — ACy(S, 5)
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Normalized Cut and NC’

Shi and Malik 2001:

Normalized cut: NP-hard

Sharon et al. 2007
called this problem
normalized cut: . C(S, S_)

Normalized cut’: NP-hard? SV C
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How do NC and NC’' compare [H10]

. . _c(s,§) cfs,3)
Shi & Malik min 1(5) + 1G)
Sharon et. al 1 )
- c(s,5) (5,5}
sev C(S,S) 1/2[d(S)-c(5,5)] A4
1 o ds) . C(s.S)
—d(S) _1:>s3vxzc(s,§)2>8cv d(S)
2C(S,S)
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Matrix Representation

0 o 0 Z{i:m[i,j]eE}Wij
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Two-terms forms of the problems:

Expander nin C(S,S)+C(S_,S)
s-normalized PGSV ‘S‘ ‘S‘
S#V
eeger constan nir i
Normalized Cut i d(S) d(S)
Half-g-normalized Qmsinv CE.5) + C(S’_S)
g-normalized o5V q(S) q(S)
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Single and two-term forms are within a

factor of 2:

Expander «» S-normalized

%(S —normalized ) < Expander < (S —normalized )

Cheeger «» Normalized Cut

%(NC)S Cheeger < (NC)

Half-g-normalized «» g-normalized

%(q —normalized ) < half —q—normalized < (q—normalized )
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Two terms expressions and the Rayleigh
ratio (Lemma 3.1, [H13])

A special case of this was shown by Shi and Malik,
for g(S)=d(S).
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The combinatorial versus the spectral
continuous relaxations

Combinatorial relaxation of Raleigh ratio Problem
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The spectral method

An optimal solution is achieved for By — X,Qy

Where X\ Is the smallest non-zero eigenvalue
(Fiedler Eigenvalue). We solve for the eigenvector z:

Q¥ LQ V2 )z =z

and set y = Q‘]/ 27 which solves the continuous relaxation.
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Solving the combinatorial relaxation

1 1€ S
—b otherwise
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The combinatorial relaxation Rayleigh

problem

Lemma 2:

a(b) = min V' (B-W)y _ rp A+DC(ES S)

ye{-b 1} yTQy D=ScV CI( )+b2q(S)

(S —normalized ), (NC),(q — normalized ) > a(b)
( )

Forall b,
Two -term > o (b)

Single - term () Expander, Cheeger, half - g - normalized > ——=

Recall Lemmal:

y'(D-W)y _ . C(S,)  C(S.S)

N -+ —
oo y'Qy  eswv g(S) )
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Solving the combinatorial Rayleigh

problem optimally

The problem is a ratio problem

General technique for ratio min LX) < A7
Problems: The A-question xeF g(X)

can be solved if one can solve the following A-question:
f(x)—Ag(x)<0?

*This A Is unrelated to an eigenvector —just a parameter
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Solving the A-question

The A-question of whether the value of RRP Is
less than A IS equivalent to determining

yiet-b.1f

U OR (from Lemmal) U

i{yzg'r;‘ed {Tcivn(1+ bC(S,S)-Ala(s)+ bzq(S_)]}< 0?
problem
(RRP)
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The graph G, for testing the A-question

(looks arbitrary, but not to worry - it works, as shown next)
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It works because the problem can be

formulated as "monotone integer program”

Theorem
The source set of a minimum cut in the araph Gg; Is an optimal

solution to the linearized (RRP) (hereT =S)
Proot ¢ (s Uls), T Udt))=q(T )+ b%(S)+C(S,T)=
= A1+b2 )V )- Aq(S)- Abq(T)+C(S,T)=
= const — Aq(S )- Ab’q(T )+ C(S,T)
) :const+C(S,T)—/‘t[q(S)+bzq(T)]
=const + (RRP)

(1+‘b)2Wij Dorit Hochbaum UC Berkeley 28



Simplifying the graph

AQ; < (1+b?)w
OO O
) Ab?Q;

1+b%)w, }: 1+b%)w;
I
() | ®
|
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Scaling arcs weights
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Scaling arcs weights

b<]1 b>1
(1 b) ii (b 1)
(1+ b) ll (1+ b)
W i W

¢ " :(@i?ﬁ 0
— ) Do
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The Simplified equivalent graph

@ Al (1+b)
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Solving the parametric min st cut

The problem is a parametric cut problem: This is a graph
setup when source adjacent arcs are monotone
nondecreasing and sink adjacent are monotone
nonincreasing (for b<1) with the parameter.

A parametric cut problem can be solved in the complexity
of a single minimum cut (plus finding the zero of n
monotone functions) [GGT8q], [Ho8].

Here we let the parameter be 3 (1 _
/1% b<l
_ —+
=1 po1
A—— b21
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In G,

The cut problem in the graph G, as a
function of B is parametric (the capacities are
linear in the parameter on one side and
independent of it on the other).

In a parametric graph the sequence of source
sets of cuts for increasing source-adjacent
capacities is nested.

There are no more than n breakpoints for 3.
There are k=n nested source sets of minimum
cuts.
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Solving for all values of b efficiently

For /1% b<1
p=1 7

2271 oy
. 1+Db

Given the values of B at the breakpoints, we can generate,
for each value of b, all the breakpoints.

Consequently, by solving once the parametric problem for
B we obtain simultaneously, all the breakpoint solutions for
all b, in the complexity of a single minimum cut.

