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Graph partitioning applied to clustering points in space

The clustering problem

Given observations Xi, ..., Xj, partition the sample into k groups:
> dissimilar groups;
> similar observations within each group.
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Graph partitioning applied to clustering points in space

The clustering problem
Given observations Xj,
> dissimilar groups;

> similar observations within each group.

..., Xp, partition the sample into k groups:

Numerous existing techniques:
@ hierarchical classification;
@ k-means algorithm;
@ level set methods;
@ graph-partitioning heuristics.

2/387



Examples of graphs

@ Xi,...,X,iid.valuedin some subset M c RY.
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Examples of graphs

@ Xi,...,X,iid.valuedin some subset M c RY.

@ Define a graph G, = (Vy, E,) with vertices V,, = {1,...,n}.
The graph may have weights (weight matrix W).

@ The graph represents a rough skeleton of M.

> e-ball graph
i~j if dist(X, Xj) <e.

> k-nearest neighbor graph

i~ j if X;is one of the k-nearest neighbors of X;.

> Fully connected weighted graph

For example : wj = exp (— dist(Xj, Xj)z/hz)
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Normalized cut and Cheeger constant

Bipartite graph cut problem
Split the graph G, = (Vi, Ep) into S and S¢, with S C V,,.
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Normalized cut and Cheeger constant

Bipartite graph cut problem
Split the graph G, = (Vi, Ep) into S and S¢, with S C V,,.

For S a subset of the graph, define

o(8) =) _ ) w; discrete perimeter
i€S jeSe

5(8)=>_> w; discrete perimeter
ies j£i
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Normalized cut and Cheeger constant

Bipartite graph cut problem
Split the graph G, = (Vi, Ep) into S and S¢, with S C V,,.

For S a subset of the graph, define

o(8) =) _ ) w; discrete perimeter
i€S jeSe

5(8)=>_> w; discrete perimeter
ies j£i

Normalized cut problem

: a(S) DEF
érpcn‘w/ min(3(S). 0089 h(G) Cheeger constant
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Normalized cut and Cheeger constant

> The Cheeger constant is also called conductance.
> Small Cheeger constant = strong bottleneck.
> Best split set S defines a partition of the graph G.
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Normalized cut and Cheeger constant

> The Cheeger constant is also called conductance.
> Small Cheeger constant = strong bottleneck.

> Best split set S defines a partition of the graph G.
> But the optimization problem NP-hard.
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Example: observations

The set M is the union of two discs. (n = 300 points uniform from M.)
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Example: graph

This is a neighborhood graph on the sample points.




Example: where to cut?

Finding a split that optimizes the normalized cut criterion is NP-hard.




Graph Laplacians and spectral graph partitioning

@ Define the degree matrix

D =diag(} _wj, 1 <i<n).
j

@ Define the normalized graph Laplacian

L=1-D'W.
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Graph Laplacians and spectral graph partitioning

@ Define the degree matrix

D =diag(} _wj, 1 <i<n).
j

@ Define the normalized graph Laplacian

L=1-D'W.

Graph bisection (e.g., Shi and Malik, 2000)

@ Compute the eigenvector for the second smallest eigenvalue of L.

@ Partition the points according to their corresponding entry in this
vector.

See also (Chung, 1997) and (Ng, Jordan, and Weiss, 2002).
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Example: approximate best split

Partition computed using spectral bisection. (Blue: discrete boundary.)




The problem

Assuming the points Xi, ..., X, are sampled iid uniform from a domain

M c RY, describe the large-sample behavior of the Cheeger constant
of a ep-ball neighborhood graph.

@ EAC, B. Pelletier, and P. Pudlo. The normalized graph cut and Cheeger
constant: from discrete to continuous. Adv. in Applied Probability, 2012.
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Closely related work:

@ H. Narayanan, M. Belkin, and P. Niyogi. On the relation between low
density separation, spectral clustering and graph cuts. NIPS, 2007.

@ H. Narayanan and P. Niyogi. On the sample complexity of learning
smooth cuts on a manifold. COLT, 2009.

@ M. Maier, U. Von Luxburg, and M. Hein. Influence of graph construction
on graph-based clustering measures. NIPS, 2009.

@ M. Maier, U. von Luxburg, M. Hein. How the result of graph clustering
methods depends on the construction of the graph. ESAIM: Probability
and Statistics, 2013.
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@ M c R9 bounded, open and connected, with smooth boundary.
(Assume that Voly(M) = 1 without loss of generality.)

@ Xi,..., X, sampled iid uniformly from M.
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@ M c R9 bounded, open and connected, with smooth boundary.
(Assume that Voly(M) = 1 without loss of generality.)

@ Xi,..., X, sampled iid uniformly from M.

Smooth here means with positive reach. The reach of a set A c R is
the supremum of all r > 0 such that, for all x € A® B(0, r) there is a
unique point a € A such that

Ix — all = min|lx — b
cA

See (Federer, 1959). (Related to the condition number of Niyogi et al.)

13/37



We consider the ry,-neighborhood graph G, = (Vi Ep):
(i) vertices: Vp,={1,...,n}
(i) edges: i~ jif || X; — Xi|| <
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We consider the ry,-neighborhood graph G, = (Vi Ep):
(i) vertices: Vp,={1,...,n}
(i) edges: i~ jif || X; — Xi|| <

Recall the Cheeger constant of the graph G:

a(S) .
h(Gn) = i inTes).ase M

() => > w; and §(8)=> > w;

ieS jeSe i€S j#i

Wi = 1qx-x; | <rn}
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The continuous Cheeger constant

For A C M, set
u(A) =Volg(An M), v(A)=Voly_1(0AN M)

and define
_ v(A)
min {x(A), n(A°)}’

with Vol the k-dimensional Hausdorff measure.

h(A; M)
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The continuous Cheeger constant

For A C M, set
w(A) =Volg(AN M), v(A)=Volyg_1(0AN M)
and define
_ v(A)
min {1(A), u(A°)}
with Vol the k-dimensional Hausdorff measure.

h(A; M)

The Cheeger constant of M
h(M) = inf {h(A; M) : AC M}.

15/37



The continuous Cheeger constant

For A C M, set
u(A) =Volg(An M), v(A)=Voly_1(0AN M)

and define
_ v(A)
min {x(A), n(A°)}’

with Vol the k-dimensional Hausdorff measure.

h(A; M)

The Cheeger constant of M
h(M) = inf {h(A; M) : AC M}.

> The minimization can be restricted to subsets A with smooth
boundary of codimension 1.

> A Cheeger set A* is a subset with h(A*; M) = h(M).
> OA* is not necessarily smooth (e.g., d > 8).
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Relating the discrete and the continuous

A natural question...

As the sample size increases (n — oo) how is the (discrete) Cheeger
constant h(Gj) related to the (continuous) Cheeger constant h(M)? J
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Discrete perimeter and volume of a continuous set

For AC RY, let Sy = {i: X; € A}, and define
@ the (normalized) discrete perimeter

1 1

A) =
l/n( ) ’Ydfff'H n(n_ 1)

Un(SA)

where
Yd = /Rd max (<U7 Z>,O) 1{||2|\S1}dz’

where u is any unit-norm vector of RY.
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Discrete perimeter and volume of a continuous set

For AC RY, let Sy = {i: X; € A}, and define
@ the (normalized) discrete perimeter

1 1

A) =
l/n( ) ’Ydfff'H n(n_ 1)

an(Sa)

where
Yd = /Rd max (<U7 Z>, O) 1{||2H§1} dz,
where u is any unit-norm vector of RY.
@ the (normalized) discrete volume

1 1

Mn(A) drd n(n_ 1)

dn(Sa)
where wy denote the d-volume of the unit d-dimensional ball.
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Discrete normalized cut of a continuous set

Define
vn(A)

= min {zun(A), 1in(A°)}

hn(A; Gn)
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Discrete normalized cut of a continuous set

Define
vn(A)

(A Gn) = o0 {1n(A), un(A°)}

Let A c RY is such that DAN M has positive reach. If r, — 0 with
nré* /log n — oo, then

hn(A; Gn) — h(A; M) a.s.
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One side of the asymptotics