To solve for the minimum ratio: For each b we find the last
(largest value) breakpoint where the objective value <o.
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Recall problem NC’

min C(S’S_)
sev C(S,S)

It has the same solution as
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Comparison between NC' and the
spectral method

NC =35-10™ NC =1.702-10™

Original image Eigenvector result NC’ result
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Another comparison

NC =127-10"* NC =1.466-10"

Original image Eigenvector result NC’ result
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Empirical testing for the general

problems

For normalized cut diis the sum of similarity
weights.

For g-normalized cut, there are, in addition to
similarity weights defining the Laplacian, also
node weights determined by entropy.
Exponential similarity weights are applied.
Total of 20 cases tested.

Size of images is small due to spectral
method software limitations.
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Scalability of NC’ versus the

spectral algorithm (Shi)

cpu time ()
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A comparison of NC values of NC’

with the spectral algorithm

1 ammillia by ol
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A comparison of NC values of NC’

with the sweep spectral algorithm

Tii-ls(ﬁxpunential) Ob J (Spectral )
== Obj(Combinatorial

BB
11

B g-Normalized cut
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The performance for spectral

sweep [H,Cheng, Bertelli13]

For hg the Cheeger Constant, A1 the Fielder eigenvalue,

— < hg < V2A;. (1)

The proof of the second inequality of the above bound, introduces a bipartition
generated by applying the spectral sweep technique to the Fiedler eigenvector
to find a lowest value bipartition for the Cheeger constant’s objective. Let the
Cheeger constant objective value for this bipartition be denoted by hswerp.
then at best the sweep solution has the same upper bound as the optimal solu-

tion:
ha < hsweep < V2A1 <2V hg. (2)
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For NCswerp be the lowest value of a bipartition for the normalized cut
objective, generated by the spectral sweep technique on the Fiedler eigenvector
in the spectral method. (Note: NCsw grp and hsw grp may not correspond to
the same bipartition.) Let NC(hswgrrp) be the objective value of normalized
cut for the bipartition that generates the value of hgw gpgp, then the following
inequality holds

NCswpep < NC(hsweep) < 2hsweep, (3)

Combining hsw prp < 2vhqg from (2) with (3),

NCsweep < 2hsweep < 4V hg <4V NCqg <4/ NCnc:.
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Subjective Visual Segmentation

Quality Comparison

Normalized Cut

Combinatorial

Spectral

20
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Subjective Visual Segmentation

Quality Comparison (cont.)

Normalized Cut (cont.)

Combinatorial

Spectral
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Subjective Visual Segmentation

Quality Comparison (cont.)

g-Normalized Cut (Entropy)

Combinatorial

Spectral
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Subjective Visual Segmentation

Quality Comparison (cont.)

g-Normalized Cut (Entropy) (cont.)

Combinatorial

Spectral
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The benefit of nested cuts in providing

better segmentation quality

Normalized Cut

Cut presenting
subjectively better
visual segmentation

Cut minimizing
objective function
value

100+ " R
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160 :
20
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The benefit of nested cuts in providing

better segmentation quality (cont.)

Normalized Cut (cont.)

:-J! 2-3\ ;
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Cut presenting
subjectively better
visual segmentation

Cut minimizing
objective function
value
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The benefit of nested cuts in providing

better segmentation quality (cont.)

g-Normalized Cut (Entropy)

Cut presenting
subjectively better
visual segmentation

Cut minimizing
objective function
value

n 40
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The benefit of nested cut in providing

better segmentation quality (cont.)

g-Normalized Cut (Entropy) (cont.)

Cut presenting
subjectively better
visual segmentation

Cut minimizing
objective function
value
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The benefit of defining node weights

as entropy

Cut presenting
subjectively best
visual segmentation

Cut presenting
subjectively best

visual segmentation
using normalized cut |

5 1 3
g0 B g FY L N G
pail 40 ©
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The benefit of defining node weights

as entropy (cont.)

Cut presenting
subjectively best
visual segmentation
using g-normalized cut _

Cut presenting
subjectively best
visual segmentation
using normalized cut

56



Conclusions

The combinatorial technique provides better visual

results in image segmentation.

The combinatorial technique is faster than the spectral

method (and requires substantially less storage)

The combinatorial technique gives, on average, better

quality solutions to several clustering problems.

We used - Cl(S, S_) for: gene expression; knee
<V G, (81 S)

cartilage volume computation (OA); pattern recognition;
video tracking; enhancing nuclear detectors capabilities;

drug efficacy studies, and general data mining.
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Lemma 1’s Proof

Proof: 1 If1eS

"T1ob ifieT=5

' Qy =4(S)+bq(T) yTQ1=0®b=%
y' Ly =y Dy—-y'Wy
=>" d;+b?>’ _d,—[C(S,S)-2bC(S,S)+b’C(S,S)]
=C(S,S)+C(S,S)+b%C(S,S)+h%C(S,S)
—[C(S,S)-2bC(S,S)+b?C(S,S)]
= (1+b® + 2B} C(S:8) = (deR)ZC (S, S)




Lemma 1’s Proof

vy Ly = (1+b)2C(S,S) y'Qy=q(S)+b°q(T)
y' Ly min (1+b)2C(S,S)

mln
ax el "Qy  y'91=0 g(S)+b*q(S)
l y'Ql=0<b= ZES;

L+ (S))c:(s 9)
M)
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Lemma 1's proof

T _
min 22— minC(S, S+ =]
y'01=0 yTQy sV as) a(s)

ye{-b.1}
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