If r, — 0 with nr@*' /log n — oo, then

lim sup ——h(G,,) < h(M) as.

n—oco Yd I'n
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One side of the asymptotics

If r, — 0 with nr@*' /log n — oo, then

lim sup ——h(G,,) < h(M) as.

n—oco Yd I'n

Proof. This follows immediately from applying the previous result. Take
A C R%is such that 9A N M has positive reach. Then

h(Gp) < ﬂlhn(A; Gn) — h(A; M)
Yd I'n

This implies that
limsup h(Gp) < h(A; M)
n

for all such A. And minimizing the RHS over such A gives h(M).



Concentration inequality for the discrete volume

Proposition

Fix a sequence r, — 0. Let A C M be an arbitrary open subset of M.
There exists a constant C depending only on M such that, for any
e > 0, and all n large enough, we have

d€2
P{lun(A) — u(A) > ] < 2exp (—%) .

In particular, if nré /log n — oo, then pn(A) — u(A) a.s. when n — oco.

v
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By the triangle inequality, we have

[n(A) = p(A)] < [n(A) = E [un(A)]] + [E [1n(A)] — u(A)|
=(1+(2)
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By the triangle inequality, we have

[n(A) = p(A)] < [n(A) = E [un(A)]] + [E [1n(A)] — u(A)|
=(1+(2)

Define the kernel

sarx.y) = {100 + 1) Mllx— I < 1)

so that un(A) may be expressed as the following U-statistic

1
pn(A) = d Z DA (Xi; X))

~ wgn(n—1)rg —
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By the triangle inequality, we have

[n(A) = p(A)] < [n(A) = E [un(A)]] + [E [1n(A)] — u(A)|
=(1+(2)

Define the kernel
1
Oar(x.y) = 5{1a0x) + 1a0) JH{lIx =yl < 1}

so that un(A) may be expressed as the following U-statistic

1
pn(A) = d Z DA (Xi; X))

~ wgn(n—1)rg —

We control (1) using a concentration inequality for U-statistics.
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Define
M, = {x € M : dist(x,OM) > r}
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Define
M, = {x € M : dist(x,OM) > r}

Forany A C M and r < reach(OM),

1
WE [Pa,r(X1, X2)] — u(A)| < (AN MY)

Note that E [un(A)] = #rgE [Dar, (X1, X2)].
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Define
M, = {x € M : dist(x,OM) > r}

Forany A C M and r < reach(OM),

1
WE [Pa,r(X1, X2)] — u(A)| < (AN MY)

Note that E [un(A)] = #rgE [Dar, (X1, X2)].
Proof. We have

E [¢A,r(X17X2)] =K [1A(X1)1{||X1 —X2||Sf}} :
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Define
M, = {x € M : dist(x,OM) > r}

Forany A C M and r < reach(OM),

1
WE [Pa,r(X1, X2)] — u(A)| < (AN MY)

Note that E [un(A)] = #rgE [Dar, (X1, X2)].
Proof. We have

E [¢ar(X1, X2)] = E [1a(X1)1 (3 -0/ <r] -
Conditioning on X1, we have

E [Tam (X Vx-x0<n] = war®u(An M)
= war®u(A) — warfu(An M)

E [1anme(X) 10 -—x)<ry] < waru(An MF).



We control (2) — the bias — using this lemma and the following result,
closely related to Weyl’s volume formula for tubular neighborhoods.

For any bounded open subset R ¢ RY with reach(OR) = p > 0 and any
0<r<p,
Volg(V(0R, r)) <29 Volg_1(dR) .

This implies that
(AN MP) < p(MF) < Volg(M, r) < Cr

for a constant C = C(M).
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Concentration inequality for the discrete perimeter

Proposition

Fix a sequence r, — 0. Let A be an open subset of M such that
0OAN M has positive reach. There exists a constant C depending only
on M such that, for any € > 0, and for all n large enough, we have

nrétl e
Plvn(A) — v(A)] = €] < 2exp (—m> :

In particular, if nré* /log n — oo, then v,(A) — v(A) a.s. when n — co.

v
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Proof. The proof is analogous to that of the previous proposition (for
the volume). Indeed, we can express v,(A) as a U-statistic

1i -
14 (A): ¢A,n(X'7X')7
" wn(n1)fr§”1§ me

where

Sarx.9) = 1A ae) + 10100 1 Llx — v < 7}
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The control of the bias is more delicate. We use the following bound.

Lemma

Let A= Rn M, where R is a bounded domain with reach(0R) = p > 0.

Letr < min{p/2,reach(OM)}. There exists a constant C = C(M) > 0
such that

B [Ba %, X)] —(A) < CVol1(9RN (M B(O.)

+ CVolg_1(dRN M)

r
p

E[VH(A)] —_ 31 : (54’,‘"()(17)(2)
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The control of the bias is more delicate. We use the following bound.

Lemma

Let A= Rn M, where R is a bounded domain with reach(0R) = p > 0.
Letr < min{p/2,reach(OM)}. There exists a constant C = C(M) > 0
such that

‘WE [Gar(X1, X2)] — V(A)‘ < CVolg_1(0RN (M @ B(0,r)))

+ CVolg_{(ARN M)é

E[VH(A)] —_ 31 : (54’,‘"()(17)(2)

Applying the lemma, for A= RN M, we have
|E [vn(A)] — v(A)| < CVolg_1(0RN (OM & B(0, rp)))
n

26/37



Does the discrete converge to the continuous?

Do we have the counterpart to the corollary, meaning

Is it true that, for some r,, — 0, we have

wg 1

(Gn) = h(M) a.s. n— o0?
Yd I'n
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Does the discrete converge to the continuous?

Do we have the counterpart to the corollary, meaning
Is it true that, for some r, — 0, we have

wg 1

(Gn) = h(M) a.s. n— o0?
Yd I'n

Look at the following recent work:

@ N. Garcia Trillos and D. Slepcev. I'-Convergence of Perimeter on
Random Geometric Graphs. CMU preprint, 2013.

@ N. Garcia Trillos and D. Slepcev. Continuum limit of total variation
on point clouds. arXiv preprint, 2014.
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Consistent estimation

@ The class of all open subsets of M with positive reach s too rich
for us to obtain uniform convergences for the discrete volume and
perimeter.
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Consistent estimation

@ The class of all open subsets of M with positive reach s too rich
for us to obtain uniform convergences for the discrete volume and
perimeter.

@ Without loss of generality, assume that M c [0, 1]9. We consider
the class R, of open subsets R of [0, 1]¢ with reach(9R) > p, for a
sequence p, — 0.
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Consistent estimation of the Cheeger constant

If

(i) ry — 0 and nr29*' — o0, and

(i) pn — 0 slowly with r, = o(p%) and nr,z,d 1,00‘ — oo for all o > 0,
n
then

in hn(R; S. .
Friggn n(R; Gn) = h(M) as. n—
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@ The ingredients are uniform versions of the concentration
inequalities for the discrete volume and perimeter over the class
Rn, obtained via the union bound and a bound on the covering
number of R .

@ However, the bias for the discrete perimeter cannot be controlled
uniformly over sets in R,.

ax . N




Our way around that is to compare the discrete perimeter v,(R) with
Volg_1(0R N M,,) instead.
We get the following.

Under the conditions of last theorem, we have

liminf inf (h,(R) — h(R; M;,)) >0 a.s.

n—oo ReERp
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Proof of the last theorem.
For each n, take R, € R. Then

hn(Rn; Gn) — h(M) = [ha(Rn; Gn) — h(Rn; M;,)]

+[N(Ra: My,) — h(Mp,)] + [h(M,,) — h(M)]
0t (ha(R; Gn) — A(Rs M) + [A(M,) ~ h(M)]

Y
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Proof of the last theorem.
For each n, take R, € R. Then

hn(Rn; Gn) — h(M) = [ha(Rn; Gn) — h(Rn; M;,)]

+[h(Rn; Mr,) — h(Mp,)] + [h(Mp,) — h(M)]
hn(R; Gn) — h(R; Mp,)) + [h(Mp,) — h(M)]

Y

RIEn'}gn (

We have the following continuity property of the Cheeger constant.

Under our conditions on M, h(M,) = (1 + O(r))h(M) as r — 0.

We conclude that liminf, minger, hn(Rn; Gn) > h(M).
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Proof of the last theorem.
For each n, take R, € R. Then

hn(Rn; Gn) — h(M) = [ha(Rn; Gn) — h(Rn; M;,)]

+[h(Rn; Mr,) — h(Mp,)] + [h(Mp,) — h(M)]
hn(R; Gn) — h(R; Mp,)) + [h(Mp,) — h(M)]

Y

RIEn'}gn (

We have the following continuity property of the Cheeger constant.

Under our conditions on M, h(M,) = (1 + O(r))h(M) as r — 0.

We conclude that liminf, minger, hn(Rn; Gn) > h(M).

For an upper bound, use the first theorem.
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Consistent estimation of Cheeger sets

Let Ry € argming hn(R; Gn). Then, with probability one:

(i) {Rn N M} admits a subsequence converging in L ;

(if) any convergent subsequence of { R, N M} converges to a
Cheeger set in L.
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Consistent estimation of Cheeger sets

Let Ry € argming hn(R; Gn). Then, with probability one:

(i) {Rn N M} admits a subsequence converging in L ;

(if) any convergent subsequence of { R, N M} converges to a
Cheeger set in L.

The problem here is that we do not know M, so that R, N M is not a
valid estimator. (More on that later.)
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L' metric on Borel sets

@ For A and B Borel subsets of RY:

/ 14(x) — 15(x)| dx = Volg (AAB).
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L' metric on Borel sets

@ For A and B Borel subsets of RY:

/ 14(x) — 15(x)| dx = Volg (AAB).

@ de Giorgi perimeter of 2, measurable subset of M:

Pu(Q) :sup{/ﬂdiv(go)dx L o € C(MiRY), [|ofloo < 1}.
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L' metric on Borel sets

@ For A and B Borel subsets of RY:

/ 14(x) — 15(x)| dx = Volg (AAB).

@ de Giorgi perimeter of 2, measurable subset of M:

Pu(Q) :sup{/ﬂdiv(go)dx L o € C(MiRY), [|ofloo < 1}.

@ Py (Q) = Voly_1(92 N M) for Q of class C'.
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L' metric on Borel sets

Proposition (Compactness)
Let (Ep) be a sequence of measurable subsets of M such that

limsup Py(Ep) < .

n—oo

Then (Ep) admits a subsequence converging for the L' metric.
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L' metric on Borel sets

Proposition (Compactness)
Let (Ep) be a sequence of measurable subsets of M such that

limsup Py(Ep) < .

n—oo

Then (Ep) admits a subsequence converging for the L' metric.

Proposition (Lower semi-continuity)

Let (En) and E be measurable subsets of M such that E, LY E. Then

lim Volg(En) = Volg(E) and liminf Py(En) > Pu(E).

See (Giusti, 1984) or (Henrot and Pierre, 2005).
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Define the probability measure
1 n
Qnh= E 21 1Rn(Xi)5X,-
=

Note that Q, can be computed from the data.
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Define the probability measure
1 n
Qnh= E 21 1Rn(Xi)5X,-
=

Note that Q, can be computed from the data.

Almost surely, any accumulation point of { Q,} is of the form Q =1,
with A, a Cheeger set of M.
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Define the probability measure
1 n
Qo= > 1p,(X))ox
i=1

Note that Q, can be computed from the data.

Almost surely, any accumulation point of { Q,} is of the form Q =1,
with A, a Cheeger set of M.

It is possible to reconstruct a Cheeger set of M from the discrete
measure Qp. It amounts to estimating its support. For example, one
can take a union of small balls around each point in Rj,.
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Numerical approximation: spectral clustering

> Computing a normalized cut is NP-hard. Our method is not
computationally tractable.
> Is spectral clustering consistent?




